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Abstract It is imperative to comprehend the level

and spatial distribution of soil pollution with heavy

metals to find sustainable management approaches for

affected soils. Selected heavy metals (Mn, Zn, Pb, Cu,

Cr, Ni, As, Co, and Cd) and physiochemical param-

eters were appraised for 620 samples from industrial,

agricultural and urban sites in Northern Ireland using

the Tellus database. The findings of this study showed

that among the analyzed heavy metals, Mn content

was the highest and Cd content the lowest. Pearson’s

correlation analysis revealed that heavy metals were

highly correlated with each other, signifying similar

sources for the heavy metals. Mixed factors (anthro-

pogenic and lithogenic) were responsible for the

contribution of heavy metals as revealed by multi-

variate statistical analysis. The results of contamina-

tion factor and enrichment factor analyses suggest that

As, Cd, and Pb showed very high risk for pollution in

the study area. The geoaccumulation index revealed

that with the exception of Cd, all analyzed heavy

metals showed severe accumulation in the soils. The

potential and modified ecological risk indices inferred

that Cd, As, and Pb represented ecological threats in

the soils of Northern Ireland. The findings of this study

will aid in forming approaches to decrease the risks

associated with heavy metals in industrial, urban and

agricultural soils, and help create guidelines to protect

the environment from long-term accumulation of

heavy metals.

Keywords Tellus database � Soil and human health �
Multivariate analysis � Ecological risk �
Contamination indices

Introduction

Soils are the main sink for accumulation of heavy

metals in the environment through anthropogenic

practices. Many heavy metals, unlike organic con-

taminants, do not sustain microbial or chemical
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oxidation, so their overall accumulation in soils

persists for a long time after their release (Wuana

and Okieimen 2011). It is well known that heavy

metals are hazardous to human health and the

environment (Liu et al. 2009; Brevik et al. 2020).

Elevated heavy metals in the soil are of great concern

because of their tendency to bioaccumulate and their

non-biodegradable properties, leading to long-term

exposure for plants, microorganisms, and livestock,

and their possible harm to both humans and animals

via the food chain (Liu et al. 2009; Olgun and Atar

2011; Colaka et al. 2011; Rezapour et al. 2014). This

disrupts the ecological soil balance, which in turn can

affect field productivity (Cao et al. 2010), reduce food

quality (safety and marketed) by means of phytotox-

icity, reduce land usability for agricultural production

which causes food insecurity, and pose problems with

land tenure (Wuana and Okieimen 2011). Heavy metal

exposure can occur through direct ingestion or inter-

action with polluted soil, by passing the metals up the

food chain (soil–plant–human), and through the use of

polluted water (Wuana and Okieimen 2011; Steffan

et al. 2018; Elbehiry et al. 2020).

Heavy metals can be released into the environment

from both natural and anthropogenic sources (Jung

2008; Trujillo-González et al. 2017). Emissions from

rapidly expanding industrial sites, mining waste, the

disposing of waste, paints, animal manures, sewage,

pesticides, fertilizers, use of waste water, coal com-

bustion residues, and the spillage of petrochemicals

can contaminate soil with heavy metals (Wuana and

Okieimen 2011; Steffan et al. 2018). Natural sources

of heavy metal pollution include soil erosion, litho-

genesis, weathering, and geological sources (Stafilov

et al. 2010; Keshavarzi and Kumar 2019). However, it

is also important to realize that many of the heavy

metals are plant and human nutrients, required in small

amounts for proper health and with narrow ranges

from deficiency to toxicity (Brevik 2009; Steffan et al.

2018).

Risk assessment is an important analytical method

that allows decision makers to handle polluted sites in

a cost-effective way while protecting the health of the

public and environment (Zhao and Kaluarachchi

2002). The spatial distribution, toxicity, and defi-

ciency of soil metals are greatly affected by variations

in parent rock, environmental qualities and pedolog-

ical processes (Rezapour et al. 2014). Human exposure

to toxic levels of heavy metals, especially arsenic (As),

chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn),

cause major health disruptions, including disrupting

the nervous and digestive systems, damage to the

circulatory system, various cancers, and several other

unfavorable and adverse consequences (Lee et al.

2006; Arfsten et al. 2011; Peng et al. 2016; Brevik at

el. 2020). In agricultural fields, major causes of heavy

metal pollution are the application of excess fertilizers

and pesticides, substandard manure and compost,

manufacturing facilities and other anthropogenic

practices (Brevik 2009; Keshavarzi and Kumar

2019). Further work is required on contamination

indicators and environmental risk of heavy metals in

soils (Kumar et al. 2016; Tepanosyan et al. 2017;

Sihag et al. 2019; Kumar et al. 2019a, b; Heidari et al.

2019). In addition, a broad ranging approach to

assessing heavy metals pollution has been applied by

different researchers, including geoaccumulation

index (Igeo), enrichment factor (EF), contamination

factor (CF), and ecological risks index (RI) (Tian et al.

2017; Kumar et al. 2019a, b; Keshavarzi and Kumar

2019; Heidari et al. 2019; Aitta et al. 2019; Elbehiry

et al. 2019).

The development of multivariate statistical and

GIS-based approaches have revolutionized research

on soil pollution and human health impacts over the

last few decades (Brevik et al. 2016; Liu et al. 2016;

Zuo et al. 2018). Multivariate approaches have been

increasingly concerned with the source apportionment

and distribution of heavy metals (Zhu et al. 2016;

Jiang et al. 2017; Yegemova et al. 2018; Kumar et al.

2018; Barakat et al. 2019; Keshavarzi and Kumar

2019; Heidari et al. 2019). Heavy metal levels in the

topsoil vary spatially based on landforms, parent

material, geological features, topographical attributes,

and soil physiochemical properties (pH, moisture

regime, available phosphorus, organic matter content,

etc.) (Rais et al. 2006; Wang et al. 2008; Zhu et al.

2016; Khaledian et al. 2017). Furthermore, studies to

date have found different relationships between soil

physiochemical properties and heavy metals. For

example, some studies have shown positive correla-

tions between pH and heavy metals (Kargar et al.

2015; Khaledian et al. 2017), others have shown

negative correlations (Pereira et al. 2014; Perez-

Esteban et al. 2014), and some of have shown no

correlation at all (Cai et al. 2012; Zahra et al. 2014).

Thus, an important issue is improved understanding of
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the dynamic variation in these heavy metals and the

factors that contribute to their levels in soils.

In the current study, we used the Tellus survey

database. Tellus is a national program to gather

geochemical and geophysical data across Ireland

(Appleton et al. 2008). The geophysical characteristics

of Northern Ireland were recently redefined by the

Tellus airborne geophysical survey, which collected

high-resolution electromagnetic data from the mag-

netic, radiometric, and active frequency domains

(Lusty et al. 2009). The distribution of heavy metals

in a portion of Northern Ireland was investigated using

the Tellus soil geochemistry data in agricultural,

industrial, and urban areas. It was hypothesized that

the soils of the study location represented a threat to

human and environmental health due to heavy metal

accumulation from anthropogenic activities. This

hypothesis was tested on 620 soil samples from the

Tellus database. In order to evaluate different results,

and to assimilate them into an inclusive dataset,

multivariate statistical techniques were applied to find

the plausible sources of heavy metals. Furthermore,

contamination indices (CF, EF, PLI, Igeo, RI, and

MRI) were also used on the data to determine the

pollution level of HMs in the soils of Northern Ireland,

because measuring the HMs concentrations alone does

not provide a complete picture of the soils’ pollution

status. Therefore, to determine the relationships

between the heavy metals and influencing factors,

the present study aimed to (1) evaluate selected soil

physiochemical properties (texture, pH, bulk density,

phosphorus, As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, and

Zn) and (2) assess and apply selected contamination

indices (CF, EF, PLI, Igeo, RI, and MRI) and

multivariate techniques (correlation, CA, and PCA)

to Tellus data to determine the human health or

ecological risk posed by various metals.

Materials and methods

Tellus database

Tellus means ‘‘earth’’ in Latin. This has been used as

an alternate name in mythology for Terra, the Roman

Earth Mother goddess, and hence is the equivalent of

the Greek goddess Gaia. The Tellus project was

carried out by the Geological Survey of Northern

Ireland and financed by the Department of

Communications, Climate Action and Environment.

All Tellus data are made available online, free of

charge. Tellus comprises two types of surveys: aerial

geophysical data using a low-flying aircraft and field-

based geochemical data surveys of stream sediment,

stream water and soils (Young and Donald 2013;

Gallagher et al. 2016). To date, Tellus surveying has

been conducted in Northern Ireland and Ireland’s

border area, and 60% of the region has now been

mapped with the Tellus geophysical survey. Tellus set

up a product development process to create more

oriented, user-centered data items, the need for which

was defined through stakeholder feedback, indepen-

dent reviews and government policy. Product devel-

opment is being performed in five main areas: smart

agriculture, climate action and education, mineral

prospecting, and health and environment (Nice 2010).

Description of the study area and data used

The study area follows along the boundary between

Eglinton and Castlederg counties in the northwestern

portion of Northern Ireland. It is situated between

latitude 54� 380 N to 55� 40 N and longitude 7� 160 W to

7� 270 W with an average altitude of 148.68 m above

mean sea level and an area of approximately 1270 km2

(Fig. 1). A digital elevation model (US Geology

Survey 2014) was downloaded from the Aster GDEM

database and reintroduced to Universal Transverse

Mercator (UTM) projection with a spatial resolution

of 30 9 30 m to establish the topography of the study

area. The slope gradient varies from 0.2 to 42 percent

with an average of 9.4 percent. ArcGIS 10.5 (ESRI,

USA) software was used to select a total of 620 soil

samples (0 to 20 cm depth) extracted from the Tellus

database in the defined study area based on the

boundary location. The soil textures were classified as

loam, clay loam, silt loam, and sandy loam. Previous

research confirmed that increasing fertilizer inputs and

imported feedstuffs led to high amounts of soil

phosphorus in the study area (Foy et al. 2002). The

main land covers in the study area include large areas

of production agricultural land, pasture, and wetlands.

Forested areas are scarce.

The climate in Ireland is strongly affected by its

position on the eastern side of the Atlantic Ocean and

on the western edge of Europe. This leads to a mild sea

climate, which is characterized by winds from the

south west (Creamer and O’Sullivan 2018). The mean
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annual precipitation in the study area ranges from 959

to 1,320 mm, and mean annual temperature is about

8–9 �C (McElarney et al. 2015). The Köppen–Geiger

climate classification is temperate oceanic (Cfb),

which means the average temperature in the coldest

month is above 0 �C, 1–3 months average above

10 �C, and there are no significant precipitation

differences between seasons (Beck et al. 2018).

Earlier regional geochemical studies carried out as

part of the Tellus project in the northern parts of

Ireland (Young and Donald 2013; Gallagher et al.

2016) demonstrated the effects of widespread urban-

ization on the composition of topsoils, even outside of

Fig. 1 Digital elevation model (DEM), study area location and distribution of the soil samples

123

2124 Environ Geochem Health (2021) 43:2121–2142



major metropolitan regions (Creamer and O’Sullivan

2018), and frequent anomalies in topsoil have been

found in small towns, villages, and communities

across the country (Nice 2010). A significant propor-

tion of Irish soils are marked by low internal drainage

intensified by regionally high levels of precipitation.

Because of their higher water content, poorly drained

soils need longer time and energy to warm up in

spring, which can delay crop/grass production (Crea-

mer and O’Sullivan 2018). Around 49.5% (3.4 M ha)

of Ireland’s total area is defined as marginal land that

is subject to topography, relief, soil, and climate-

related natural constraints. Such land is scattered

across the country but mainly distributed along the

west coast (Gardiner and Radford 1980; Creamer and

O’Sullivan 2018). Excess soil moisture is considered

to be a major limitation in terms of primary produc-

tivity in large parts of the Ireland region classified as

significantly wet with impeded drainage (Collins and

Cummins 1996) or low natural drainage status

(Creamer and O’Sullivan 2018).

Analytical methods for selected heavy metals

and laboratory analyses

Soil chemistry sample analysis techniques used to

generate the Tellus database have been reported by

Nice (2010) and Milne et al. (2013). They include soil

loss-on-ignition at 450 �C to determine soil organic

matter, determination of soil pH by CaCl2 slurry, and

multi-element total analyses by X-ray fluorescence

spectrometry (XRFS) on pressed powder pellets for

the heavy metals investigated in this study (Ingham

and Vrebos 1994; Nice 2010; Milne et al. 2013).

Topsoil physical properties, i.e., soil textural fractions

(clay, silt, and sand) and bulk density, were extracted

through the LUCAS database at the European scale

(Panagos et al. 2012; Ballabio et al. 2016).

Collection of auxiliary information

The geology of the study area is characterized by

metamorphic rocks and coastal deposits (Fig. 2). The

major geological units are comprised of the Southern

Highland Group, which is composed of pelitic and

psammitic schist, phyllite, and marble. The major

landforms of the region are plains followed by mid-

slope ridges and small hills in plains. Landforms were

derived from the DEM using SAGA GIS software

(Olaya and Conrad 2009) (Fig. 3).

Evaluation of soil contamination

Different contamination determinants and indices are

used to assess the pollution levels and environmental

hazards posed by heavy metals in soils, including the

contamination factor (CF), enrichment factor (EF),

geoaccumulation index (Igeo), potential ecological

risk (RI), and modified potential ecological risk (MRI)

indices (Tian et al. 2017; Kumar et al. 2018;

Keshavarzi and Kumar 2019). Such pollution indices

can demonstrate a qualitative threshold or requirement

for each individual heavy metal’s ecological risk

measurement.

Contamination factor (CF)

The contamination factor provides information on the

anthropogenic contributions of heavy metals in soils

(Ahmed et al. 2016). It was determined using Hakan-

son’s (1980) equation as follows:

CF ¼ HMs

HMb
ð1Þ

where HMs and HMb are the heavy metal’s concen-

trations at sampling locations and in the background

environment, respectively. Values from Taylor and

McLennan (1995) were used as heavy metal back-

ground values in this study. CF was interpreted using

four classes: (CF[ 6; very high contamination),

(3\CF[ 6; high contamination), (1\CF[ 3;

moderate contamination) and (CF\ 1; low contam-

ination) (Hakanson 1980; Keshavarzi and Kumar

2019).

Enrichment factor (EF)

The enrichment factor represents heavy metal enrich-

ment as compared to the background heavy metals

content (Sakram et al. 2015). Heavy metals that vary

geochemically within the environment and are not

capable of creating antagonism or compatibility issues

with the measured heavy metals are employed as the

heavy metal background (Chandrasekaran et al. 2015).

Mn was used as the heavy metal background in this

study and measured as:
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EF ¼
HMs

HMb

Mns

Mnb

ð2Þ
where HMs and HMb are the sample and background

concentrations of the heavy metals, respectively,

while Mns and Mnb are the sample and background

Mn concentrations, respectively.

The EF was interpreted using seven categories:

(EF[ 50; exceptionally high enrichment), (25 B

Fig. 2 Geological units map of the study area (the data

represent a seamless bedrock geological dataset encompassing

Rep of Ireland and parts of Northern Ireland at the 1:500,000

scale. This dataset is part of the ‘‘Bedrock Geology 500 K

Series’’ (Geological Survey of Ireland 2020))
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EF\ 50; very high enrichment), (10 B EF\ 25;

high enrichment), (5 B EF\ 10; moderately high

enrichment), (3 B EF\ 5; moderate enrichment),

(1 B EF\ 3; less enrichment) and (EF\ 1; no

enrichment) (Marrugo-Negrete et al. 2017; Kesha-

varzi and Kumar 2019).

Fig. 3 Landforms classes map of the study area (extracted from

DEM, classification codes based on SAGA manual described by

Olaya and Conrad (2009) contains Irish Public Sector Data

(Geological Survey) licensed under a Creative Commons

Attribution 4.0 International (CC BY 4.0) license)

123

Environ Geochem Health (2021) 43:2121–2142 2127



Pollution load index (PLI)

The PLI was determined by considering the CF of each

metal for a particular site; the equation used to

calculate this was as follows:

PLI ¼ CF1 � CF2 � CF3 � CF4 � . . .CFnð Þ1=n ð3Þ

where n corresponds to the number of metals. A PLI

value less than 1 signifies unspoiled soil.

quality, while greater than 1 indicated deterioration

of soil quality (Tomlinson et al. 1980).

Geoaccumulation index (Igeo)

Igeo quantifies the level of heavy metal pollution. It

was assessed as follows:

Igeo ¼ log2
HMs

1:5 � HMb
ð4Þ

where HMs and HMb are the sample and background

concentrations of the heavy metals, respectively. The

constant 1.5 reflects changes in environmental con-

centrations of heavy metals (Wei and Yang 2010).

Igeo was interpreted as: Igeo C 5; extreme pollution,

Igeo (4–5); severe pollution, Igeo (3–4); very high

pollution, Igeo (2–3); high pollution, Igeo (1–2);

strong pollution, Igeo (0–1); moderate pollution and

Igeo B 0; no pollution (Loska et al. 2004; Keshavarzi

and Kumar 2019).

Ecological risk assessment (RI and MRI)

To analyze the ecological risk posed by heavy metals

in soils, the potential ecological risk index (RI) was

calculated. It is determined as the multiplication of

each heavy metal contamination factor and individual

heavy metal toxicological response factor (Tr), viz.

Mn and Zn (1), Cu, Co, Ni and Cr (5), and As and Cr

(2) (Kumar et al. 2018; Keshavarzi and Kumar 2019).

It was calculated using the following equation:

RI ¼ CFn � Tr ð5Þ

where CFn and Tr are the individual heavy metal’s

contamination factor and toxicological response fac-

tor, respectively. The Tr can be supplemented with EF

for measurement of potential ecological risk index,

with a view to determining the ecological risks of

anthropogenic and lithogenic additions of heavy

metals to soils. The modified potential ecological risk

(MRI) was calculated based on EF (Kumar et al. 2018;

Keshavarzi and Kumar 2019) using the following

equation:

MRI ¼ EFn � Tr ð6Þ

where EFn and Tr are the individual heavy metals’

enrichment factor and toxicological response factor,

respectively. The risk assessment was interpreted as

follows:[ 320 (very high risk), 160–320 (high risk),

80–160 (considerable risk), 40–80 (moderate risk) and

Er\ 40 (low risk) (Keshavarzi and Kumar 2019).

Spatial distribution maps of RI and MRI

To illustrate the spatial distributions of ecological risk

indices, kriging in ArcGIS 10.5 (ESRI, Redlands, CA,

USA) software was performed as undertaken by

various researchers (Liu et al. 2017; Masoud et al.

2016) to extrapolate their spatial distribution maps

(Chen et al. 2016). The kriging method is one of the

best linear unbiased techniques to provide reasonable

spatial maps and gives stochastic uncertainty to the

maps (Burrough and McDonnell 2015). To calculate

the errors and investigate uncertainty assessment for

the spatial maps, the cross-validation method (leave-

one-out) was used and the prediction standard error for

the kriged maps was measured and expressed as

‘‘standard error’’ maps (Grunwald et al. 2004).

Statistical analysis

Descriptive statistics were calculated for all the

analyzed parameters using PAST v.3.21 (Hammar

et al. 2001). Pearson’s correlation analysis was

conducted to find the associations among soil physio-

chemical parameters and heavy metals using R-soft-

ware v.3.5.1. Further cluster analysis (P, As, Cd, Cr,

Co, Cu, Fe, Pb, Mn, Ni, and Zn) and principal

component analysis (As, Cd, Cr, Co, Cu, Fe, Pb, Mn,

Ni, and Zn) were performed on the dataset in order to

find source apportionment of heavy metals by

employing SPSS v.16 software (IBM, USA) and

Minitab v.14. The varimax rotation method was used

in the principal component analysis (PCA). The

Kaiser–Meyer–Olkin (KMO) and Bartlett’s test of

sphericity was significant (KMO = 0.762[ 0.6,

p = 0.000\ 0.005) and demonstrates sample suitabil-

ity. Cluster analysis was applied to the heavy metals
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data employing Ward’s method (Kumar et al. 2018)

and Euclidean distance as a measure of similarity.

Results and discussion

Descriptive statistics

The descriptive statistics for selected physiochemical

parameters are shown in Table 1. The pH range was

2.86 to 7.29 with a mean value of 4.44. The acidic

nature of the soils enhances the availability and

movement of heavy metals in the soils (Tian et al.

2017). Among the textural properties, sand (28.5 to

93.1% with mean value 54.5%) is most abundant

followed by silt (4.3 to 46.6% with mean value 29.6%)

and clay (1.8 to 30.3% with mean value 15.7%). The

high sand content is responsible for reducing the

potentially toxic metals content of the soils owing to

their low cation exchange capacity and leaching

(Bhatti et al. 2018). The phosphorus content ranged

from 138 mg/kg to 3220 mg/kg with an average value

of 871.3 mg/kg. Heavy use of phosphorus fertilizers is

associated with high phosphorus content in the soil

and also acts as a sink for the immobilization of metals

(McGowen et al. 2001). Bulk density averaged 1.09 g/

cm3 with a range of 0.96 to 1.23 g/cm3. The skewness

and kurtosis of sand, silt, clay, pH, and bulk density

were found to be less than one, signifying normal

distribution of data (Beaver et al. 2012). The kurtosis

and skewness values of phosphorus were above one,

demonstrating leptokurtic kurtosis and left-handed

skewness (Beaver et al. 2012). The highest variance

was observed for phosphorus followed by sand and

silt, and greater variance of these parameters reflects

higher degree of variation of each value from the

average value for a particular parameter (Beaver et al.

2012). The coefficient of variation was also found to

be higher for all the physiochemical parameters,

indicating higher alteration of textural properties,

pH, bulk density, and phosphorus.

The descriptive statistics for the heavy metals

analyzed are given in Table 2. The mean values

obtained from the analyzed metals showed the trend:

Mn[Zn[ Pb[Cu[Cr[Ni[As[Co[Cd.

Variance analysis revealed that Mn content showed

the greatest alteration among the studied sites fol-

lowed by Zn, Pb, and As. Kurtosis and skewness

values were greater than one for all metals, signifying

leptokurtic kurtosis and right-handed skewness (Bea-

ver et al. 2012). The high kurtosis indicated that all

samples were gathered at moderately less values (Lu

et al. 2010). The highest variance was observed for Mn

followed by Zn and Pb, and greater variance of these

heavy metals signifies a higher degree of variation of

each concentration from the average concentration for

Mn, Zn, and Pb than for other metals in the study

(Beaver et al. 2012). All analyzed heavy metals

Table 1 Descriptive statistics for selected physicochemical properties for the soils studied as reported in the Tellus database

Statistics Sand (%) Silt (%) Clay (%) pH (-) Bulk Density (g/cm3) Phosphorus (mg/kg)

Min 28.56 4.319 1.856 2.86 0.96 138

Max 93.16 46.60 30.34 7.29 1.23 3220

Mean 54.58 29.64 15.78 4.44 1.09 871.3

Std. error 0.61 0.39 0.23 0.03 0.002 14.12

Variance 232.82 96.60 34.17 0.69 0.003 123,660.4

Std.dev 15.25 9.82 5.84 0.83 0.05 351.65

Median 51.35 32.17 16.47 4.58 1.08 820

25 prcntil 41.33 22.11 11.17 3.765 1.04 626.2

75 prcntil 65.99 37.82 20.44 4.99 1.13 1060

Skewness 0.54 - 0.62 - 0.19 - 0.19 0.23 1.15

Kurtosis - 0.73 - 0.62 - 0.82 - 0.41 - 0.81 3.68

Geom. mean 52.54 27.43 14.44 4.36 1.09 803.2

Coeff. var 27.96 33.16 37.04 18.6 5.16 40.36
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showed a high coefficient of variation (52.2% to

191.7%), suggesting that human activities have had a

large influence on them (Cai et al. 2015). The

unevenness allied with the analyzed descriptive

statistical data may be linked with activities that

change land use and configuration like excavation,

digging, weathering, and erosion that can alter the

stability of soil conditions (Amuno 2013; Arenas-

Lago et al. 2014). The coefficient of variation (CV) is

mainly performed to elucidate the level of variability

of heavy metals (Fu et al. 2010). Arsenic had the

largest CV (191.7%) followed by Mn (127.9%) and Pb

(101.5%), showing anthropogenic activities have a

high impact on the content of these metals in the soil

(Adimalla 2020). When the CV value is less than 10%

it signifies low variability, whereas if greater than

90%, it signifies high variability (Fu et al. 2014). Guo

et al. (2012) reported that moderately high CVs greater

than 50% for heavy metals in soils were primarily

impacted by anthropogenic activities, and in the

present study all heavy metals showed CVs above

50%. After comparing heavy metals concentrations

with Irish soil limits suggested by McGrath and

Fleming (2006), it was estimated that 2.4% of the

samples exceeded their recommended maximum

concentration for As, 1.1% exceeded their maximum

recommended content for Cd, and 0.48%, 2.09%,

0.6% and 0.8% of samples surpassed their maximum

recommended concentrations for Co, Pb, Mn, and Zn,

respectively.

Correlation analysis

Pearson’s correlation analysis was employed to

investigate the correlations among the heavy metals

(As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, and Zn) and

physiochemical parameters (sand, silt, clay, pH, bulk

density, and phosphorus) (Fig. 4). Cr, Co, Cu, Fe, Pb,

Mn, Ni, and Zn were highly correlated with each other

(p\ 0.05), signifying that human activities have

likely played a large role in reaching their current

concentrations (Wang et al. 2012). As and Cd (0.25)

showed moderate correlation with other heavy metals

and with the physiochemical properties except phos-

phorus. Ma et al. (2018) also reported correlations

between Cr, Zn, Cu, and Ni and concluded that similar

sources were responsible for those correlations. Phos-

phorus was positively correlated (p\ 0.05) with As

Table 2 Descriptive statistics for the heavy metals in soils of the study area as determined from the Tellus database. All units are in

lg/g except Fe (% wt. eq.)

Statistics As Cd Cr Co Cu Fe Pb Mn Ni Zn

Min 0.5 0.005 0.5 0.434 2.2 0.34 1.88 2.5 1.66 15.2

Max 217 2.69 140 45.9 143 10.7 545 4940 69.4 275

Mean 9.95 0.27 17.36 6.12 23.49 1.95 27.37 343.61 12.56 57.48

S.E 0.77 0.01 0.67 0.20 0.63 0.04 1.12 17.65 0.34 1.26

Variance 364.40 0.05 276.91 24.51 243.68 1.03 772.13 193,162.80 70.22 990.06

Std.dev 19.08 0.22 16.64 4.95 15.61 1.01 27.78 439.50 8.37 31.46

Median 5.8 0.22 14.8 5.19 22.3 1.93 21.1 229.5 11.5 50.7

25 prcntil 2.38 0.17 4.69 2.1875 9.69 1.12 15.725 102 5.58 35.9

75 prcntil 10.175 0.3 23.6 8.65 32.45 2.55 31.5 422.75 16.65 70.4

Skewness 6.76 5.30 2.39 1.95 1.34 1.50 11.43 4.98 1.34 2.24

Kurtosis 57.10 43.51 10.59 8.84 5.42 8.98 198.19 36.21 3.97 8.47

G.M 4.82 0.23 8.43 4.20 18.19 1.68 22.53 217.70 9.81 50.99

C.V 191.78 80.97 95.86 80.96 66.44 52.23 101.53 127.91 66.70 54.74

Irish soil limitsa 1–50 0.1–1 5–250 1–25 2–100 – 2–80 20–3000 0.5–100 10–200

Swedish limits for soilb – 0.4 120 30 100 – 80 – – 350

aMcGrath and Fleming (2006)
bBhagure and Mirgane (2011); Swedish Environmental Protection Agency (2003)
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(0.18), Cd (0.32), Cr (0.17), Co (0.27), Cu (0.50), Fe

(0.34), Mn (0.27), Ni (0.23), and Zn (0.40), reflecting

the contribution of agronomic practices like pesticide,

fertilizer, and herbicide applications to the heavy

metal content in these soils. The textural properties

(0.55 to 0.58), pH, bulk density (0.49), and phosphorus

(0.30) also showed high correlations (p\ 0.05) with

each other. Sand and bulk density (0.90) were

negatively correlated (p\ 0.05) with all heavy metals

except As, Cd, and Pb, showing that sandy texture has

a negative effect on the accumulation of most heavy

metals at this site, likely due to leaching of metals to

lower soil layers which might expedite heavy metals

uptake by plants (Rodriguez Martin et al. 2013). Silt

and clay (0.89) were positively correlated (p\ 0.05)

with all heavy metals except As ( 0.06), Cd ( 0.03),

and Pb ( 0.14 to 0.16). Lead ( 0.20), As (0.15), Cd

(0.22), and pH were also correlated with each other

Fig. 4 Pearson’s correlation analysis of heavy metals and physiochemical properties of soil. Blue color indicates positive correlation,

while red color exhibits negative correlation at P\ 0.05. Blank boxes represent no correlation among the parameters
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(p\ 0.05), signifying the impact of pH on heavy

metals mobility and accumulation.

Multivariate analysis

Cluster analysis (CA) was applied to the heavy metals

data (Fig. 5) to investigate which metals likely had the

same sources. Ward’s method is a criterion used in

hierarchical CA. Ward (1963) suggested this method

for common agglomerative hierarchical clustering

practice, where the criterion for selecting the pair of

clusters to amalgamate at every step is dependent on

the ideal value of an independent function. Various

researchers such as Moghtaderi et al. (2020), while

working on soil heavy metal contamination in South-

west Iran, and Kumar et al. (2020) on heavy metal

contamination in India, applied Ward’s method for

CA. Moreover, it is the most commonly employed

method for environmental sample analysis (Strauss

and von Maltitz 2017).

CA results showed two main groups: cluster I (As,

Cd, and Pb) and cluster II (Cr, Ni, Co, Mn, Fe, P, Cu,

and Zn). Furthermore, cluster II was subgrouped into

Cr and Ni and Co and Fe, with these two subgroups

forming a higher level subgroup that also included Mn,

along with another subgroup consisting of Cu, Zn, and

P.

PCA was conducted to investigate relationships

between the metals (Table 3 and Fig. 6). The eigen-

values were greater than one for the first two

components and accounted for 61.2% of the total

variance. PC1 accounted for 45.9% of the variation

and had loadings on Co, Cu, Fe, Mn, Cr, Ni, and Zn.

Arsenic, Pb, and Cd loadings were grouped into PC2

and accounted for 15.2% of variance. After rotation of

the component matrix, PC1 accounted for 44% of the

variance and had same loadings as PC1 from the

component matrix, while PC2 accounted for 17% of

the variation and also had the same loadings as PC2

from the component matrix. Gasoline additives and

release by dust are responsible for most of the Pb

content in soil and the broader environment and is a

key source of contamination in urban areas (Chen et al.

2016). The addition of Cd is due to impurities in

detergents, petroleum goods, and fertilizer (Kumar

et al. 2019a). Sewage sludge and fly ash are the main

sources associated with Cr in the soil (Dogra et al.

2019). Zinc sulfides, zinc chloride, and zinc acetate are

applied as wood preservatives and during the dyeing

of fabrics and account for much of the Zn in soil

(Kumar et al. 2019b). Nickel is contributed to the

Fig. 5 Cluster analysis of heavy metals in soils from Northern Ireland
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Table 3 Principal component analysis of heavy metals in the studied soils as indicated in the Tellus database

Components Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total Var % Cumulative % Total Var % Cumulative % Total Var % Cumulative %

1 4.59 45.96 45.96 4.59 45.96 45.96 4.41 44.09 44.09

2 1.52 15.24 61.20 1.52 15.24 61.20 1.71 17.11 61.20

3 0.96 9.69 70.90

4 0.80 8.03 78.93

Component

matrix

Rotated component

matrix

PC1 PC2 PC1 PC2

As 0.349 0.443 As 0.229 0.516

Cd 0.188 0.762 Cd 0.006 0.785

Cr 0.774 - 0.326 Cr 0.830 - 0.125

Co 0.907 - 0.117 Co 0.908 0.110

Cu 0.720 - 0.062 Cu 0.713 0.118

Fe 0.858 - 0.124 Fe 0.862 0.092

Pb 0.064 0.606 Pb 0.088 0.603

Mn 0.651 0.084 Mn 0.610 0.242

Ni 0.900 0.217 Ni 0.925 0.012

Zn 0.725 0.431 Zn 0.596 0.591

Bold values represent significant loadings

Fig. 6 PCA scree plot showing first two components with eigenvalues greater than one
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atmosphere by power plants where it becomes

attached to dust particles that are washed into the soil

by precipitation. Use of inorganic fertilizers adds Cu

to the soil, while the steel and iron industries and dust

from iron mines are responsible for most of the

anthropogenic Fe in soil (Kumar et al. 2019b). Zhu

et al. (2017) also observed that Cu and Zn were

contributed by anthropogenic activities. Tepanosyan

et al. (2018) reported loadings of Mn, Cu, and Zn on

PC1 and concluded that human inputs contributed to

the soil content of these metals.

Appraisal of pollution by CF, EF, PLI, and Igeo

The CF was computed for each heavy metal studied

(Table 4). Results showed that 17.9% of sampling sites

showed low, 22.9% moderate, 30.8% high, and 28.3%

very high contamination by As. For Cd 5%, 68.3%,

20.9%, and 5.6% of sites showed low, moderate, high,

and very high contaminations, respectively. In the

cases of Zn, Cr, Co, and Cu, 75.1%, 90.3%, 81.7%,

and 57.2% of sampling sites had low contamination,

respectively, while 24.8%, 9.6%, 18.2%, and 42.7% of

sites showed moderate contamination, respectively.

The results for Mn and Pb indicated that 82.4% and

43.8% sites showed low contamination, 15.9% and

51.1% moderate contamination, 0.96% and 4.5% high

contamination, and 0.64% and 0.48% of sampling

sites showed very high contamination, respectively. In

the case of Ni, 82.5% and 17.4% of sampling sites

showed low contamination and moderate contamina-

tion, while no sites showed higher Ni contamination

values. Wang et al. (2020) reported CF values for

different heavy metals such as Pb (1.54), Cd (1.13), Cu

(1.39), As (1.14), Zn (1.21), and Cr (1.43) in the soils

of Jiangsu Province and reported moderate contami-

nation of heavy metals which is in confirmation with

our findings.

The EF was also determined for each heavy metal

(Table 4). The EF results for As indicated that 7.4%,

25%, 51.7%, 11.1%, and 4.6% of the sampling sites

indicated less enrichment, moderate enrichment,

moderately high enrichment, high enrichment, and

very high enrichment, respectively. For Cr, 91.2%,

8.06%, and 0.64% of sampling sites showed less

enrichment, moderate enrichment and moderately

high enrichment, respectively. The results for Cd

indicated that 14.03% sites showed less enrichment,

33.8% moderate enrichment, 36.2% moderately high

enrichment, 11.6% very high enrichment and 4.1%

exceptionally high enrichment. The results for Co and

Cu showed that 92.5% and 54.5% of sampling sites

had low pollution, while 7.4% and 40.8% sites showed

modest enrichment, respectively. The EF results for

Pb and Zn indicated that 42.2% and 56.6% sites

showed less enrichment, 32.1% and 37.2% sites

showed modest enrichment, 20.1% and 3.7% signif-

icant enrichment, 4.35% and 0.32% very high enrich-

ment, and 1.12% and 0.16% life-threatening

enrichment, respectively. For Ni 83.5% and 16.2%

sampling sites showed less and modest enrichment.

Pan et al. (2016), working on soils in Shanxi Province,

found EF values of 1.52 (As), 2.86 (Cd), 1.34 (Cr),

1.50 (Cu), 0.96 (Pb), 1.39 (Ni), and 1.21 (Zn), and

indicated that human inputs were responsible for

enrichment of heavy metals in the area. Our results

were also in corroboration with Cai et al. (2019). They

reported EF values for Cu (1), Pb (1.54), Zn (1.33), Ni

(0.98), Cd (1.55), As (0.68), and Cr (0.71) in

agricultural soils of Guangdong and concluded that

heavy metals showed less enrichment in the area.

The pollution load index (PLI) was calculated to

determine the collective influence of As, Cd, Cr, Co,

Cu, Pb, Mn, Ni, and Zn in the soils of the study area.

Results showed that 42.4% of samples indicated that

soil quality was being deteriorated by heavy metals,

while 57.5% samples indicated that soil quality was

not impacted by heavy metals. The range of PLI found

in the present study was 0.057 to 10.57 with an average

value of 1.06. Our PLI results are in corroboration with

Charzyński et al. (2017). They reported PLI values of

0.1 to 2.8 in their studies of soils in northwest Poland.

Xiao et al. (2019) reported that 57.6% of soil samples

in their study area in Shaanxi, China, exhibited

moderate pollution, while 43.4% samples showed

high pollution of heavy metals (Zn, As, Cd, Cu, and

Pb) based on PLI.

The Igeo index was determined for the studied

metals (Table 4). Results for Cu, Pb, Zn, Mn, and Ni

were above 5, representing extreme pollution for all

sampling sites. As and Co Igeo results indicated that

31.4% and 0.32% of sampling sites showed no

pollution, 25.9% and 12.2% moderate pollution,

17.2% and 7.09% strong pollution, 8.54% and 3.87%

high pollution, 4.5% and 3.06% very high pollution,

and 12.2% and 73.3% severe pollution. The Igeo

results for Cd indicated no pollution for all sampling

sites. Mehr et al. (2017) reported Igeo values for Cd
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(0.32), As ( 0.8), Co ( 0.99), Cr ( 1.45), Cu (0.24), Ni

( 1.05), Pb (1.64), and Zn (1.33) and reported no

pollution to strong pollution of heavy metals in the

area which are consistent with our results. Xiao et al.

(2019) also reported Igeo values for Cd (1.78), Zn

(0.75) and As (0.39), signifying accumulation of these

metals in the soils of Shaanxi.

Ecological risk assessment (RI and MRI)

The potential ecological risk (RI) was determined for

the studied metals (Table 5). The results of potential

ecological risk (RI) for Cd showed that 11.9% of sites

reported low risk, 53.7% moderate risk, 27.7%

considerable risk, 5.4% high risk, and 1.12% of sites

showed very high risk, respectively. RI results for As

showed that 94.5% of sites showed low risk, 3.8%

moderate risk and 0.8% high risk and very high risk,

respectively. RI values for Co, Cr, Mn, Ni, and Zn

were below 40, indicating low risk from these metals.

RI values for Pb showed that 99.6% of sites showed

low risk. However, the average RI value was less than

150, signifying low ecological risk. Islam et al. (2017)

reported RI values as follows Cr (2.8), Ni (2.9), Cu

(14), As (51), Cd (130), and Pb (11) in their study on

agricultural soils of Bangladesh and concluded that the

Table 4 CF, EF, and Igeo

indices for the studied

heavy metals

Contamination factor (CF)

As Cd Cr Co Cu Pb Mn Ni Zn

Min 0.33 0.05 0.01 0.04 0.09 0.09 0 0.08 0.21

Max 144.67 27.45 4 4.59 5.72 27.25 9.15 3.47 3.87

Mean 6.64 2.77 0.49 0.61 0.94 1.37 0.64 0.63 0.81

Enrichment factor (EF)

As Cd Cr Co Cu Pb Ni Zn

Min 0.22 0.15 0.0040 0.16 0.07 0.14 0.06 0.12

Max 854.39 308.57 9.95 11.71 42.68 69.32 22.25 82.14

Mean 16.67 10.55 0.95 1.17 2.25 5.37 1.43 2.37

Geoaccumulation index (Igeo)

As Cd Cr Co Cu Pb Mn Ni Zn

Min 0.15 0.0001 3.51 0.87 11.04 7.55 270.93 6.66 216.58

Max 65.32 0.05 983.36 92.12 717.45 2187.49 535,351.70 278.55 3918.41

Mean 3.00 0.01 121.94 12.27 117.87 109.84 37,237.76 50.43 818.96

Table 5 Ecological risk

appraisal of metalloids in

soils of the study area

Potential ecological risk of each metal (Er) RI

As Cd Cr Co Cu Pb Mn Ni Zn

Min 0.67 1.53 0.03 0.22 0.44 0.47 0.00 0.42 0.21 3.99

Max 289.33 823.47 8.00 22.95 28.60 136.25 9.15 17.35 3.87 1338.97

Mean 13.27 83.10 0.99 3.06 4.70 6.84 0.64 3.14 0.81 116.55

Modified potential ecological risk of each metal (mEr) MRI

As Cd Cr Co Cu Pb Ni Zn

Min 0.44 4.36 0.008 0.81 0.37 0.70 0.28 0.12 7.11

Max 1708.7 9257.1 19.89 58.53 213.40 346.5 111.2 82.14 11,797.7

Mean 33.34 316.4 1.90 5.85 11.26 26.86 7.16 2.36 405.23
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use of fertilizers and pesticides has great impact on soil

heavy metals concentrations. In this study, RI values

showed that Cd is the prime contaminant in the area,

which agrees with Islam et al. (2017), indicating that

agricultural management is a potential source of

metals accumulation in the Northern Ireland soils.

Zhao et al. (2020) reported RI values for Cd (85.51),

Cu (6.67), Zn (0.81), Pb (4.94), Ni (3.88), and Cr

(1.18) in soils of southeastern China and concluded

that Cd was the prime contaminant in the soils of

their study area; this agrees with the results of this

study.

The modified potential ecological risk (MRI) was

assessed for the studied metals (Table 5). MRI values

for As, Cd, and Pb indicated that 84.1%, 5.8%, and

81.2% of study sites showed low risk, 11.1%, 20.3%,

and 10.3% moderate risk, 2.2%, 23.8%, and 6.7%

considerable risk, 1.1%, 23.3%, and 1.2% sites high

risk, and 1.2%, 26.6%, and 0.32% very high risk,

respectively. MRI values for Cr, Ni, Zn, and Co were

less than 40, demonstrating low risk. The MRI values

for Cu showed that 99% of the sites were low risk. The

spatial maps and prediction standard errors for spatial

distributions of ecological risk indices are given in

Figs. 7 and 8. Pandit et al. (2020) reported MRI values

of Cr (2.5), Ni (1.6), Cu (8.8), Zn (8.4), Pb (5.7), and

Co (8.8) while working on soils of the Siwalik region

in India; from these values, they concluded that

Fig. 7 Maps showing the spatial distribution of RI and MRI in the study area. a and b show point data, c and d show kriged distributions
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anthropogenic activities contributed to the heavy

metals concentrations in their soils. The prediction

standard errors for the spatial distributions of ecolog-

ical risk indices in most parts of the study region

ranged between 21–23 and 124–135 for RI and MRI,

respectively (Fig. 8). Grunwald et al. (2004) discussed

different sources of errors on spatial maps and

mentioned that the total number of samples, distances,

and short-range spatial variability could either reduce

or increase uncertainty and standard errors. Kriging is

preferred for local estimation but can have higher

errors along the boundary of a study area (Fig. 8).

Least-square interpolation algorithms such as kriging

tend to smooth out local details regarding the spatial

variation of the mapped attribute, with small values

typically overestimated and large values underesti-

mated (Grunwald et al. 2004). The results of CF, EF,

RI, and MRI all indicated that Cd and As are the key

contaminants in the study area, while the Igeo index

suggested that Mn, Cu, Cr, Pb and Zn are the main

contaminants in the area. Attention should be paid to

reduce pollution by these heavy metals, and remedi-

ation options may need to be considered.

Other considerations and future needs

The Tellus XRFS data provide total elemental anal-

ysis; however, the risks posed to human and environ-

mental health depend on factors other than the total

concentration of a given heavy metal (Morgan 2013;

Brevik et al. 2020). The various pollution indices

utilized in this study are one way to provide better

information about health risks than just total elemental

concentration (Antoniadis et al. 2017; Aitta et al.

2019). Soil chemical properties including organic

matter content, pH, the percentage and mineralogy of

clays, antagonism/competition/interactions with other

ionic species in the soil, the presence of minerals that

may sorb heavy metals, and the species (oxidation

state) of various heavy metals present, among others,

also make a difference in health risks (Brevik 2009;

Morgan 2013; Khaledian et al. 2017; Vardhana et al.

2019; El-Ramady et al. 2020). Therefore, there is a

need for future studies that investigate these aspects of

heavy metals in the soil and their influence on human

and environmental health in this region.

Conclusions

This study appraised the presence of heavy metals and

investigated relationships between the metals and

selected physiochemical soil properties in the urban,

industrial, and agricultural soils of a portion of

Northern Ireland. Among the appraised metals, Mn

had the highest maximum values and Cd had the

lowest. Pearson’s correlation analysis demonstrated

strong correlations between heavy metals and physio-

chemical properties, indicating that all or most of the

heavy metals had the same origin and the impact of

Fig. 8 Prediction standard errors for spatial distributions of ecological risk indices
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physiochemical properties on the availability and

mobility of heavy metals. Multivariate analysis indi-

cated that anthropogenic and lithogenic factors have

influenced heavy metals contents in the study area.

Furthermore, CF, EF, and Igeo revealed that heavy

metals showed modest to extreme enrichment in the

soils. The results of ecological risks analyses showed

that Cd is the primary heavy metal accountable for

ecological threats in the soils of this portion of

Northern Ireland. In impending studies, other probable

heavy metals sources and sinks (leakage, wind

erosion, and evaporation) might be measured to

precisely compute a whole mass balance to advance

the formation of heavy metals inventories.
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