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Abstract China is confronting an unprecedented air

pollution problem. This study discussed the charac-

teristics of air pollution and its risks on human health

and conducted source analysis combined with local

development in Shanxi Province in 2016 and 2017.

Results demonstrated that the air pollution situation in

Shanxi was deteriorating, with Taiyuan, Yangquan,

Changzhi, Jincheng, Jinzhong, and Linfen being

heavily polluted districts. Particulate matter (PM)

was considered the major pollutant, but nitrogen

dioxide and ozone showed a dominant trend recently.

Furthermore, the health risks evaluated on the basis of

a comprehensive air quality index (AAQI) and an

aggregated risk index revealed a relatively high-risk

level in Shanxi. Among the pollutants, the largest

contributor was PM, followed by sulfur dioxide and

ozone. Southern Shanxi had the largest pollution level

and health risks, whereas Datong was the least

polluted region. Source analysis suggested that the

main driving forces of air pollution, besides natural

factors, were urbanization, population size, civil

vehicles, coal-based heavy industries, and high-energy

consumption. Therefore, strengthening urban green-

ing, vigorously adjusting and optimizing the industrial

structure, and formulating a multi-domain cooperative

control regime on air pollution, especially PM and

ozone, should be promoted.

Keywords Air pollution characteristics � Health
risks � Source analysis � Local development

Introduction

With the acceleration of urbanization and industrial-

ization in China, air pollution has become a major

environmental issue and drawn broad attention. The

characteristics of air pollution have become evident

since this developing country transitioned from coal-

burning to complex conditions (Aunan et al. 2018).

Studies on air pollution have focused on spatial and

temporal distribution characteristics, relationship

between meteorological conditions, source apportion-

ing, and influencing factors (Chai et al. 2014; He et al.

2016, 2017; Sun and Zhou 2017; Zhang et al. 2015;

Zhou et al. 2017). However, information on the

association between atmospheric pollution character-

istics and local socioeconomic development is limited.

Over 50 years, the relationship between air pollu-

tion and its corresponding human health effects has

been a concern for the World Health Organization

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10653-020-00723-y) con-
tains supplementary material, which is available to authorized
users.

H. Song � H. Zhuo � S. Fu � L. Ren (&)

School of Environmental Science and Engineering,

Shandong University, Shandong Province, 72# Binhai

Road, Jimo 266235, People’s Republic of China

e-mail: ljren@sdu.edu.cn

123

Environ Geochem Health (2021) 43:391–405

https://doi.org/10.1007/s10653-020-00723-y(0123456789().,-volV)( 0123456789().,-volV)

https://doi.org/10.1007/s10653-020-00723-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s10653-020-00723-y&amp;domain=pdf
https://doi.org/10.1007/s10653-020-00723-y


(WHO) (Motesaddi et al. 2017). Numerous previous

studies have confirmed that exposure to air pollutants

endangers public health (Brunekreef and Forsberg

2005; Brunekreef and Holgate 2002; Burnett et al.

2000; Shang et al. 2013). For this reason, many

guidelines and standards have been established to

protect human health from the adverse effects of air

pollutants. For example, the Technical Regulation on

Ambient Air Quality Index (AQI; on trial; HJ

633-2012) has been issued and applied worldwide to

notify the public about the air pollution status and

related health risks (Ministry of Ecology and Envi-

ronment of the People’s Republic of China 2012).

However, some previous studies only analyzed a

single pollutant (Anderson et al. 2012; Christakos and

Vyas 1998; Dergham et al. 2015; Gong et al. 2016),

thereby ignoring the damage caused by various air

contaminants on human health. Correspondingly,

other studies have proposed novel indicators for health

risks assessment by considering the spatiotemporal

heterogeneity of air contaminants in different regions.

Kyrkilis et al. (2007) established a comprehensive air

quality index (AAQI) based on the combined influ-

ences of multiple pollutants. Wong et al. (2013)

developed a risk-based, multi-pollutant air quality

health index (AQHI) that solves a major disadvantage

of reliance on one dominant pollutant in the calcula-

tion and demonstrated an improvement when it was

applied in Hong Kong. Furthermore, to effectively

reflect the contribution of each air pollutant to human

health, Cairncross et al. (2007) put forward an

aggregated risk index (ARI) to link the total excess

risk of human mortality to the exposure to each

common air pollutant. Thus, studies should adopt

comprehensive evaluation methods to provide more

detailed information about the measures necessary to

protect public health. At present, the practice and

academic research on atmospheric pollution treatment

in China mostly focus on the Beijing–Tianjin–Hebei

area and the surrounding regions, which are the most

polluted parts of the country. In Shanxi Province,

which is similarly affected by air pollution, research

achievements are still limited and mostly conducted

from a meteorological perspective (Lv et al. 2018;

Wang et al. 2014b).

In this research, we selected Shanxi Province as a

case study. As an important national base for energy

generation and the largest coal-producing province in

China, Shanxi is experiencing an atmospheric

environmental pollution that is becoming increasingly

serious. To address this problem, the Shanxi govern-

ment has taken control actions in accordance with the

national policy and the energy efficiency transforma-

tion of the province. After years of efforts, the

emission of major pollutants has been effectively

brought under control, and air quality has improved

notably. However, the concentration of pollutants,

especially PM, remains high, and the 8 h-averaged O3

concentration has increased yearly (Du et al. 2019). As

such, discussing air pollution characteristics, assessing

related human health risks, and determining the main

driving factors in Shanxi are valuable tasks that can

help raise public awareness about the need to balance

economic development with environmental protec-

tion. These tasks can also provide evidence enabling

local governments to control air pollution to a certain

extent.

Materials and methods

Study area

Shanxi (34� 340–40� 430 N, 110� 140–114� 330 E), an
important province in northern China, is located on the

east bank of the middle reaches of the Yellow River,

bordering Hebei in the east, Shaanxi in the west,

Henan in the south, and Inner Mongolia in the north.

Shanxi covers a total area of 156,700 km2, and it

consisted of 11 prefecture-level cities in 2017. The

geographical distribution is illustrated in Fig. 1. As

shown, the central part of the province is the capital

city of Taiyuan (TY, with a population of 4.38 million

and 271 enterprises). The 10 other cities from north to

south are Datong (DT, 3.44 million and 113),

Shuozhou (SZ, 1.78 million and 67), Xinzhou (XZ,

3.17 million and 32), Yangquan (YQ, 1.41 million and

54), Lvliang (LL, 3.88 million and 24), Jinzhong (JZ,

3.37 million and 134), Changzhi (CZ, 3.46 million and

69), Jincheng (JC, 2.33 million and 39), Linfen (LF,

4.48 million and 53), and Yuncheng (YC, 5.34 million

and 78), covering all urban areas in the province

(Fig. 1). Shanxi has a temperate continental monsoon

climate characterized by seasonal changes and suffi-

cient sunshine. It is characterized by a landform of

narrow valleys and covered with a crisscrossing

network of ravines, hills, and mountains. The moun-

tainous area constitutes 80.1% of the total area, and
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commercial and residential areas are centralized in

basins and valleys. The special terrain accounts for a

relatively closed atmospheric system coupled with

adverse weather conditions, such as local circulation

and temperature inversion, which are not conducive to

the diffusion of pollutants (Du et al. 2019).

Data sources and processing

The relevant environmental data for each city in 2016

and 2017 were collected from China Statistical

Yearbook on Environment and Report on the State

of Environment in Shanxi. The statistical data ranging

from 1997 to 2018 were obtained from the Statistical

Yearbook of Shanxi Province (Shanxi Provincial

Bureau of Statistics 1997–2018). Microsoft Excel

2016, ArcGIS 10.5, and Adobe Photoshop CC were

used for data processing and graphic drawing.

Methods

Previously, PM10, PM2.5, SO2, NO2, CO, and O3,

which pose the greatest threat to human, have been

identified as the world’s six criteria pollutants to

quantify air pollution levels (Chen et al. 2004; Hu et al.

2015; Ruggieri and Plaia 2012). These pollutants are

comprehensively assessed in the present study.

Air quality index

A sub-AQI for each pollutant was calculated with

Eq. (1). Then, the maximum sub-AQI of all pollutants

was explained as the overall AQI, as shown in Eq. (2).

AQIi ¼
AQIi;j � AQIi;j�1

mi;j � mi;j�1

� � � ðmi � mi;j�1Þ þ AQIi;j�1;

j[ 1

AQIi ¼ AQIi;1
mi

mi;1
j ¼ 1; ð1Þ

AQI ¼ max AQI1;AQI2 . . .AQInð Þ; n ¼ 1; 2; . . .6;

ð2Þ

where i represents the pollutant i; AQIi is the index for

each pollutant i; mi is the monitored concentration of

pollutant i; j is the health category index; mi,j andmi,j-1

are the upper limit reference concentrations for

pollution i corresponding to the jth and j-1th health

categories, respectively; and n is the number of

pollutants. The reference pollutant concentrations,

health categories, and corresponding risks are listed in

Table S1.

Fig. 1 Study area: a location of Shanxi Province in China and b geographical distribution of 11 prefecture cities in the province
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Aggregate AQI (AAQI)

As the atmospheric pollution in China is usually

characterized by high concentrations of multiple air

contaminants rather than a single pollutant, the AQI

system may depend on the exposed risks of one major

pollutant. Moreover, studies have applied different

indices to evaluate air quality and have shown that the

AQI likely underestimates the comprehensive health

risks of exposure to various air pollutants in many

cases, especially when serious pollution occurs; by

comparison, the AAQI can be used to evaluate the

exposure more effectively (Hu et al. 2015; Motesaddi

et al. 2017; Shen et al. 2017). Consequently, the AAQI

method was adopted in this study to consider the

combined impacts of all criteria pollutants, as defined

in the following formula (Kyrkilis et al. 2007; Swamee

and Tyagi 1999):

AAQI ¼
Xn

i¼1

AQIið Þq
 !1

q

; ð3Þ

where q is a pollutant with an irrelevant empirical

constant in the range of [1,?]. Some previous studies

suggested that q values should be between 2 and 3

(Khanna 2000; Ruggieri and Plaia 2012; Swamee and

Tyagi 1999). However, the optimal choice of q value

remains an open scientific concern. Hu et al. (2015)

compared the mean and standard deviations of AAQI/

AQI ratios by using four different q values (i.e., 1.5,

2.0, 2.5, and 3.0) and found that the ratios exhibit small

variations in the changes of q, and the value of q = 2.

Thus, in this study, we also selected 2 as the value of q.
As presented in Table 1, in comparison with the AQI,

the AAQI was converted into the same scale of 0-500

and health categories (Motesaddi et al. 2017).

Aggregate risk index (ARI)

To effectively reflect the human health impacts of

multiple air contaminants and further consider the

exposure–response relationships between various air

pollutants and health risks, Cairncross et al. (2007)

proposed an ARI based on the relative risks of

increased daily mortality related to the exposure to

common air pollutants. According to the definition,

the total risk of human health associated with several

air pollutants is the sum of the risks caused by the

exposure of each air pollutant, as expressed in the

following:

ARI ¼
Xn

i¼1

PSIi ¼
Xn

i¼1

ai � Ci; ð4Þ

where PSIi is the individual contribution of the

contaminants to the total health risks, Ci is the

measured concentration of the pollutants, and ai is a

coefficient proportional to the incremental risk values.

Studies have found that the relative risk (RR) value of

PM10 is significant, and constant aPM10 is determined

by the health endpoints (Pyta 2008; Sicard et al. 2011).

The health breakpoint value between the ‘‘good’’ and

‘‘moderate’’ categories (WHO 2001) for PM10 is

50 lg/m3 (Table S1). At the 24-h mean PM10

concentration of 50 lg/m3, the relative risk is 1.014

(RRPM10 = 1.014) (Sicard et al. 2011). Thus, accord-

ing to its risk subindex value (Table S2), the constant

of aPM10 can be calculated by Eq. (4) at this exposure

level. For other pollutants, ai is calculated as follows:

ai ¼
aPM10

� RRi � 1ð Þ
RRPM10

� 1
; ð5Þ

where the concept of the relative risk of the mortality

for each pollutant (RRi) is adopted and given as

follows:

RRi ¼ exp bi Ci � C0ð Þ½ �; Ci [C0; ð6Þ

where bi is the exposure–response coefficient that

represents the excess health risks associated with an

increase in a per-unit pollutant. For every 1 lg/m3

increase, the b values of PM2.5, SO2, NO2, and O3 are

0.032%, 0.081%, 0.13%, and 0.048%, respectively,

and for every 1 mg/m3 increase in CO, the b value is

3.7% (Shang et al. 2013). C0 is the limit concentration,

which refers to the threshold values of CAAQS Grade

Table 1 Classification of the AAQI and the corresponding

health risks

AAQI Color Health categories

0–100 Good–moderate

101–150 Unhealthy for sensitive groups

151–200 Unhealthy

200–300 Very unhealthy

300–500 Hazardous
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II in this study. When Ci is lower than C0, no obvious

excessive effects on human health are observed (i.e.,

RRi = 1).

Results

Characteristics of air pollution in Shanxi

The average annual concentrations of PM2.5, PM10,

SO2, NO2, O3, and CO in Shanxi Province in 2017

were 59 lg/m3, 109 lg/m3, 56 lg/m3, 42 lg/m3,

186 lg/m3, and 3 mg/m3, respectively (Table 2).

The SO2, CO, and NO2 concentrations reached or

approached the upper limit of Grade II, and the

concentrations of PM2.5, PM10, and O3 obviously

exceeded the standard.

In 2017, TY, YQ, CZ, JC, JZ, and LF were the most

PM-polluted regions (including PM2.5 and PM10), and

they were listed as the first batch of ‘‘4 ? 2’’ cities for

the total coal consumption control in Shanxi (Depart-

ment of Ecology and Environment of Shanxi Province

2017). Only DT met the CAAQS Grade II standard for

PM2.5 and slightly exceeded that of PM10 in 2017. The

highest levels of PM2.5 and PM10 were 79 lg/m3 in LL

and 131 lg/m3 in TY, and the standard-exceeding

multiples were nearly 1.26 and 0.87, respectively. In

2016, only 2 out of 11 cities (DT and XZ) met the

concentration standard of SO2, but only 3 cities (JZ,

LF, and LL) exceeded the standard in 2017, implying

the significant improvement in the SO2 concentration.

With regard to NO2, O3, and CO, the CO concentration

remained comparatively low or stable except in JC,

YC, and LF. However, the spatial variation in NO2 and

O3 concentrations displayed an upward trend, and the

O3 concentration increased rapidly, reaching the

maximum value of 218 lg/m3 in JC.

Figure 2a shows the days when the standard of

ambient air quality (i.e., the concentrations of six

pollutants included in the evaluation and satisfied the

air quality standard) was reached in each city. In 2017,

the average number of days with air quality standard in

11 prefecture-level cities in Shanxi was 200, indicat-

ing a 10.8% decrease compared with the number in

2016 (249 days). The average numbers of days with

air quality standards in DT, LL, SZ, and XZ were 301,

245, 242, and 213, respectively, which were higher

than the provincial average. The number of days in LL,

YC, JC and TY decreased dramatically from 244, 252,

237, and 232 in 2016 to 128, 161, 166, and 176,

respectively, which was far below the average, and the

air quality continues to deteriorate. Although the air

pollution in LF and YC remained the most predom-

inant and the maximum number of days of severe

pollution (AQI[ 200) exceeded 30 days, the number

of days with severe pollution in each city declined.

Table 2 Annual average concentrations of six principal air pollutants in 11 cities of Shanxi Province in 2016 and 2017, respectively

City Description PM2.5 (lg/m
3) PM10 (lg/m

3) SO2 (lg/m
3) NO2 (lg/m

3) O3 (lg/m
3) CO (lg/m3)

2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017

TY Taiyuan 66 65 125 131 68 54 46 54 140 185 3.3 2.5

DT Datong 37 36 78 73 48 44 29 32 134 154 2.7 3

YQ Yangquan 63 61 131 116 62 49 48 48 168 198 2.7 2.5

CZ Changzhi 69 60 114 103 61 43 40 41 155 188 3.7 3.1

JC Jincheng 62 62 111 117 70 47 40 45 128 218 4.1 4.3

SZ Shuozhou 57 48 97 99 67 46 33 34 160 168 2 1.8

JZ Jinzhong 62 59 109 112 88 84 36 44 142 190 3.1 2.8

YC Yuncheng 65 69 108 116 67 51 36 35 110 205 4 4

XZ Xinzhou 56 58 103 102 49 49 39 43 138 181 3.5 2.8

LF Linfen 74 79 120 122 83 79 34 37 136 214 5 4.1

LL Lvliang 49 55 98 112 62 68 25 46 106 150 3.1 2.6

Average 60 59 109 109 66 56 37 42 138 186 3.4 3

CAAQS Grade II 35 70 60 40 160 4

The Grade II standard value refers to the Ambient Air Quality Standard of China (CAAQS) (GB 3095-2012)
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The provincial average was 13 days, which repre-

sented a 1.9% decrease compared with the rate in

2016, as presented in Fig. 2b, especially in DT and LL,

which had average numbers of days of 0 and 2,

respectively.

To reflect the overall contamination degree of air

pollution in Shanxi, we presented the comprehensive

pollution index values in Fig. 3 and observed that the

air pollution degree in the province had aggravated

over the past 2 years. In 2017, the comprehensive

index ranged from 5.31 to 8.60, and the cities could be

sorted from high to low as follows: LF[ JC[TY[
JZ[YC[YQ[LL[CZ[XZ[ SZ[DT.

Moreover, the air pollution in southern Shanxi was

more severe than that in other areas. According to the

classification of the comprehensive pollution index

(Table S3), the pollution degree in all cities was

between moderate and severe. The synthetic index of

SZ, CZ, and YQ decreased in 2017 compared with that

in 2016, whereas those in the eight other cities

increased and their air quality deteriorated. LF was

the only city with heavily contaminated air, and its

comprehensive index value exceeded that of the eight

cities in 2016 and 2017. Furthermore, as shown in

Fig. S1, PM was the largest contributor to the

comprehensive index, accounting for nearly half of

the total value. By contrast, SO2 ranked second,

especially in LF and JZ. The effects of NO2 and O3 on

air quality also increased.

Health risk assessment

AAQI

Figure 4 presents the spatial distribution of the

average AAQI categories for Shanxi Province in

2016 and 2017. Generally, all people in 11 cities were

exposed to ‘‘polluted’’ air (AAQI[ 100). In 2016,

only DT was categorized as ‘‘unhealthy for sensitive

groups’’ (100\AAQI\ 150), and other cities were

mostly under moderate pollution that was unhealthy

(150\AAQI\ 200). However, LF had serious pol-

lution (200\AAQI\ 300). In 2017, the health risks

further increased, and their AAQI was higher than 150

in all the cities. The lowest AAQI (156.83) still

occurred in DT, and people in 6 out of 11 cities (TY,

YQ, JZ, LF, YC, and JC) lived with ‘‘very unhealthy’’

air (200\AAQI\ 300), which would cause certain

symptoms even among healthy persons.

ARI

In this study, ARI was applied to integrate the

mortality effects of all air contaminants on human

health, and the spatial distribution of ARI values in

Shanxi is shown in Fig. 5. The spatial distribution of

high ARI values showed similar changes in the

distribution patterns of previous evaluation results.

Fig. 2 Number of days with a air quality standard and b severe pollution in 11 cities of Shanxi in 2016 and 2017

Fig. 3 Distribution of comprehensive air pollution index in 11

cities in 2016 and 2017
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This result indicated that the southern part of Shanxi

was exposed to a high health risk of mortality.

However, the health risk level mortality rate in 2017

decreased compared with that in 2016 at a provincial

scale.

The impact of air pollution on human health is due

to the exposure to multiple air pollutants, so Fig. 6

further describes the ARI values for each pollutant in

11 cities in 2016 and 2017. The data might provide

insights into the major contributors to the health

problems. In JC, JZ, and LF, the ARI values are greater

than 10, which corresponds to the highest health risk in

these areas (Sicard et al. 2011). People were the most

easily exposed to PM among the various air pollutants

studied. Notably, in 2016, some cities, such as TY, JC,

SZ, JZ, YC, and LF, exhibited very high-risk

subindices of SO2 due to the high concentration of

this pollutant; in JZ and LF, the subindices reached

Fig. 4 Spatial distribution of the average AAQI categories for Shanxi in 2016 and 2017

Fig. 5 Spatial distribution of average ARI values of 11 cities in a 2016 and b 2017
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12.86 and 7.74, respectively. Fortunately, SO2 was

effectively controlled in 2017. Moreover, O3 poses a

significant effect on human health. In 2017, the

contribution of this pollutant to the total health risks

in JC, YC, and LFwas approximately between 6 and 8,

indicating a high threat.

Discussion

Overview of air contamination in Shanxi

Overall, the air quality in Shanxi has not improved

remarkably in the past 2 years. According to the

Ministry of Ecology and Environment of the People’s

Republic of China (2017), the ambient air quality in

TY, the capital city of Shanxi, ranked fifth to the last

among 74 key cities in China. Meanwhile, in the first

quarter, the air quality of four-channel cities (i.e., CZ,

TY, JC, and YQ) in the Beijing–Tianjin–Hebei region

and its surrounding ‘‘2 ? 26’’ cities ranked 7th, 9th,

13th, and 15th from the bottom, respectively, and their

comprehensive index was greater than 8 (Table S4).

These findings emphasized the severe air pollution in

Shanxi. Among the common pollutants, PM had the

most serious pollution level, which might be partially

attributed to the coal-dominated industrial energy

consumption structure in Shanxi, as discussed in

Sects. ‘‘Industrial structure evolution’’ and ‘‘Energy

consumption structure’’. The influence of extra coal

consumption for winter civil boilers in northern

regions is also an important source (Li et al. 2008).
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Although SO2 pollution has been alleviated, severe

pollution still exists in some areas, especially JZ and

LF, which seem to be the districts with the highest SO2

density; LF also exhibits the smoke lock-in incident of

a high SO2 concentration that severely exceeds the

standard level. Large coal-fired power plants are

regarded as the main emission sources of SO2 in

Shanxi (Department of Environmental Protection of

Shanxi 2005). Furthermore, the significant improve-

ment in SO2 is probably attributed to the wide

application of flue gas desulfurization devices and

the introduction of tighter discharge standards (Song

and Yang 2014; Xue et al. 2013). To the best of our

knowledge, SO2 is a respiratory stimulant and bron-

choconstrictor, which may increase the mortality risk

even under short-term exposure, thereby causing

crucial effects on human health (Chen et al. 2007,

Chen et al. 2012; Tunnicliffe et al. 2001). Thus,

stringent measures should be implemented to reduce

the high SO2 emissions still existing in Shanxi and

prevent them from rebounding in areas such as LL and

JZ. In addition, the influence of NO2 and O3 on air

quality should not be overlooked because their con-

centrations have also increased. Previous studies

indicated that power plants, as well as fossil fuel

combustion, vehicle emissions, biomass open burning,

and biogenic sources are mostly the major contributors

to O3–NOx in Shanxi (Liang et al. 1998; Wang et al.

2019). These findings also implied that air contami-

nation in major cities has changed from single coal-

burning to vehicle-exhaust-related pollution or a

combination of both, but coal smoke pollution is the

dominant type (Li 2017).

Health risks through exposure to air contaminants

The mean AAQI values in 11 cities were higher than

100, suggesting that all people in Shanxi were exposed

to polluted air. In fact, the local government has taken

typical measures to enhance air quality, including

dispatch orders on heavily polluted weather, key

projects for clean heating in winter, staggered pro-

duction of industrial enterprises, and relocation of

heavy-polluting companies (Department of Environ-

mental Protection of Shanxi 2017; Sun 2018). The

results underscored that the high health risks caused by

air pollution in Shanxi have accumulated over many

years, and these risks cannot be successfully addressed

in a single day. According to ARI values, the mortality

risk in 2017 was lower than that in 2016, which might

confirm that government policies and effective envi-

ronmental protection could translate into meaningful

health benefits (Tang et al. 2014). Overall, the health

risks in the southern cities of Shanxi were higher than

those in the other cities, and PM exerted the greatest

adverse effects on human health; these observations

were consistent with previous results and epidemio-

logical reports (Pope and Dockery 2006). The leading

coal producers in Shanxi are southern cities, such as

LF, where economic development is driven by the

extensive coal mining industry, coupled with the basin

topographical condition that limits diffusion (Gu and

Shi 2019). It is worth mentioning that the risks caused

by O3 have gradually emerged. Exposure to a high O3

concentration may have acute health effects, such as

cardiovascular and respiratory diseases (Li et al. 2015;

Wang et al. 2019). Therefore, future strategies on

controlling and managing air pollution should pay

close attention to O3.

Source analysis based on local socioeconomic

development

Urbanization

Shanxi has experienced tremendous economic growth

and achieved continuous improvement on people’s

standard of living for over nearly two decades

(Table 3). Rapid urbanization has occurred with

economic growth, and the rate of urban population

growth increased from 30.41% in 1996 to 57.34% in

2017 with an average annual growth rate of 1.28%. At

the same time, the province has shown consistent

demand trends in transportation. The number of civil

motor vehicles has increased nearly 15-fold since

1996, i.e., it increased from more than 38 million in

1996 to 589.61 million in 2017. Furthermore, the rapid

urban expansion with an inconsistent overall planning

pace caused heavily polluted areas (such as industrial

and mining enterprises) that used to be in the periphery

of an urban area to gather close to the edge of a city or

even be surrounded by it (Li 2017). Population

accumulation and industrial agglomeration also create

environmental hazards (Li et al. 2012). Some studies

have found that the highest concentration of air

pollutants is detected in the Beijing–Tianjin–Hebei–

Shandong–Shanxi–Henan regions, which have local

characteristics of high population density, urban
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transportation, economic growth, and rapid urban

expansion (Lin et al. 2014; Wang et al. 2014a; Zhou

et al. 2017).

Industrial structure evolution

For 22 years, Shanxi’s GDP has grown significantly;

for instance, it increased from 1292.11 (100 million

yuan) in 1996 to 15,528.42 (100 million yuan) in 2017

(Table 3). As shown in Fig. 7, the proportion of the

primary industry was stable even though it slightly

declined, whereas the proportions of secondary and

tertiary industries were likely to vary symmetrically.

From 1996 to 2011, the annual variation in the

secondary and tertiary industries showed a wide

fluctuation. However, the secondary industry was

more dominant than the tertiary industry. After 2002,

the gap between the two industries broadened contin-

ually and peaked in 2011. During this period, the

industrial efficiency of the secondary industry was

mainly driven by industrial development (Table S5).

The crucial economic pillar estates were centralized in

coal, electricity, metallurgy, chemicals, machinery,

and coking, which were high-energy consumption and

high-pollutant emitting enterprises; consequently,

they caused tremendous environmental pressure.

Subsequently, the proportion of the primary industry

declined, whereas the proportion of the tertiary

industry increased. Until 2015, the proportion of the

tertiary industry (53.2%) exceeded that of the sec-

ondary industry (41.1%) for the first time, thereby

forming a ‘‘321’’ industrial pattern. In 2017, the

proportion of the three industries evolved to 4.6%,

43.7%, and 51.7%, respectively, with the tertiary

industry occupying a leading place. This result

indicated that the industrial structure in Shanxi was

continually upgraded, resulting in advancement and

rationalization. However, this structure did not reach

the optimal condition and needed further restructuring.

In addition, Shanxi as a province characterized by

heavy industrialization prioritizes the development of

resource-intensive industries (Du et al. 2019).

Energy consumption structure

As shown in Tables 4 and S6, energy consumption

involves a variety of fields from industries to residen-

tial living. The total energy consumption increased

from 68.0383 (10,000 tons of SCE) in 1996 to

200.5723 (10,000 tons of SCE) in 2017 and showed

a sharp increasing trend yearly. The major source of

energy was still coal, followed by electricity and coke.

With regard to usage, heavy industries such as coal

mining, metallurgy, chemical, electricity, petroleum,

and coking were the main direction. The energy

consumption structure in Shanxi was mainly

Table 3 Urban development situation of Shanxi from 1996 to 2017

Year GDP (100 million

yuan)

Household consumption expenditure

(yuan/person)

Urbanization

rate (%)

Population (10,000

persons)

Civil vehicles

(unit)

1996 1292.11 1880 30.41 3109.26 384,126

2000 1845.72 2037 35.88 3247.80 550,148

2005 4246.91 4172 42.11 3355.21 1,074,350

2010 9240.80 8159 48.05 3574.11 2,478,905

2015 12,793.44 14,364 55.03 3664.12 4,665,842

2017 15,528.42 18,132 57.34 3702.35 5,896,070

Fig. 7 Three-industry composition of gross domestic product

in major years (from 1996 to 2017)
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composed of energy sources and raw materials, and it

was highly dependent on coal, with typical character-

istics of primary and resource-based (Han 2019).

According to the preceding analysis, it was compara-

ble with issues on the oversized heavy-industry

proportion and high-energy consumption in the indus-

trial structure. Since 2005, the consumption of coal in

residents’ living has continued to increase most likely

because of the long period of coal heating in winter.

Furthermore, with the great increase in the number of

vehicles since 2010, the consumption of gasoline and

diesel in transportation has also increased and grad-

ually become a key factor in environmental pollution.

Conclusions and suggestions

This study discussed the characteristics of air pollu-

tion, assessed the corresponding human health risks by

using AAQI and ARI, and analyzed the potential

sources based on the local development in the 11

prefecture-level cities of Shanxi Province. The main

conclusions were as follows:

1. The average concentrations of six criteria air

pollutants are at a high level. PM is found as the

major pollutant whose concentration exceeds the

standard and needs to be further controlled.

Although the SO2 concentration has dropped

strikingly, it has to be prevented from rebounding.

Moreover, NO2 and O3 contamination has grad-

ually aggravated, and the overall air quality in

Shanxi is deteriorating. Areas with serious air

pollution are mainly located in TY, YQ, CZ, JC,

JZ, and LF, which are the key areas where

governments should strengthen the comprehen-

sive control and supervision of air pollution in the

future.

2. The risk assessment results reveal that the health

risks in southern Shanxi are higher than those in

the northern part. According to the AAQI, the

health risks in 2017 further increased compared

with that in 2016. All cities were mostly above the

moderate level, which were severely polluted.

However, the ARI is related to mortality; the

overall trend of health risks and the contribution of

each pollutant, especially SO2, have decreased.

This discovery demonstrates that pollution abate-

ment countermeasures have certain effects, but

PM is still a major contributor to health problems,

and the risks caused by O3 have gradually

increased. Similarly, the next treatment target

should focus on changes in O3 during the

strengthening of the control of PM.

3. The severe air pollution in Shanxi depends less on

natural elements than on the accumulative effects

of anthropogenic activities. The rapid urbaniza-

tion in Shanxi and its industrial structure with an

oversized heavy-industry proportion and a high-

energy consumption structure has resulted in

inefficient resource utilization and environmental

problems. Coupled with the rapid development of

the high-tech industry and white-hot market

competition in Shanxi, coal-fired pillar industries

have begun to suffer a dramatic decline (Zhang

2000). Therefore, Shanxi needs to exert great

efforts to speeding up the ‘‘new’’ urbanization

process (Lu and Yu 2018) and developing clean

energy sources (such as nuclear power and wind

power), high-tech industries, and modern services

with high quality and efficiency to meet the needs

of the optimal industrial and energy consumption

structure. Green growth path and improving

energy efficiency are essential for sustainable

development (Sun et al. 2019). The results also

show that air pollution is the result of the

combined effects of industrial production, urban

construction, residents’ lifestyle, and other fac-

tors. Indeed, if air pollution treatment plans were

limited to only a single industry or field, no

remarkable achievements would be made; as such,

local governments should establish a multi-do-

main cooperative control regime to create a

healthy balance (Sun et al. 2020). Generally,

2016 was the first year of the 13th Five-Year Plan,

and 2017 was the key year for the Prevention and

Control of Atmospheric Pollution (Zhang 2018).

Thus, building a green city in Shanxi will take

time.

This study has several limitations, and further

research is needed. For example, more studies on

health damage related to the interaction between air

pollutants should be conducted. Socioeconomic devel-

opment and atmospheric environment systems are

complex. We will consider more factors and explore

the causal coupling relationship between systems in

depth by establishing detailed models and combining
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qualitative and quantitative evaluation methods. In

addition, future research should identify the principal

pollution areas and key drivers at a county or pixel

level to promote urban green development.
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