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Abstract Hydro-geochemical data are required for
understanding of water quality, provenance, and
chemical composition for the 2,117,700 km? Niger
River Basin. This study presents hydro-geochemical
analysis of the Benue River Basin, a major tributary of
the Niger River. The distribution of major ions, Si, 0D,
and 5180, trace and rare-earth elements (TE and REEs,
respectively) composition in 86 random water sam-
ples, revealed mixing of groundwater with surface
water to recharge shallow aquifers by July and
September rains. Equilibration of groundwater with
kaolinite and montmorillonites, by incongruent disso-
lution, imprints hydro-chemical signatures that vary
from Ca+ Mg — NO; in shallow wells to
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Na + K — HCOj; in boreholes and surface waters,
with undesirable concentrations of fluoride identified
as major source of fluorosis in the local population.
Our results further indicate non-isochemical dissolu-
tion of local rocks by water, with springs, wells and
borehole waters exhibiting surface water-gaining,
weakest water—rock interaction, and strongest water—
rock interaction processes, respectively. Poorly
mobile elements (Al, Th and Fe) are preferentially
retained in the solid residue of incongruent dissolu-
tion, while alkalis, alkaline earth and oxo-anion-
forming elements (U, Mo, Na, K, Rb, Ca, Li, Sr, Ba,
Zn, Pb) are more mobile and enriched in the aqueous
phase, whereas transition metals display an
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intermediate behavior. Trace elements vary in the
order of Ba>Sr>7n>Li>V>Cu>Ni>
Co>As>Cr>Sc>Ti>Be>Pb>Cd, with
potentially harmful elements such as Cd, As, and Pb
mobilized in acidic media attaining near-undesirable
levels in populated localities. With the exception of Y,
REEs distribution in groundwater in the order of
Eu > Sm > Ce > Nd > La > Gd > Pr > Dy > Er >
Yb > Ho > Tb > Tm differs slightly with surface
water composition. Post-Archean Average Australian
Shale-normalized REESs patterns ranging from 1.08 to
199 point to the dissolution of silicates as key sources
of trace elements to groundwater, coupled to deposi-
tion by eolian dust.

Keywords Recharge periods - Relative mobility of
elements - Water—rock interaction - Public health -
REEs - Benue River Basin

Introduction
Scientific background and objectives

The 1400-km-long Benue River Basin (BRB) located
in the Sahel zone of Northern Cameroon is a major
tributary of the Niger River (NR) (Fig. 1) marked by a
mean aridity index (log [potential evapotranspiration/
mean annual rainfall]) of 0.47, and a Budyko aridity
ratio (solar radiation/amount of rainfall) Budyko
(1951) of 2.8. These semiarid climatic conditions
cause surface water scarcity, leaving an estimated
2,500,000 inhabitants to depend on groundwater
resources and ephemeral streams for domestic and
irrigation purposes. Hence, the present study is
focused on understanding dry season hydro-geochem-
ical dynamics as the main driver of physical water
scarcity-related problems in the BRB. Moreover, the
location of the BRB at the upstream of the
2,117,700 km? Niger River Basin makes Cameroon
to be a strategic riparian state for integrated and
transboundary water resources management among
the stakeholders of the Niger Basin Authority (NBA).

In order to make useful contributions to the NBA,
Cameroon has to furnish comprehensive spatial and
temporal data on the chemistry and quantity of water
resources in the BRB. In response to the need of
generating such data, research work in the BRB has
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led to exploration of stable environmental isotopes
(6D and 6'80) and chloride content in rainwater
(Njitchoua et al. 1995), geochemistry, origin and
recharge mechanisms of groundwaters in the Garoua
Sandstone aquifer in Northern Cameroon (Njitchoua
etal. 1997) and climate hydrology and water resources
in Cameroon (Molua 2006). Despite increased knowl-
edge on water resources in the study area, the existing
data still present the gaps related to (1) major ions and
stable environmental isotope data for 6D and 6'%0
generated more than 15 years ago, which fall short of
presenting an up-to-date information on water chem-
istry and groundwater recharge periods, respectively.
(2) There is total absence of data on trace elements
(TE) and rare-earth elements, thus obscuring impor-
tant information on hydro-geochemical and geo-
environmental dynamics. (3) The available data are
only on the Garoua sedimentary basin, excluding the
other five sedimentary basins (Babouri Figuil, Mayo-
Oulo-Lere, Hamakoussou, Benue, and Koum), which
are all in the BRB (Fig. 1).

To underscore the feasibility of generating data on
water chemistry and its applications, major ions have
been used to elucidate groundwater chemistry as a
function of water—rock interaction processes (Thomas
et al. 1989; Petrides et al. 2006; Srinivasamoorthy et al.
2008), usability for drinking (Nagaraju et al. 2006), and
sources of health problems such as fluorosis (e.g.,
Fantong et al. 2010b). Reporting these characteristics
on a river basin scale has also been useful in ground-
water supply planning in semiarid regions (Goni 2006).
For surface and groundwater resources to be managed
sustainably in semiarid regions, their origin (e.g.,
Scalon et al. 2006) and renewability (Leduc et al.
1996; Houston 2007; Shivanna et al. 2008) are
important requirements, which can be determined by
using the isotopic compositions of oxygen and hydro-
gen in rain, surface and groundwater (e.g., Azzaz et al.
2008; Goni 2006; Fantong et al. 2010a; Tsujimura et al.
2007; Edmunds et al. 2002).

In the recharge pathway from rain to groundwater,
water molecules interact with minerals that circulate
as dust particles in the atmosphere and those within the
lithosphere by water—rock interaction, which can also
alter the water chemistry by adding TE and REEs (e.g.,
Rollinson 1993; Vazquez-Ortega et al. 2015; Migas-
zewski and Galuszka 2015). Interestingly, “Rare
Earths” is a misnomer because they are neither
“earths” nor “rare,” especially as the Earth’s upper
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Fig. 1 Location of study area in the Northern Region of
Cameroon and within the River Niger system in Africa. It also
shows the spatial locations of the 5 sub-sedimentary basins that

crust contains 0.015% REEs (Taylor and McLennan
1996), which are referred to as lithophile group 3
lanthanide with atomic numbers 57 (Lanthanum) to
71(Lutetium) and two additional elements, Yttrium
(Z=139) and Sc (Z=21). However, most Earth
scientists exclude Sc from this group due to its small
ionic radius, and classify only lanthanides and Y (with
ionic radius similar to that of the REE Ho) into the
REEs. Except for Ce (Ce”, Ce4+) and Eu (Eu2+,
Eu3+), the REEs are trivalent, and their ionic radii
decrease with increase in atomic number, from 103 pm
in La®™ to 86 pm in Lu*" (“well known as the
lanthanide contraction”). This attribute governs the
subtle differences in the REEs geochemical behavior
as their respect for the Oddo—Harkins rule provides the
basis for dividing the REEs into the following groups:
(1) light REE (LREE) including La through Eu or Gd,
(2) medium REE (MREE) that comprises Sm through
Ho, and (3) heavy REE (HREE) from Gd or Tb to Lu
including Y (Migaszewski et al. 2014).

The diagnostic conservative characteristics of the
REEs have made them the most useful of all trace
elements in igneous, sedimentary, and metamorphic

13.0 135 14.0 14.5

constitute the extension of the Benue Trough in Cameroon, and
sample collection sites

petrology (e.g., Migaszewski and Galuszka 2015;
Johannesson and Lyon 1995; Gimeno et al. 2000;
Gammons et al. 2005b; Rollinson 1993; Ndjigui et al.
2014; Houketchang Bouyo et al. 2015), and also in
characterizing surface and groundwater geochemistry
(e.g., Rollinson 1993; Vazquez-Ortega et al. 2015; Liu
et al. 2016; Migaszewski et al. 2014; Chen and Gui
2017; Guo et al. 2010; Munemoto et al. 2015; Pignotti
et al. 2017; Zhuravlev et al. 2016; Ferreira and Helena
2015; Sultan and Shazilli 2009; Censi et al. 2017).
Some of the hydro-geochemical signatures that have
been underpinned by the REEs include: geo-environ-
mental controls of REEs patterns in surface and
groundwater, paleoclimatic conditions, redox and pH
conditions, groundwater flow paths, mixing between
surface and groundwater, geogenic and anthropogenic
inputs into water resources, and water—rock interac-
tion processes.

To underpin water—rock interaction processes, the
work of Ferreira and Helena (2015), and associated
references, has shown that groundwater exhibits
signatures that closely resemble those for the rocks
through which they flow, whereas other investigations
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(e.g., Masuda et al. 1987; Takahashi et al. 2002) found
that REEs pattern in groundwater exhibits the W-type
tetrad effects, while the rocks through which they flow
exhibit M-type tetrad effects. Despite such usefulness
of REEs in hydro-geochemistry, only the work of
Ndjigui et al. (2014) has so far attempted to use REEs
to characterized water resources in Cameroon. Fur-
thermore, still as a result of water—rock interaction, it
has just been over two decades that the International
Working Group on Geomedicine (IWGG), now
reconstituted into the International Medical Geology
Association (IMGA), formalized the study of medical
geology as a research discipline, which has continued
to develop into a fast-evolving scientific field on the
global scene. This is because a tremendous upsurge in
research efforts is leading to the decipherment of
hitherto “new correlation,” spurring fresh promise for
success of this science.

Consequently, collaboration between geoscientists
and medical researchers has led to the identification of
potential environmental health problems. In Camer-
oon, for instance, a link between the chemistry of
groundwater for drinking and human health seems
highly plausible, given that majority of the country’s
population still lives close to the land, subsisting
largely on water obtained from their immediate
surroundings (Davies 2013 and references therein).
This has caused water-borne diseases such as fluorosis
(Fantong et al. 2009; 2010b), whose science and
management still require upscaling in Cameroon.
Although the German—Cameroon project code named
“PRESS NO and SW” presents a pilot study on
pollution of surface and groundwater in the study area
(Jokam Nenkam et al. 2019), the data are only as a
technical report.

Against this backdrop, the overall objective of this
study is to evaluate the characteristics of water
resources in the Benue River Basin in Northern
Cameroon, by using a combination of major ions,
oD, 0'%0, TEs, and REEs. The specific objectives
include: (1) assessing water chemistry and suitability
for drinking, (2) identifying groundwater recharge
periods and pathways, and (3) characterizing REEs
patterns for the water resource management in the
BRB, with wider implications for sustainable liveli-
hoods and ecosystem services management in the
Niger River Basin (NRB).
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Location, drainage, relief, and climate of study
area

The study area (Fig. 1) is administratively located in
Cameroon’s Northern Region, which is bordered to
the north, south, east, and west by the Far Northern
Region, the Adamawa Region, the Republic of Chad,
and the Federal Republic of Nigeria, respectively.
Geographically, the study area is located between
latitudes 8° and 10° N and longitudes 12° and 16° E,
with a surface area of 66 263 km”. Hillocks by the
Mandara, Adamawa Plateaux, and Poli—Alantika
Mountains in the north, south and west, respectively,
culminate in a maximum height of 1189 m.asl, and
drops of 165 m.asl. Such a topographic gradient
permits the tributaries of river Benue to rise and flow
dendritically toward the west to Nigeria (Hervieu
1969). The hydrological network of the Benue River
Basin in Cameroon (Fig. 2) is an upstream catchment
of River Niger (Fig. 1). The principal streams that
drain BRB are the Mayo Rey and Mayo Godi in the
west, the Mayo Louti, Mayo Kebi and Mayo Tiel in the
north, and the Faro and Mayo Deo in the south. At the
basin midstream is the artificial Lagdo dam that
occupies a surface area of about 700 km? and has a
capacity to retain 7.7 billion m® of water for irrigation
and hydro-electricity (Blanken and Pecher 2013).
During dry months, the surface of the draining
channels of almost all the tributaries (except for the
Faro and Kebi) run dry, but with underflow at depths of
about 0.5 m. Such ephemeral characteristic of the
streams obliges the population to depend and rely on
groundwater resources for domestic and subsistent
agriculture for most part of the year.

With respect to climate, the study area is situated in
a semiarid Sudano—Sahelian climatic zone, with a
mean annual temperature of 28 °C, maximum atmo-
spheric temperature of 45 °C that drops to about 19 °C
in December (Molua 2006). The area is characterized
by a rainy and dry season. The rainy season lasts for
about 5 months (May—September), and 7 months
(October—April) for the dry season. The mean annual
rainfall has reduced from 1018 mm of rain between
1951 and 1989 to 950 mm in 2000-2014, with about
70% concentrated between July and September.
Rainfall occurs either as low-altitude monsoon rains
or as occasional high-altitude squally showers.
Despite the high amount of annual rainfall, contribu-
tion to groundwater recharge remains limited because
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Fig. 2 Topography (Digital Elevation Model) of study area, showing the hydrographic network

of the incidence of high annual evapotranspiration of
1800 mm, about twice the mean annual rainfall.
During the dry season, the harmattan winds blow
from the Sahara in the north, causing an estimated
48% low humidity, and cloud of harmattan eolian dust
(Fig. 3). During the rainy season, moisture-laden
winds blow from the Gulf of Guinea in the south,
bringing higher humidity and rain which flows as
runoff into rivers, draining the basin dendritically.

Geological and hydrogeological settings

The Benue River Basin, which is an extension of the
Cretaceous to Quaternary marine and continental
sediments in Benue trough, constitutes six (Koum,
Benue, Garoua, Babouri Figuil, Mayo-Oulo-Léré, and
Hamakoussou) sub-sedimentary basins of carbonated,
ferruginous, siliceous, and phosphatic sandstones,
mudstones, limestone, conglomerates, and alluvial
deposits (Nolla et al. 2015; Zaborski et al. 1997;
Bessong 2012; Schwoerer 1965; Ntsama et al. 2014;

Maurin and Guiraud 1989; Eyong et al. 2013; Brunet
et al. 1988; Tillement 1972; Ntsama et al. 2014), that
are intruded by basaltic rocks, and they uncon-
formably overlay Neo-Proterozoic basement (Fig. 1)
(Ntsama 2013). An N-S cross section of the Mayo-
Oulo sedimentary basin is presented in Fig. 4a. The
dominant geochemical processes that occur in the
basin are compaction, inter-grain pressure, fracturing,
precipitation of calcite and hematite cements, kaolin-
ization, and quartz overgrowth (Fig. 4b), which to an
extent affects the hydrogeology of the basin by
decreasing sediment porosity and permeability
together with low groundwater recharge, and reduces
aquifer yields. According to Bouyo et al. (2015),
chondrite-normalized plots show enrichment in LREE
relative to HREE with an almost flat pattern and slight
negative Eu anomaly.

To the southwestern border of the study area is the
Adamawa massif from where some of the first-order
tributaries of river Benue originate, and according to
Ndjigui et al. (2014), the rock types on this massif do
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Fig. 3 Incidence of eolian harmattan dust, which reduces visibility to less than 15 meters

not only exhibit positive Eu anomaly, but are also rich
in vivianite (Fe;(PO,4),8H,0 (Fodoue et al. 2015).

In the plains of the Benue river and its tributaries,
Quaternary alluvial deposits (sand, gravel, and clay) of
the Garoua sedimentary basin, with some description
in Tillement (1972) and Njitchoua et al. (1995),
constitute shallow and unconfined aquifers with
transmissivities of 10™' to 107> m?/s in the upper
horizon, which also provides surfaces on which the
harmattan eolian dust from the Sahara desert
accumulates.

Materials and methods

Sampling campaign was undertaken in January (dry
season period), during which 86 water samples were
randomly collected, as shown in Fig. 1. The number of
samples included 37 from open wells with depths to
water ranging from 0.3 to 16.5 m, 34 from sealed wells
and boreholes, 12 from surface water, including wadis
with depths to underflow from 0.5 to 1 m, and two
from lakes. The samples were collected from the
Garoua, Benue, Hamakoussou, Mayo-Oulo-Lere, and
Babouri Figuil sedimentary basins (Fig. 1). Latitudi-
nal and longitudinal locations of the sample sites were
predetermined in the entire catchment with the use of
Google Earth, to enable good spatial coverage of the
basin for high-resolution hydro-geochemical analysis.
Location and altitude were determined on the field
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using a 3 m precision Garmin 64 Global Positioning
System (GPS). Open wells were sampled using
drawing buckets anchored by ropes. Hand pump wells
and boreholes were pumped for 5-15 min before
sampling. The waters were collected into a collector
after thorough rinsing with large volume of sample
water. Water from the collector was filled into four
new 100-ml polyethylene bottles after rinsing with the
sample and one filtered through 0.45-um cellulose
filters and preserved unacidified for the determination
of the dissolved anions of SO42_, Cl,F ,Br ,NOj3,
NO, ™, and PO,>~ from each site. The second bottle
was filled with filtered and acidified water that was
used for cations (Ca**, Mg®", Na*, K™, NH,™, and
H,Si0,) and trace elements (Fe?t, Mn>", AI’", Pb,
Cd, Ni, Zn, Cu, Ti, Sn, Mo, As, Co, Sb, Ba, U, Sr, La,
Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,
and Y) determination. Acidification was done to
pH ~ 2 with supra-pure HNO; for the sampled water.
The third and fourth bottles for 'O and ?H and
alkalinity determination were properly corked to avoid
evaporation, while the fourth bottle contained water
that was used for alkalinity measurement. Electrical
conductivity (EC), pH, and water temperature were
measured immediately in the field before sample
collection, using a Hanna make pH meter model HI
991,001, pH/EC waterproof meter, and a custom CT-
450WR thermometer, respectively. Atmospheric tem-
perature was measured with a custom CT-450WR
thermometer. Land use, human activities, and rock
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type were noted at each sampling site using a mobile
Open Data Kit (ODK) smartphone application. Alka-
linity measurements were carried out within 10 h of
sample collection by acid titration from the volume of
0.02 N HCI added to the sample to reach the end-point
titration, which was marked by a pH of 4.5. Samples
for anions, cations and TE, and stable environmental
isotope determination were labeled, preserved in ice-
chilled boxes and dispatched to Federal Institute of
Geoscience and Natural Resources (BGR), Hanover,
Germany, for analyses.

Major elements (anions and cations) were quanti-
fied using a Spectro Ciros ICP-AES and a DIONEX
ICS 3000 ion chromatography. Silica (H4Si0,) was
analyzed by the molybdenum-blue method using
spectrophotometry. Stable environmental isotopes
ratios were determined on a PICARRO cavity ring-
down spectrometer (CRDS model L.2120-1), following
the procedures described by Brand et al. (2009) and
Lis et al. (2008).Trace elements, including the REEs
content, were measured on an Agilent 7500ce ICP-
MS. Details on the analytical instrumentation and
methods can be found in Birke et al. (2010). For the
major elements, reliabilities of the chemical measure-
ments were verified by using a charge balance
equation (Appelo and Postma 1993), and they were
within the limit of less than £ 10% for all the
investigated samples. The obtained stable isotope
ratios were given in the conventional delta (o)
expression in parts per mil (%o) relative to Vienna
Standard Mean Ocean Water (VSMOW) with analyt-
ical precisions of = 1% for 6D and =+ 1.5%o for 5'*0.
For TEs, the analytical accuracy was checked from
replicate measurement of several samples and by
measuring the certified reference materials (CRM)
standard of River Water (SLRS-4), produced by the
National Research Council of Canada. The detection
limits were 1 ng/L for all REEs. Analytical precision
for the REEs, except for Ce and Pr, was better than 5%
relative standard deviation (RSD), with a 10 and 11%
RSD precision for Ce and Pr, respectively.

Data processing and quantification of REEs
anomalies

Box and whisker plots were used to analyze the
distribution of observed variables. All statistical
analyses were performed with R software. Aquachem
software was used to draw Pipers’ diagram to identify
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water facies, and REE patterns and 6D versus 5'%0
space diagrams were drawn using Microsoft excel,
while maps were established with ArcGIS version
10.2 and QGIS 2.18.X softwares.

Although the distribution and geochemical behav-
ior of REEs in natural materials can be illustrated by
plotting the relative abundances versus the atomic
number, such a plot produces a saw tooth pattern (the
Oddo-Harkins rule effects), with decreasing slope
toward the highest atomic numbers. Thus, the REEs
behavior is better presented if the values are normal-
ized and reported as a relative abundance plot on a
logarithmic scale. This means that the concentrations
of REEs found in the sample are normalized to their
concentrations in a reference material such as CI
chondrite, the chondritic meteorite, and the Post-
Archean Australian Shales (PAAS) (Edet 2004). The
advantage of this process is that the Oddo—Harkins
rule effect is eliminated, and any fractionation that has
occurred among the REEs will be detected. Hence, the
abundance of positive peaks and negative troughs in
the normalized REE pattern reflects the geochemical
history of the sample. Generally, the abundance of
REEs in natural waters is extremely low in comparison
with the levels found in most rocks. In this investiga-
tion, the Post-Archean Average Australian Shale
(PAAS) (McLennan 1989) was chosen as a reference
standard because “shales” are widely used in hyper-
gene processes and environmental studies (Mi-
gaszewski et al. 2014) such as surface and shallow
groundwater systems affected by weathering. Detec-
tion of anomalies is based on the presence of
individual elements that are higher or lower than the
corresponding shale-normalized patterns. For exam-
ple, Eu and Ce anomalies were quantified, according
to Noak et al. (2014), in which the geogenic value of
each element was obtained by interpolation of the
neighbor-normalized REE elements of Ce and Eu, by
using the equations presented in Eqgs. (1) and (2),
respectively.

Ce/Ce* = CepAAs/(LapAAS =+ PI'pAAs)O'S (1)

Eu/Eu* = EuPAAs/(SmpAAs + deAAs)O‘S (2)

It is worth mentioning that the last two indexes
could be influenced in some situations by anomalies in
La and Gd. Nevertheless, their calculation can be
useful in discriminating sampled water types.
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Results
Geochemistry

The laboratory results for the content of major cations
and anions, including EC, pH, water temperature, oD,
5180, TEs, and REEs, are presented in Tables 1, 2 and
3, respectively. The elements data for rock in any of
the Tables are from Ndjigui et al. (2014).

The data show that water temperature ranged from
24.1 to 32.2 °C and 23.9 to 32.3 °C in surface and
groundwater, respectively. In decreasing order, water
temperature followed the pattern boreholes > hand-
dug wells > lakes > rivers > springs, with a mean
value of 31 °C, similar to groundwater temperature
reported 22 years ago by Njitchoua et al. (1997). pH
values ranged from acidic (5.7) to basic (8.9),
declining according to the following trend, lake
water > rivers > springs > boreholes > dug  wells.
Electrical conductivity (EC) showed a wide range
from 35 to 2500 puS/cm, with mean values for surface
and groundwater being 106 and 376 puS/cm, respec-
tively, and varied in the observed sample as, dug
wells > boreholes > rivers > lakes > springs.

The values of major ions (anions and cations) show
that concentrations are higher in groundwater samples
than in surface water samples. Such observation
depicts that the observed groundwater has a longer
residence time in the aquifer than surface water
(Kazemi et al. 2006), and that the hydrological regime
is dominantly a stream loosing system by surface
water recharging the groundwater aquifer. The con-
centration of anions was distributed in the order of
NO;~ > HCO;~ > Cl~ > S0,>” > F > PO, >
Br in groundwater, compared to HCO3;~ > NO3™
> Cl” > S0,”” > PO, > NO, > F~ > Br™ insurface
water. Relative concentration of cations in both ground-
water and surface water was in the order of Ca®'
> Na™ > Mg>" > K" > NH,. Piper’s diagram (Piper
1944) plots (Fig. 5) suggest that the hydro-chemical
facies evolved predominantly from Ca + Mg — NO;-
rich water in shallow wells to Na + K — HCOs-rich
water in boreholes, and surface waters.

Stable environmental isotopes distribution
The 6D values in %o ranged from — 42 to — 18 in

boreholes, — 32 to — 16 in hand-dug wells, — 18 to 3
inrivers, and — 27 in the only spring sample analyzed.

The 5'%0 values in %o ranged from — 6.62 to — 2.94
in boreholes, — 5.37 to — 2.94 in hand-dug wells,
— 3.37t0 0.55 inrivers, and — 5.10 in the spring. The
oD and §'®0 cross-plots of these values are presented
in the delta space (Fig. 6a). The Global Meteoric
Water Line (GMWL) of Craig (1961) was used for
comparative purposes because of the acute lack of
regular rainfall measurements in the BRB. Deuterium
excess (d-excess) values were more than 10 %o in ca.
70% groundwater (hand-dug wells and boreholes)
samples, with only the exception of one borehole that
was > 15%o, while all surface waters were < 10%o
(Fig. 6b).

Trace elements (TEs and REEs) distribution

Selected trace elements concentrations are in the order
of Ba>Sr>Zn>Li>V>Cu>Ni>Co>
As>Cr>Sc>Ti>Be>Pb>Cd, in both
groundwater and surface water samples, with rela-
tively higher concentrations in groundwater compared
to surface water. Figure 7 shows a scatter plot of the
average concentration of each metal in water and in
BRB sandy clay. As purported by Aiuppa et al. (2000),
a good correlation between the two variables suggests
that composition of local sediments contributes to the
water chemistry. Figure 7 also indicates that metal
partitioning between the sediments and solution
depends on the chemical behavior of the elements.
With respect to the general trend, Al, Fe, Ti, Ta, Hf,
Ga, Y, Cr, and Zr appear to be depleted in water, due
probably to their concentration in secondary product
of weathering such as oxides and clays. On the
contrary, the alkalis, alkaline earth, and lithophile
elements (Na, Mg, Ca, Sr) are shifted toward the lower
axis, depicting their preferential solution during
weathering. A similar trend is also observed for U
and Mo, called “oxo-hydroxo anion forming ele-
ments” (indicated as OHA elements), due to their
tendency to form water-soluble anion complexes
(Aiuppa et al. 2000). Transition metals plot in an
intermediate position.

Individual REEs, total REEs, LREEs, HREEs,
MREEs concentrations, as well as LREEs/HREEs
ratios, selected raw data, and PAAS-normalized
values presented in Table 3 suggest REEs concentra-
tions are generally low, and broadly consistent with
circumneutral pH waters (e.g., Johannesson et al.
1999; Guo et al. 2010). Total REEs (XREEs) varied
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Table 3 Rare-earth elements results of observed water (B = borehole; W = hand-dug well; R = rivers; S = spring) (n = 86) in
Benue River Basin

Ref. code La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm
B001 0.002 0.002 0.001 - 0.003 0.050 0.002 - - - 0.001 -
B002 0.001 - - - - 0.041 0.002 - - - - -
B004 0.014 0.010 0.002 0.012 0.007 0.086 0.007 0.001 0.003 0.001 0.002 -
B005 0.013 0.020 0.003 0.014 0.004 0.054 0.004 - 0.001 - 0.001 -
B008 0.047 0.051 0.008 0.045 0.007 0.074 0.010 0.002 0.014 0.004 0.007 0.001
B009 0.003 0.003 - 0.002 0.003 0.094 0.007 0.002 - -
B010 0.010 0.028 0.002 0.008 0.010 0.156 0.008 0.001 0.003 - 0.001 -
BO11 0.005 0.003 - 0.002 0.005 0.184 0.006 - 0.001 - - -
B014 0.007 0.004 0.001 0.002 0.005 0.081 0.006 - 0.001 - 0.001 -
BO15 0.217 0.030 0.026 0.119 0.019 0.181 0.024 0.002 0.016 0.003 0.009 0.001
BO16 0.007 0.006 0.001 0.005 0.005 0.067 0.007 - 0.001 0.001 0.002 -
B019 0.003 0.002 - 0.002 0.004 0.088 0.005 - - - - -
B022 0.008 0.009 0.002 0.009 0.003 0.081 0.002 - - - 0.001 -
B025 2.000 2.640 0.461 1.500 0.318 0.168 0.240 0.033 0.174 0.031 0.091 0.012
B026 0.009 0.013 0.002 0.010 0.008 0.153 0.009 - 0.002 0.001 -
B028 0.028 0.009 0.005 0.022 0.003 0.022 0.007 0.001 0.007 0.002 0.003 0.001
B029 0.041 0.014 0.015 0.067 0.013 0.049 0.014 0.003 0.018 0.004 0.013 0.001
B031 0.182 0.095 0.031 0.118 0.012 0.065 0.007 - 0.002 0.001 0.001 -
B032 0.036 0.038 0.006 0.021 0.003 0.057 0.003 - 0.001 - 0.001 -
B034 0.022 0.028 0.005 0.030 0.014 0.080 0.008 0.001 0.011 0.002 0.008 0.001
B035 0.003 - - - - 0.045 - - 0.001 - - -
B036 0.034 0.047 0.005 0.029 0.009 0.043 0.012 - 0.008 0.002 0.007 0.001
B037 3.300  4.960 0.870 3.310 0.674 0.146 0.600 0.084 0.474 0.078 0.225 0.039
B039 0.012 0.022 0.003 0.011 0.007 0.050 0.002 0.001 0.004 0.002 0.004 -
B040 0.005 0.008 0.001 0.005 0.007 0.059 0.003 - 0.001 - - -
B041 0.006 0.018 0.001 0.005 0.006 0.089 0.003 - 0.001 - 0.001 -
B042 0.004 0.005 - 0.003 0.006 0.083 0.004 - - - - =
B043 0.008 0.015 0.001 0.003 0.003 0.104 0.002 - - - - -
B044 0.007 0.012 - 0.003 0.004 0.224 0.010 - - - 0.002 -
B046 0.017 0.107 0.010 0.024 0.006 0.117 0.013 0.001 0.002 0.001 - -
B049 0.032 0.032 0.007 0.021 0.005 0.112 0.007 - 0.002 0.001 0.004 -
BO51 0.003 0.006 - 0.003 0.006 0.070 0.004 - - - 0.000 -
B053 0.024 0.026 0.005 0.011 0.019 0.400 0.019 0.001 0.003 0.001 0.002 -
BO55 0.002 0.002 - 0.002 0.031 0.002 - - - - -
WO005 0.014 0.026 0.002 0.008 0.000 0.063 0.002 0.001 0.002 0.001 0.001 -
WO006 0.005 0.004 0.001 0.006 0.009 0.080 0.005 - 0.001 - 0.001 -
WO008 0.047 0.014 0.012 0.075 0.014 0.177 0.015 0.001 0.006 0.001 0.004 0.001
WO009 0.019 0.014 0.004 0.011 0.013 0.327 0.015 0.002 0.002

w012 0.070 0.048 0.020 0.092 0.011 0.089 0.016 0.002 0.013 0.003 0.014 0.002
WO015 0.011 0.011 0.004 0.022 0.012 0.154 0.008 0.001 0.005 0.001 0.003

wo016 0.004 - - - 0.006 0.054 0.002 - 0.003 0.001 0.006 0.002
w017 0.005 0.004 - - 0.007 0.117 0.006 - 0.001 - 0.002 -
w020 0.006 0.005 0.001 0.002 0.008 0.099 0.003 - - - - -
w021 0.025 0.015 0.007 0.024 0.005 0.074 0.008 0.001 0.004 0.001 0.003 -
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Table 3 continued

Ref. code La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm
w022 0.009  0.017 0.003 0.003 0006 0.062 0.008 - 0.001 - - -
w023 0.010  0.014  0.002  0.011 0.006  0.122  0.003 - - - 0.001 -
w024 0.076 ~ 0.073  0.023 0.103 0.035 0.174 0.030 0.005 0.021 0.005  0.019  0.002
w025 0.037  0.020 0.009 0.058  0.029 0366  0.021 0.002  0.016  0.003  0.020  0.004
w028 0.109 0411 0.085 0505 0.131  0.195 0.164 0.025 0.164 0.037 0.125  0.020
W029 0.025 0.092 0.006 0.035 0013 0.134  0.008 0.001 0.006  0.001 0.004 -
w033 0.007  0.018  0.001 0.003  0.002 0.020 0.002 - 0.002  0.001 0.002 -
WO036 0.001 0.002 - 0.002  0.002 0.073 0.002 - - - - -
WO038 0.046  0.022  0.005  0.021 0.025 0591 0.027  0.002  0.007  0.001 0.002 -
w041 0.016 ~ 0.008 0.002 0.008 0013 0249 0.013 - 0.006  0.001 0.001 -
w049 0.003 - - 0.001 0.004 0036 0.003 - 0.001 - 0.001 -
WO051 0.011 0.018 0.002 0.004 0.009 0078 0.005 - 0.001 - - -
WO052 0.010  0.010  0.001 0.007  0.002 0.059 0.003 - 0.001 0.001 0.002 -
WO053 0.010 0.017 0.003  0.007 0.005 0.049 0.003 - 0.002 - - 0.001
WO054 0.014 0069 0.005 0.017 0012 0.099 0.009 - 0.001 - 0.002 -
WO057 0.012  0.032 0.002 0.006 - 0.063  0.003 - 0.003  0.001 0.001 0.001
Wo061 0.024 0015 0.004 0.023 0006 0218 0.014 0.001 0.007  0.001 0.004 -
w062 0.017  0.032 0.003 0.012 0.008 0.141 0.011 - 0.005 - 0.002 -
WO067 0.014  0.026  0.004 0.006 0017 0270 0.012 - 0.004 - 0.001 -
WO069 0.045 0.080 0.032  0.141 0.087 0243 0.080 0.012 0.070 0.011 0.037  0.004
W071 0.028  0.023 0.009 0.029 0.019 0229 0.017 0.001 0.004  0.001 0.004  0.001
WO076 0.026  0.019 0.005 0.034 0001 0.074 0.009 - 0.004 - 0.001 0.001
w077 0.010  0.002  0.001 0.011 0.010  0.134  0.007  0.001 0.003 - 0.003  0.001
Wo081 0.007 - 0.001 0.005  0.004 0.039 0.003 - 0.002  0.001 0.003  0.001
R003 0.032  0.071 0.006  0.025 0.008 0.076  0.008  0.001 0.003 - 0.002 -
R004 A 0.057  0.103  0.010  0.041 0.003  0.126  0.010  0.002  0.003  0.001 0.003 -
R004 B 0.012  0.024 0.004 0.012 0004 0.065 0.004 - 0.002 - 0.002 -
R004 C 0.013  0.027 0.002 0.019 0.007 0.071 0.003 - - - 0.001 -
R0O09 0.008 0.014 0.001 - 0.002  0.056 0.003 - 0.001 - 0.001 -
Sp001 0.019  0.044  0.003 0.015 0012 0.045 0.004 0.001 0.001 0.001 0.001 -
PAAS 38.2 79.6 8.83 33.9 5.55 1.08 4.66 0.77 4.68 0990  2.85 0.41
Ref. Yb Lu  YREE LREE HREE MREE LREE/ (Er/ EwEu* Ce/  La/Yb La/Sm Gd/
code HREE Nd)n Ce* Dy
B001 - - 0.061  0.005 0.001 0.055 5.000 - 96.119 0326 - 0.667 -
B002 - - 0.044  0.001 0.000 0.043 - - - - - - -
B004 0.002 0.001 0.148 0.038 0.009 0.101 4222 1.982 57.852 0436 7.000 2.000 2.333
B005 0.001 - 0.115 0.050 0.003 0.062 16.667 0.850 63.570  0.739 13.000 3.250  4.000
B008 0.004 - 0274  0.151 0.030 0.093 5.033 1.850 41.648 0.607 11.750 6.714 0.714
B009 0.001 - 0.115 0.008 0.003 0.104 2.667 0.000 96.590 - 3.000 1.000 3.500
B010 0.001 - 0228 0.048 0.005 0.175 9.600 1.487 82.129 1445 10.000 1.000 2.667
BO11 - - 0206  0.010 0.001 0.195 10.000 0.000 158.188 - - 1.000  6.000
B014 - - 0.108  0.014 0.002 0.092 7.000 5.947 69.637 0.349 - 1.400  6.000
BO15 0.007 0.001 0.655 0392 0.037 0226 10.595 0.900 39913  0.092 31.000 11.421 1.500
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Table 3 continued

Ref. Yb Lu >REE LREE HREE MREE LREE/ (Er/ Eu/Eu* Ce/ La/Yb La/Sm Gd/
code HREE Nd)n Ce* Dy
BO16 0.006 0.001 0.109 0.019 0.011 0.079 1.727 4.758 53.328 0.523 1.167 1.400  7.000
BO19 - - 0.104  0.007 0.000 0.097 28.000 0.000 92.658 - - 0.750 -
B022 - - 0.115 0.028 0.001 0.086 17.145 1.322 155.710 0.519 - 2.667 -
B025 0.065 0.012 7.745 6.601 0.385 0.759 11.333 0.722 2.860 0.634 30.769 6.289 1.379
B026 - - 0.207  0.034 0.003 0.170  4.000 1.189 84910 0.707 - 1.125  4.500
B028 0.002 0.001 0.113 0.064 0.016 0.033 3.044 1.622 22.610 0.176  14.000 9.333  1.000
B029 0.008 0.001 0.261 0.137 0.045 0.079  28.000 2.308 17.100  0.130 5.125 3.154 0.778
BO31 0.002 - 0.516  0.426 0.006 0.084 71.000 0.101 33396  0.292 91.000 15.167 3.500
B032 0.001 0.001 0.168 0.101 0.004 0.063 25.250 0.566 89.468 0.597 36.000 12.000 3.000
B034 0.009 0.002 0.221 0.085 0.033 0.103 2.576 3.172 35596 0.616 2444 1.571 0.727
B035 - 0.001  0.050 0.003 0.002 0.045 1.500 - - - - - 0.000
B036 0.002 0.001 0.200 0.115 0.021 0.064 5.476 2.871 19.484 0.832 17.000 3.778 1.500
B037 0.219 0.037 15.016 1244 1.072 1504 11.604 0.809 1.081 0.675 15.068 4.896 1.266
B039 0.001 - 0.119  0.048 0.011 0.060 4.364 4.325 62.925 0.846 12.000 1.714  0.500
B040 0.001 - 0.090 0.019 0.002 0.069 9.500 0.000 60.626  0.825 5.000 0.714  3.000
B041 0.001 - 0.131 0.030 0.003 0.098  10.000 2.379 98.780 1.695 6.000 1.000  3.000
B042 0.001 - 0.106  0.012 0.001 0.093  12.000 0.000 79.779 - 4.000 0.667 -
B043 0.002 - 0.138  0.027 0.002 0.109  13.500 0.000 199.928 1.224 4.000 2.667 -
B044 0.001 - 0.263 0.022 0.003 0.238  7.333 7.930 166.776 - 7.000 1.750 -
B046 0.001 - 0.299  0.158 0.004 0.137  39.500 0.000 62.381 1.893 17.000 2.833  6.500
B049 0.002 - 0.225 0.092 0.009 0.124 10.222 2.266 89.146  0.493 16.000 6.400 3.500
BO51 - 0.092 0.012 0.000 0.080 - 0.000 67.283 - - 0.500 -
B053 0.005 0.001 0.517 0.066 0.012 0439 5.500 2.163 99.134  0.548 4.800 1.263 6.333
BO55 0.001 - 0.040  0.004 0.001 0.035 4.000 - 72987 - 2.000 1.000 -
WO005 - 0.001  0.121 0.050 0.005 0.066  10.000 1.487 - 1.134 - - 1.000
WO006 - - 0.112  0.016 0.002 0.094 8.000 1.982 56.156 0413 - 0.556  5.000
WO008 0.002 - 0.369  0.148 0.014 0.207 10.571 0.634 57.515  0.136  23.500 3.357  2.500
‘WO009 0.001 - 0.408  0.048 0.005 0.355 9.600 2.163 110.267 0.371 19.000 1.462  7.500
WO012 0.016 0.003 0.399 0.230 0.051 0.118 4.510 1.810 31.590 0.296 4.375 6364 1.231
WO15 0.003 0.001 0.236 0.048 0.013 0.175 3.692 1.622 74.012  0.383 3.667 0917 1.600
Wo16 0.024 0.006 0.108 0.004 0.042 0.062 0.095 - 73.404 - 0.167 0.667 0.667
w017 0.003 0.001 0.146  0.009 0.007 0.130 1.286 - 85.011 - 1.667 0.714  6.000
w020 - - 0.124  0.014 0.000 0.110 - 0.000 95.158 0471 - 0.750 -
w021 0.002 0.001 0.170  0.071 0.011 0.088  6.455 1.487 55.096  0.262 12.500 5.000 2.000
w022 0.001 - 0.110  0.032 0.002 0.076  16.000 0.000 42.139  0.755 9.000 1.500  8.000
w023 0.001 - 0.170  0.037 0.002 0.131 18.500 1.081 135.406 0.722 10.000 1.667 -
w024 0.017 0.004 0.587 0.275 0.068 0.244 4.044 2.194 25285 0403 4471 2171 1429
w025 0.020 0.004 0.609 0.124 0.067 0418 1.851 4.102 69.837 0.253 1.850 1.276 1.313
w028 0.126 0.022 2.119 1.110 0.494 0515 2247 2.944 6.265 0985 0.865 0.832 1.000
w029 0.002 - 0.327  0.158 0.013 0.156 12.154 1.359 61.873 1.733 12500 1.923  1.333
w033 0.001 - 0.059  0.029 0.006 0.024 4.833 7.930 47.089 1.570 7.000 3.500 1.000
WO036 - - 0.082  0.005 0.000 0.077 - 0.000 171.873 - - 0.500 -
WO038 0.001 0.002 0.752  0.094 0.013 0.645 7.231 1.133 107.115 0.335 46.000 1.840 3.857
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Table 3 continued

Ref. Yb Lu >REE LREE HREE MREE LREE/ (Er/ EwEu* Ce/ La/Yb La/Sm Gd/
code HREE Nd)n Ce* Dy
Wo041 0.001 - 0.318 0.034  0.009 0.275 3.778 1.487  90.193 0326 16.000 1.231 2.167
w049  0.001 - 0.050 0.004 0.003 0.043 1.333 11.895 48936 - 3.000 0.750 3.000
WO051 0.001 - 0.129 0.035 0.002 0.092 17.500 0.000 54753 0.885 11.000 1.222  5.000
w052  0.001 - 0.097 0.028 0.005 0.064 5.600 3.398 113.421 0.730 10.000 5.000  3.000
w053  0.001 0.001 0.099 0.037  0.005 0.057 7.400 0.000  59.575 0.716 10.000 2.000  1.500
w054 - - 0.228 0.105 0.003 0.120 35.000 1.399 44858 1903 - 1.167  9.000
Wwo057  0.001 - 0.125 0.052  0.007 0.066 7.429 1982 - 1.507 12.000 - 1.000
WO061 0.003 - 0.320 0.066 0.015 0.239 4.400 2.069 112.004 0.353 8.000 4.000 2.000
w062  0.001 - 0.232 0.064 0.008 0.160 8.000 1982  70.777 1.034 17.000 2.125 2.200
wo67 - - 0.354 0.050 0.005 0.299 10.000 1982  89.015 0.802 - 0.824  3.000
w069  0.024 0.006 0.872 0298 0.152 0.422 1.961 3.121 13.716  0.486 1.875 0.517 1.143
w071 0.004 0.001 0.370 0.089 0.015 0.266 5.933 1.641 60.000 0334 7.000 1474 4.250
w076  0.001 0.001 0.176 0.084 0.008 0.084 10.500 0.350  116.152 0.384 26.000 26.000 2.250
Wwo077  0.001 0.001 0.185 0.024  0.009 0.152 2.667 3.244 75417 0.146 10.000 1.000 2.333
WO081 0.001 0.001 0.068 0.013  0.009 0.046 1.444 7.137 53.014 0.000 7.000 1.750  1.500
R0O03 0.001 - 0.233 0.134  0.006 0.093 22333 0952 44734 1.182 32.000 4.000 2.667
R0O04 A 0.001 - 0.360 0.211  0.008 0.141 26.375 0.870 108.324 0.995 57.000 19.000 3.333
R0O04 B 0.002 0.001 0.132 0.052 0.007 0.073 7.429 1982  76.519 0.799 6.000 3.000 2.000
R0O04 C 0.001 - 0.144 0.061  0.002 0.081 30.500 0.626 72957 1.222 13.000 1.857 -
R0O09 - - 0.086 0.023  0.002 0.061 11.500 - 107.653 1.142 - 4.000  3.000
Sp001  0.002 - 0.148 0.081 0.005 0.062 16.200 0.793  30.585 1.345 9.500 1.583  4.000
PAAS 2.82 043 184770 160.530 12.180 12.060 13.180 1.000 1.000 1.000 13.546 6.883  0.996
widely from 0.007 to 15.02 pg/L with concentrations groundwater studies (e.g., McLennan 1989; Sholk-

in boreholes, hand-dug wells, rivers and spring from
0.044 to 2.12 pg/L, 0.086 to 0.36 pg/L, and 0.149 pg/
L, respectively. With the exception of Y, the concen-
trations of REE in groundwater (boreholes and hand-
dug wells) followed the order Eu > Sm > Ce >
Nd >La> Gd > Pr > Dy > Er > Yb > Ho >

Tb > Tm and these differed from the surface water
rivers and spring trends with concentrations in the
order of Eu> Sm > Ce > Nd > La > Gd > Pr >
Dy > Tb > Er > Yb > Ho. The MREEs (Sm-Ho)
were the most abundant elements, followed by the
LREE (La-Gd), with the HREE (Tb-Lu) being the
least abundant.

PAAS-normalized REEs patterns
To enable comparison across the full suite of sample
types, the REE concentrations were normalized with

respect to Post-Archean Average Australian Shale
(PAAS) (Fig. 8a—g), employed extensively in
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ovitz et al. 1994; Tang and Johannesson 2006;
Rollinson 1993). With exception of samples from
boreholes 25 (BO 25) and 37 (BO 37) (Fig. 8b), which
show a relatively monotonous flat pattern, all the
waters mostly exhibit enrichment in the HREEs
relative to the LREEs. Positive Eu anomalies (Eu/
Eu” = Eupaas/(Smpass + Gdpaas)”>) with values of
1.08-199 in boreholes, 6.26—171 in the hand-dug wells,
72.9-107.6 in rivers and 30.58 in spring, impose
distinctly steep roof-shaped PAAS-normalized REE
patterns, masking the commonly observed “W and M”
types tetrad REE patterns.

Interpretation and discussion

Groundwater recharge mechanisms and period

With the low temperature (~ 24 to 32 °C) of water
samples in the study area (Table 1), the observed 6'%0
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Fig. 5 Pipers’ plots of observed water samples, showing
Ca + Mg — NO; water facies in shallow wells (groupl),
Na + K — HCO5; facies in boreholes (group 2), and
Na 4+ K — HCOj; (group 3) type in surface water. The cluster
of the plots indicates mixing of the surface and groundwater
resources

and 0D values can be regarded as conservative during
water—rock interaction reaction (e.g., Gat 2010; Taylor
and Howard 1996). Thus, the d-values of the ground-
water would be expected to be almost similar to that of
the recharging meteoric water. Factors that can affect
the recharging rainfall are soil-zone processes and
direct heterogeneous/diffuse or localized/focused
rainfall infiltration (Taylor and Howard 1996). The
clustering of observed groundwater and surface water
along the GMWL (Global Meteoric Water Line) in
Fig. 6a indicates that soil-zone evaporation prior to
rainfall infiltration is not a significant process in the
area. However, a few surface water samples plot to the
right of the GMWL, indicating that within the
rainwater—surface water—groundwater system, the
incidence of evaporation prior to groundwater
recharge was not totally absent. Such a pattern
suggests that in the study area, the mechanism of
preferential flow pass (e.g., Tsujimura et al. 2007; Asai
et al. 2010) dominates groundwater recharge after
localized evaporation (Edmunds et al. 2002; Tsu-
jimura et al. 2007; Fantong et al. 2010a). The
suggestion of a preferential flow pass hypothesis
indicates that irrespective of reduced porosity in the
study area, as Fig. 4b illustrates, local occurrences of
effective porosity in the sand-rich sediment, which
favors rapid infiltration of rainwater into the aquifer,

cannot be totally denied. Similar recharge mechanism
was identified in part of the study area by Njitchoua
et al. (1995), and in the Lake Chad (Fantong et al.
2010a), coastal (Fantong et al. 2016) sedimentary
basins of Cameroon, and also in the semiarid sedi-
ments in Mongolia (Tsujimura et al. 2007). The high
d-excess in groundwater (with ca. 75% of the
groundwater samples having values above 10%o) not
only confirms direct infiltration of rainwater into the
shallow aquifer (Kebede et al. 2005), but also suggests
that groundwater recharge occurred under low relative
humidity conditions (Kendall and Doctor 2011). The
implications from the J-space diagram (Fig. 6a) and
d-excess (Fig. 6b) indicate hydraulic connectivity
within the shallow aquifer that favors mixing between
surface and the shallow groundwater over the entire
region. A comparison of isotopic compositions
between monthly local rainfall and groundwater on a
o-space can be employed to identify the period(s) of
groundwater recharge (e.g., Mbonu and Travi 1994;
Nkotagu 1996; Taylor and Howard 1996; Deshpande
etal. 2003). The ¢-values for monthly rainfall were co-
opted from Njitchoua et al. (1995) and plotted together
with the measured (Fig. 6a), and as observed, the 520
and 0D in groundwaters clustered between those of
July and September abundant monsoon rains, indicat-
ing that the groundwater is predominantly recharged
in the months of July and September. This groundwa-
ter recharge period is similar to that in the Lake Chad
basin (Fantong et al. 2010a), but differs from the
recharge period of June to August in the Lakes
Monoun and Nyos volcanic aquifer (Kamnctueng
etal. 2014), May to June in the Quaternary sediment in
Ndop plain (Wirmvem et al. 2015), and May to
September in the volcano-sedimentary aquifers of Mt.
Cameroon and Douala (Fantong et al. 2016). As the
rainwater circulates to recharge the groundwater,
water—rock interaction occurs, which results in
geogenic sources of ions in water (e.g., Faure 1991;
Fantong et al. 2009, 2010b).

Geogenic controls on the chemical composition
of water

Gibbs (1970) used the chemical composition of
freshwater to identify major processes controlling
dissolved ions in water based on the concentration of
total dissolved solids (TDS) and (Nat + K*)/(Na™"
+ K+ Ca2+) and Cl/(CI™ 4+ HCO3™) ratios.
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Fig. 6 A 6'80-0D relationship of groundwater, surface water,
and rainfall in the Benue River basin. There is an almost
dominant cluster of observed water samples between July and
September rains and along the Global Meteoric Water Line
(GMWL) of Craig (1961), indicating groundwater recharge
months are mainly July and September, with little or no

Similarly, Gibbs diagram (Fig. 9) for sites dominantly
within the rock domain suggests incongruent dissolu-
tion of silicates as the provenance of Ca, Mg, Na, K,
and HCO; to groundwater according to the following
reactions (3), (4), and (5) (Nesbitt and Wilson 1992;
Subramani et al. 2010; Faure 1991), which could be
promoted by root respiration (Fantong et al. 2009):
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evaporation. The cluster of the plots is also indicative of mixing
between surface and groundwater. The monthly rainfall data are
from Njitchoua et al. (1995). Plots of some surface water to the
right of the GMWL indicate evaporation effect (a). More than
60% of groundwater plot show d-excess greater than 10%o
indicating recharge under low humidity conditions (b)

CaAl,Si0,05 + 2CO, + 3H,0
= A1LSiOs(OH), + Ca*" + 2HCO; (3)

2NaAlSi;Og + 2H,CO3 + 9H,0
=2Na" + 2HCO3_ + Al,Si,05 (OH)4 + 4H4Si104

(4)
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Fig. 7 Average metal concentrations in water within the Benue
River Basin (Cw, ng/l) versus average concentrations in local
lithology (sandy clay) (Cs, mg/kg). The abbreviation “OHA”
stands for oxo-hydroxo-anion-forming elements. Water and
rock data are presented in Tables 1, 2 and 3, and original rock
data were obtained from Ndjigui et al. (2014)

2KAlSi; 08 4+ 2H' + 2H,0
= Al,Si,05(OH), + 4Si0, + 2K* (5)

Although such incongruent dissolution depicts that
weathering of rock-forming minerals is a controlling
factor for the major ion chemistry of groundwater in
the area, the Ca and Na systems stability diagrams
(Fig. 10a, b) further clarify the equilibrium states
between the secondary minerals and the circulating
water (Tardy 1971; Appelo and Postma 1993). For
example, the stability of albite, anorthite, kaolinite,
and montmorillonite in the waters was evaluated in
this study by plotting log (aNat/aH™) versus Log
(aH4Si0,) and Log (aCa**/a2H™) versus log (aHy.
Si0,4). The diagrams were drawn with the assumption
that Al was preserved in the weathering product
(Appelo and Postma 1993; Faure 1991). End-member
compositions were also assumed using equilibrium
relationship for standard temperature (25 °C) and
pressure (1 atmosphere), which approximately reflect
the groundwater conditions. Constituents’ activities
computed using Phreeqc for Windows version 2.1
(Appelo and Postma 1993) show that groundwater and
surface water from the study area span the stability
fields of Na-montmorillonite (Fig. 10a), Ca-montmo-
rillonite (Fig. 10b), kaolinite, and amorphous silica.

These observations not only concur with the occur-
rence of clay minerals in the study area, but are also
similar to findings from areas such as the Lake Chad
basin (e.g., Fantong et al. 2009) and the Lake Nyos
catchment (e.g., Fantong et al. 2015), where granites
constitute the fresh rock suites. Moreover, with
saturation index (SI) it is possible to predict the
reactive mineralogy of the subsurface from ground-
water data without collecting the samples of the solid
phase and analyzing the mineralogy (Deutsch 1997).
The saturation index (SI) of a given mineral is defined
in Eq. (6) (Garrels and Mackenzie 1967)

SI = log,,(IAP/Ksp) (6)

IAP is the ion activity product of the solution, and
Ksp is the solubility product at a given temperature
(the thermodynamic equilibrium constant adjusted to
the temperature of a given sample). The thermody-
namic data used in this computation are those
contained in the default database of the “Phreeqc for
Windows.” Supersaturation (SI > 0) indicates that
precipitation is thermodynamically favorable. On the
other hand, undersaturation (SI < 0) signifies that
dissolution is favored. Using this guideline, a plot of SI
against TDS indicates that all the samples were
undersaturated with respect to gypsum and anhydrites
relative to some crossing the undersaturation threshold
into the supersaturation zone for the carbonates of
calcite, aragonite, and dolomite (Fig. 10c). This may
reflect the incongruent re-dissolution of calcium
carbonates that commonly occur as cementing mate-
rial within the sediments, as shown in Fig. 4b.
However, the strong evidence for incongruent disso-
lution implies favorable environmental conditions
such as pH, reduction, oxidation, residence time,
enabled the selective enrichment of water with major
cations, Si, trace elements, and REEs.

Geo-environmental controls and implications
for REEs patterns

As shown in Fig. 8, the REE patterns in groundwater
(boreholes and hand-dug wells) fall within the same
range and are spatially the same as for surface waters
(rivers, springs), where both show distinct, but similar
positive Eu positive anomalies. This similarity sug-
gests that hydraulic connectivity between groundwater
and surface water results in mixing. Further, the
generally flat PAAS-normalized REEs pattern of

@ Springer



3000

Environ Geochem Health (2020) 42:2975-3013

(@ (d)
48001~ B002 ——B004 >~ BOOS == B008 —g— BO09 ——B010
01 e B011 8014 —4—BO15 == B016 == BO19 —5~B022 0.1
]
<
§ 0.001 |
s 0.001
Qo
£
©
(7]
0.0001 - 0.0001
0.00001 ) ! ! ! ! L L . ! ! ! ! : 0.00001

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

(b) 1

(e) 4
0.1 0.1
2
0.001 -
[N 0.001
L4
S
£
S
[
0.0001 0.0001
b 8025 = B026 = BO28 = B029 === BO3 1
e B032 b B0 34 st BO35 et B036 === B037
0.00001 ) ! ! ! ! ! L : : - : : 0.00001

= WOO5 == W06 == W8 == W00 == WO12 ~4= WO14

e WOL5 e WOL6 e WOL7 e WO20 = WO21 == WO22

' ' ' ' ' ' ' ' | ' |

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

= WO23 = W024 == WO25 5= WO28 =fm WO29 9= WO33 === W034

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

e W36 e WO38 e WO41 e WO4 e W05 == WO52

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

(c) 1 (f) 1
0.1 01

2] ¢
< o001+ X 0.001 -
o A
3 [ ]
E— | ]
©
7]

0.0001 0.0001

8039~ B0A0 i B0aL T B042 e 8043 - B0dd e WOS3 i WIS e WOS7 5 W06 —m WOG2 = WOBS e WO
b BOAS et B4 D et 55 1 e B0S5 S sl BOSS

0.00001 . . : . . . L . ' . . . 0.00001 ‘—W|069I—W0‘71—0‘—W07‘6 ""W°77.""W°81' .

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

(9) 1

0.1+

2]
3 oot /
= A a L3
g =3
g
1]
0.0001 -

b RO03 == RO04 A === R004 B == RO04 C =pé=R009 === Sp001
0.00001 | o

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

@ Springer

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu



Environ Geochem Health (2020) 42:2975-3013

3001

«Fig. 8 PAAS normalize patterns of rare-earth elements in
observed water samples. a—¢ Boreholes, d—f hand-dug wells,
and g spring. All samples, except (BO 25 and 37), show a “steep
roof-shaped” positive Eu anomaly

samples BO37 and BO25 (Fig. 8b) is interpreted as
groundwater sourced from deeper aquifer that does not
mix with the surface water. Moreover, the clustering
of groundwater 6'0 and 6D values with surface
waters (Fig. 6a) and their similar water chemistries
support spatial mixing enabled by aquifer intercon-
nectivity (Fig. 5). To further verify such aquifer
interconnectivity, the log—log plots for trace elements
in different types of waters in boreholes (BO) that
showed absence and presence of EU anomaly, and for
a hand-dug well and borehole, are presented in
Fig. 11a, b, respectively. According to Taran et al.
(2008), such correlation plots can be used for the
estimation, at least, qualitative, whether waters from
different sources originate from the same aquifer or
not. The two plots show very good correlation between
major and trace elements, suggesting that irrespective
of slight differences in REE patterns of sample BO25
and BO37, all waters are from the same aquifer or a
part of a bigger aquifer.

Such a mixing-based REEs pattern has been
reported in the North China plain (Liu et al. 2016)

9)
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and Australian catchment (Duvert et al. 2015). The
characteristic steep roof-shaped PAAS-normalized
pattern may hint that MREEs are more easily leached
from parent rocks (Migaszewski et al. 2014), through
preferential dissolution of feldspars (Guo et al. 2010)
because bivalent Eu (an MREE) is selectively
enriched and incorporated into primary tectosilicates.
For example, MREE enrichment in K-feldspars and
plagioclases is achieved by preferential substitution
into Ca®", Na™, and K™ sites. Moreover, preferential
dissolution of feldspars relative to other REE-bearing
primary minerals should result in positive aqueous Eu
anomalies (Ma et al. 2011; Brioschi et al. 2013). Such
positive Eu anomaly in freshwater has also been
attributed to dissolution of phosphate mineral and
eolian deposition (Vazquez-Ortega et al. 2015).
Considering that phosphate—feldspar-rich minerals
(e.g., vivianite) have been located in the western
upstream of our study area (Fodoue et al. 2015; Bouyo
et al. 2015), and that the fresh granitoids in the study
area have similar positive Eu anomalies (Ndjigui et al.
2014), while the sediments express negative Eu
anomalies (Ndjigui et al. 2014; Bouyo et al. 2015),
point to incongruent dissolution of silicates, followed
by enrichment in water and depletion in sediments. It
has also been reported that influent atmospheric eolian
dust contains substantial total phosphorous, which can
be associated with phosphate and alkali feldspars
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Fig. 9 Gibbs plots indicating rock domain (water—rock interaction) as main process controlling groundwater chemistry in the study

area
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Fig. 10 Stability diagrams for some minerals in the systems
Na,—Al,03-Si0,-H,0 (a) and CaO-Al,05-Si0O,-H,O (b) at
25 °C and pressure of 1 bar, showing that observed water
samples are in equilibrium with montmorillonites and kaolinite,
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and the plots of saturation index versus TDS (c) showed that
some samples were supersaturated with respect to carbonate
phases, while all samples were undersaturated with respect to
gypsum and anhydrite
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(Nash 1984). Hence, dust inputs may contribute o - sw
significantly to the near-surface REEs measurements.
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South central Poland, Northern Anhui Province in
China, Ukraine, Israel, Romagna in Italy, North China
plain, and Inner Mongolia (Vazquez-Ortega et al.
2015; Migaszewski et al. 2014; Chen and Gui 2017,
Zhuravlev et al. 2016; Censi et al. 2017; Pignotti et al.
2017; Liu et al. 2016 and Guo et al. 2010). Although
most of the latter work attributed their REEs patterns
to redox conditions, our investigation did not measure
the Eh of sampled waters, thus falling short of defining
the precise redox conditions that controlled REEs
concentrations in the BRB. However, the biplots of
La/YDb ratio against HCO; (Fig. 12) show that La/Yb
ratio in surface water increased at low HCOj3 concen-
tration, while the ratio dropped significantly in
groundwater as HCO5; concentration increases. Such

Fig. 12 Biplots of La/Yb ratio against HCO3 show that La/Yb
ratio in surface water increased at low HCO; concentration
(group 1), suggesting that acidic conditions may favor REEs
concentration in surface waters than alkaline conditions will do

plots suggest that acidic conditions most likely
favored the enrichment of HREEs and MREEs
concentrations in surface waters while enriching
LREEs under alkaline conditions. This observation,
however, is in disagreement with the suggestion of
Johannesson and Hendry (2000) that higher carbonate
ion concentrations would promote greater stability of
the REEs in solution, and lead to their elevated
concentrations.
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Potentially harmful elements (PHEs) and health
impacts

An interplay of geogenic and anthropic factors is
suggested to mobilize potentially harmful elements
(PHEs) such as fluoride (F~), cadmium (Cd), lead
(Pb), and arsenic (As) to water reaching levels that
expose the local population to various unhealthy
clinical phenomena.

Contextually, PHEs are elements whose concen-
trations in water are toxic to consumers (Davies 2013),
for example F~, Cd, Pb, and As. Most fluoride-related
health studies pay more attention to endemic fluoride
exposure from drinking water because that is the
easiest pathway to quantify the impact on a commu-
nity served by public water supply. Considering that
the maximum permissible level of fluoride in drinking
water is set at 1.5 mg/L by the WHO (WHO 2004) and
an optimum level of 0.7 mg/L for the semiarid

Northern regions of Cameroon (Fantong et al.
2010b), the concentrations of fluoride measured in
the water samples (Table 1; Fig. 13) show an unde-
sirable concentrations of fluoride in drinking water
sources from both the sedimentary basins (Garoua,
Hamakoussou, Mayo-Oulo-Lere, and Babouri Figuil)
and the granitic Precambrian basement, where chil-
dren from these localities (Barnake, Garoua, Pitoa, and
Figuil) manifest chronic incidences of fluorosis (pitted
teeth with white horizontal striations, pitted brown
teeth, and unpitted teeth with black, brown, and chalky
coats). Considering that the study area is just to the
south of the Mayo Tsanaga River Basin, where
Fantong et al. (2010b) identified alkaline-mobilized
geogenic (mica and fluorapatite) provenance of fluo-
ride in groundwater exploited for drinking, it is most
likely that similar geochemical factors control the
origin and mobilization of fluoride in the Benue River
basin. However, a site-specific investigation is hereby

Fluoride (mg/L)
0.01 - 0.50
0.50 - 0.70
0.70 - 1.50
@ 150-3.00
’ > 3.00
River network
—— Permanent river
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Surface water
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Wetland
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-3 Cameroon boundaries

4

N

126

Fig. 13 Spatial distribution of mg/l concentrations of fluoride in observed water samples. Sites with high (> 1.5 mg/l) fluoride

concentration cause fluorosis on children teeth
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Fig. 14 Spatial distributions of potentially harmful elements
(PHESs) showed that the values (ng/L) of As (a), Cd (b), and Pb
(c) increase in relatively populated locality (Garoua) within the

proposed to underpin the origin and factors that
mobilize fluoride in groundwater within the study
area.

With respect to metalloids and heavy metals such as
As, and Cd, and Pb, respectively, which have been
found to cause lung and bladder cancers (Silvera and
Rohan 2007), kidney damage (Davies 2013), and
blockage of the large intestine (Tayie 2004), respec-
tively, their concentrations in the study area (Table 2)
were found to be below, but close to the WHO (2004)
threshold limits in some of the drinking water sources
observed (Fig. 14). Although the values of As, Cd, and
Pb (Fig. 14a—c) increase in the populated locality of
Garoua, relative to sites with limited human influence,
suggesting a more likely anthropogenic origin for As,
Cd and Pb, for instance, from smelting, open-air
burning of E-waste, and poorly disposed batteries
(Davies 2013), a positive correlation of As, Cd, and Pb

study area. This suggests that their origin may be associated with
anthropogenic activities

with HCOj3 in some samples (Fig. 15a—c) still suggests
contribution from water—rock interaction processes.
Evidence for anthropogenic input into the observed
water samples can also be observed by a positive
correlation between As, Cd, and Pb versus NOjs in
some samples (Fig. 15 d-f), and a sturdy positive
correlation between nitrate and chloride (Fig. 16), as
explained in Fantong et al. (2016 and references
therein). Thus, a combination of conditions for water—
rock interaction and anthropogenic input mobilizes
elements in water, and determines the degree of health
impacts on the population within the BRB.
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Fig. 16 Chloride versus nitrate plots indicate the incident of
anthropogenic input into the water resources observed

Relative Mobility of metals in waters
within the Benue River Basin

The extend to which major and trace elements enter
the aqueous phase during weathering is called

@ Springer

(AI) as contributing factors to the incidence of As, Cd, and Pb in
waters within the Benue River Basin

“relative mobility” (RM), which was computed from
Eq. 7 (Meybeck 1997; Gislason et al. 1996).

RM = (X/Mg), /(X/Mg), (7)

where w and r refer to the solution and the rock,
respectively. Considering that this approach has been
successfully applied to rivers draining basaltic terrains
in Iceland (e.g., Louvat 1997), Mt. Etna-Sicily
(Aiuppa et al. 2000), and Mount Vesuvius volcanic
aquifer in Italy (Aiuppa et al. 2005), in this study, the
relative mobility of elements was calculated for 10
samples [representing boreholes (BO), hand-dug wells
(W), rivers (R), Spring (Sp), no EU anomaly samples
(BO 25; and 37), and EU anomaly samples (e.g., BO
53)] from their water/rock concentration ratio, nor-
malized to magnesium, because of its strong chemical
mobility during weathering. The results, which are
presented in Table 4, are plotted in Fig. 17a, b, in
which elements are ranked with RMs increasing from
left to right with the groupings (1) (2), (3), and (4)
representing the OHA (oxo-hydroxo anion) elements,
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Table 4 Relative mobility of elements in selected water samples in Benue River basin

mean_Rock mean_trend Average B025 B037 B044 B053 W028 WO038 WO061 WO069 RO04A Sp001
Al 146,286.67 79.46 0 001 002 O NA 0 0 0 0 0 0
Th 2993 0.46 0.01 015 03 NA NA NA NA NA NA NA NA
Fe  67,366.67 181.7 0 002 025 0 NA 0 NA NA 0 0 0.01
Pb  14.53 0.19 0.01 396 1 002 0 0 0 0 0.03 0.01 0.07
Cu 46.16 1.81 0.03 302 068 016 004 051 0 0.02 0.11 0.06 0.41
Co 18.37 1.06 0.04 051 039 0 0 3.09 0 0.01 1.49 0.01 0.13
Cr 99.33 0.27 0 035 023 0 0 0 0 0.01 0.06 0 0.12
Ni 46.1 1.81 0.03 065 057 0 001 145 0 0.03 0.44 0.04 0.23
v 90.61 5.44 0.04 025 037 009 001 001 0.02 0.03 0 0.06 0.39
Mn 666.67 61.3 0.06 029 111 O 0 1.71 0 0.01 0.27 0.01 0.18
Zn 554 134.57 1.6 8755 929 119 119 6.67 0.26 2.07 7.11 0.44 76.33
Ba 720.78 421.1 0.38 6.68 264 124 07 1.38 0.38 1.09 3.05 1.49 11.82
Sr 11547 670.3 3.82 6.61 5.71 17.42 877 5.19 2.92 6.51 4.15 3.54 5.65
Li 11.38 7.19 0.42 443 335 126 029 588 0.08 0.13 0.91 0.07 7.39
Ca  8926.67 40,312 2.98 504 568 04 4.9 2.88 2.17 6.59 1.74 3.82 5.77
Rb  36.58 15.28 0.28 742 32 0.15 0.01 2.02 0 0.99 1.65 0.05 243
K 16,673.33 8024 0.32 835 189 023 026 235 0.04 1.79 0.96 0.52 26.81
Na  9606.67 31,459 2.16 3224 1499 629 1.09 5.46 0.76 2.72 1483 17.74  6.02
U 223 1.85 0.55 1.03 248 222 023 0.18 0.2 0.08 1.41 0.17 0.12
Mo 3.36 2.34 0.46 032 064 007 001 0.12 0.02 0.09 0.01 0.44 0.63
Mg 9520 14,449 1 1 1 1 1 1 1 1 1 1 1

NA = not analyzed. BO = borehole. WO = hand-dug wells. Sp = spring. R = river. Rk = rocks (the average values for elements in
rocks were calculated from the data of Ndjigui et al. 2014)

alkalis and alkaline earths, transition metals, and
immobile metals, respectively. The main information
therefrom is summarized as follows:

1.

The spike-shaped data pattern reveals that the
dissolution of BRB lithology is not isochemical
with relative mobility values ranging from 0.01 to
2.48 for OHA elements; 0.01-24.3 for alkalis and
alkaline earths; 0.01-76.33 for transition metals,
and 0.01-0.15 for immobile metals.

Aqueous mobility of redox-sensitive elements
such as Mn and Fe is weak, disagreeing with the
findings of Aiuppa et al. (2005), in the volcanic
aquifer of Versuvius, where their mobility was
significantly enhanced.

The mean mobility sequence for alkalis is Na >
K > Rb, and that for alkaline earth elements is
Ca > Ba. In agreement with the observation of
Aiuppa et al. (2005), both sequences are similar to
the Hofmeister series, which refer to the relative
affinity of cations for clay minerals and oxides

(e.g., Stumm and Morgan 1996). Thus, water—
rock interaction is a controlling factor for the
distribution of these elements between the aque-
ous and solid phase in the BRB, probably enrich-
ing the aqueous phase in lithogenic fluoride that is
consumed via drinking water sources and leading
to observed fluorosis.

Lead, Cu, Zn, Mo, U, Ca, and Sr are among the
most mobile elements in the BRB.

Aluminum is shown to be the most immobile
element, probably because it is retained in the
product of incongruent dissolution such as
hydroxides and clay minerals. Moreover, Cr,
Mn, Rb, and V are among the least mobile
elements in the BRB.

For the only spring source that was sampled
(Sp001), the analyzed elements show relative
mobility values ranging in between those of hand-
dug wells and boreholes, indicating that the spring
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Fig. 17 Relative mobility of metals in selected groundwater
samples in Benue River Basin. RM values were normalized to
magnesium and computed from Eq. 7 (see text). Elements are
arranged in four groups based on increasing mobility (1, OHA

water was more or less draining an aquifer, thus a
“surface water gaining system.”

7. The hand-dug wells (W028; W038), are charac-
terized by lowest elements mobility, suggesting
that among the selected samples, they harbor the
weakest water—rock interaction (WRI) process.

8. The boreholes (B025 and B037), on the other

hand, are characterized by highest elements
mobility (Fig. 17a), suggesting that they harbor
the strongest water—rock interaction processes.
This trend supports the speculation that their flat
REE patterns (Fig. 8b) may be attributed to deeper
aquifer sources.

When these heavy metal (loid)s dissolve in water
bodies, their mobility and dispersion are partly

@ Springer

elements; 2, alkalis and alkaline earths; 3, transition metals; 4,
immobile metals). Relative metal mobilities in the selected
samples are compared to the average trend

controlled by pH. To check this assertion, the sum of
Pb, Cd, Cu, Zn, and Co was plotted against pH
(Fig. 18), which depicts that in acidic pH < 6 condi-
tion, the concentration of the heavy metal (loid)s
increased in groundwater. On the other hand, apH > 6
causes the concentrations to drop below 250 pg/L in
both groundwater and surface waters.

Conclusions

In the Benue River Basin, Cameroon, one of the major
upstream catchments of river Niger, groundwater is
recharged by monsoon rainwater from July to Septem-
ber via a permeable clayey sandy lithology that favors
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Fig. 18 Biplots of the sum of Pb, Cd, Cu, Zn, and Co against pH depict that at acidic pH of less than 6, the concentration of the heavy
metals increased in groundwater (group a), whereas above pH 6 the concentrations drop (group b)

hydraulic connectivity, preferential flow pass mecha-
nism, but minimizes evaporation. High d-excess
values (> 10%o) in groundwater indicate that the
recharge occurs under low relative humidity condi-
tions. Major ions plots on a Piper’s diagram, 6D versus
6'®%0 plots, and PAAS-normalized REEs patterns
depict mixing of surface and groundwater within a
shallow aquifer system. The aquifer minerals interact
with the circulating water incongruently, in an acidic—
basic media, resulting in equilibrium between sec-
ondary clay minerals (kaolinite, Ca-montmorillonite,
and Na-montmorillonite) and the groundwater, which
becomes loaded with dissolved major ions, TEs and
REEs. The results further indicate non-isochemical
dissolution of local rocks by water, with springs, wells,
and borehole waters exhibiting surface water-gaining,
weakest water—rock interaction, and strongest water—
rock interaction processes, respectively. Poorly
mobile elements (Al, Th, and Fe) are preferentially
retained in the solid residue of incongruent dissolu-
tion, while alkalis, alkaline earth, and oxo-anion-
forming elements (U, Mo, Na, K, Rb, Ca, Li, Sr, Ba,
Zn, Pb) are more mobile and enriched in the aqueous
phase, whereas transition metals display an interme-
diate behavior. The dominantly geogenic processes
imprint hydro-chemical signatures that varied from
Ca+ Mg — NO; type in shallow wells to
Na + K — HCO; type in boreholes, and surface
waters, with undesired concentrations of fluoride

along the southwest—northeast corridors of the study
area, where children manifest fluorosis in the localities
of Barnake, Garoua, Pitoa, and Figuil. In addition to
the fluoride-based health impacts, geogenic and
anthropogenic concentrations of potentially harmful
Cd, Pb, and As are mobilized in acidic media attaining
near-undesirable levels in and around populated
localities. The data suggest that these localities should
be actively monitored for As, Cd and Pb vulnerability
linked to chronic toxicity, which could turn acute
along the Niger River following population expansion
and industrialization. The observed surface and
groundwater samples had acidic-mobilized, low REEs
concentrations with a wide range (0.007-15.02 ng/L)
in total REEs (XREEs), and “steep roof-shaped”
PAAS-normalized positive Eu anomalies that could be
attributed to preferential dissolution of feldspars
relative to other REE-bearing primary minerals, the
dissolution of phosphate-rich minerals, and the depo-
sition of eolian dust. This work suggests important
tenets for sustainable management of groundwater
resources in other headwater basins in sub-Saharan
Africa.
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