
ORIGINAL PAPER

Characteristics and applications of biochar for remediating
Cr(VI)-contaminated soils and wastewater

Shaopan Xia . Zhaoliang Song . Paramsothy Jeyakumar . Nanthi Bolan .

Hailong Wang

Received: 17 April 2019 / Accepted: 9 October 2019 / Published online: 31 October 2019

� Springer Nature B.V. 2019

Abstract Chromium (Cr) is a common environmen-

tal contaminant due to industrial processes and

anthropogenic activities such as mining of chrome

ore, electroplating, timber treatment, leather tanning,

fertilizer and pesticide, etc. Cr exists mainly in both

hexavalent [Cr(VI)] and trivalent [Cr(III)] form, being

Cr(VI) with non-degradability and potential to be

hidden, thereby affecting surrounding environment

and being toxic to human health. Therefore, researches

on remediation of Cr pollution in the environment

have received much attention. Biochar is a low-cost

adsorbent, which has been identified as a suitable ma-

terial for Cr(VI) immobilization and removal from soil

and wastewater. This review incorporates existing

literature to provide a detailed examination into the (1)

Cr chemistry, the source and current status of Cr

pollution, and Cr toxicity and health; (2) feedstock and

characterization of biochar; (3) processes and mech-

anisms of immobilization and removal of Cr by

biochar, including oxidation–reduction, electrostatic

interactions, complexation, ion exchange, and precip-

itation; (4) applications of biochar for Cr(VI) reme-

diation and the modification of biochar to improve its

performance; (5) factors affecting removal efficiency

of Cr(VI) with respect to its physico-chemical condi-

tions, including pH, temperature, initial concentration,

reaction time, biochar characteristics, and coexisting

contaminants. Finally, we identify current issues,

challenges, and put forward recommendations as well

as proposed directions for future research. This review

provides a thorough understanding of using biochar as

an emerging biomaterial adsorbent in Cr(VI)-contam-

inated soils and wastewater.
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Introduction

Chromium (Cr) is the seventh most abundant element

on earth (Jaishankar et al. 2014), which is classified as

the first carcinogenic element (Zhitkovich 2011) and is

also considered as the fifth of potentially toxic

elements (PTEs) (Ma et al. 2007). Cr exists in six

oxidation states in the various ranges of Eh and pH in

soil, among which trivalent [Cr(III)] and hexavalent

[Cr(VI)] are the two stable states in the natural

environment. The Cr(III) is deemed as an indispens-

able trace element for human health. Cr(III) is easily

hydrolyzed in aqueous solution, and its compounds

[i.e., Cr(OH)3, Cr2O3] are adsorbed by soil colloid to

form less soluble and relatively inert complexes

(Mishra and Bharagava 2016). While Cr(VI) is

soluble, mobile, and poisonous in wide pH range of

aqueous media, it mainly exists in the form of

HCrO4
-, Cr2O7

2-, and CrO4
2- (Reale et al. 2016;

Ashraf et al. 2017). Cr(VI) is very reactive in soils and

wastewater due to its solubility, non-degradability,

mobility, and bioaccumulation (Jaishankar et al.

2014). This stage in soil is toxic, leads to adversely

affect on the ecological sustainability, and potentially

harmful to human health transmitted by a series of

food chain (Mishra and Bharagava 2016; Antoniadis

et al. 2018).

Recently, the environmental pollution of Cr has

gained public attention due to its high concentrations

in surrounding environment. In China, 20 hm2 of

cultivated land is polluted by potentially toxic ele-

ments, which accounted for approximately 20% of the

total arable land. The area of Cr-contaminated land

constitutes 5.1% of the total PTEs-contaminated land,

of which Cr pollution in China exceeds the risk value

(GB 15618-2018) in the national soil sampling points

by 1.1% (MEEPRC 2015). Some typical Cr(VI)

concentrations of water or wastewater in contaminated

sites vary in the range of 30–200 mg L-1 (e.g., Lu

et al. 2006; Ai et al. 2008). However, the discharge of

Cr(VI) concentration must be controlled under the

limit of 0.05 mg L-1 in surface water (Zhou et al.

2016; Zelmanov and Semiat 2011) and 0.5 mg L-1 in

wastewater in most countries (Costa and Klein 2006).

Therefore, it is pertinent that the remediation methods

should be aimed at decreasing the Cr(VI) concentra-

tion of effluents within permissible level.

Many techniques have been implemented to treat

Cr(VI) pollution in soils and waters, including

chemical reduction, electrochemical method, nanofil-

tration, membrane process, and biological remediation

(Malaviya and Singh 2011; Dhal et al. 2013; Khalid

et al. 2017; Jin et al. 2016). The adsorption method has

emerged to be the most effective technique for Cr(VI)

treatment because of its desirable characteristics such

as no/minimum disturbance to the soil, economic

efficiency, absence of secondary toxic slurries, in situ

remediation, simple operation, and high selectivity

(Velez et al. 2016; Jobby et al. 2018). In this regard, it

is necessary to find practical materials that can adsorb

and decrease Cr(VI) concentration or reduce Cr(VI) to

Cr(III) to lower its toxicity.

Biochar is a stabilized, porous, fine-grained, and

recalcitrant organic carbon compound (Panwar et al.

2019). It is produced under low (preferably zero)

oxygen condition at temperatures usually varying

from 300 to 1000 �C (Cha et al. 2016). Many

researches have demonstrated that biochar could

enhance carbon sequestration in soil environment

(Nanda et al. 2016), increase crop yield (Crane-

Droesch et al. 2013), control greenhouse gases emis-

sions (Wu et al. 2018), improve soil quality (Ageg-

nehu et al. 2017), decrease nutrient leaching (Yuan

et al. 2016), and reduce irrigation and fertilizer

requirements of agricultural soils (Ramlow et al.

2019). Due to its highly developed porosity, high

degree of surface reactivity, and excellent adsorption

capacity, biochar has been increasingly recognized as

the great potential to remove organic contaminants

(He et al. 2018; Huang et al. 2018; Luo et al. 2018) and

PTEs (Shaheen et al. 2019; Sun et al. 2019), especially

for Cr(VI) with highly redox activity (Fan et al. 2019;

Zhou et al. 2019; Zhang et al. 2019) in soil and

aqueous media.

Although there are many current studies on the

effects of feedstock-specific biochar on Cr(VI) reme-

diation available in the literature, few thorough

reviews have thus far been published about Cr(VI)

remediation by biochar. Indeed, the complete mech-

anisms and immobilization processes by biochar are

still largely unrecognized, particularly for redox-

sensitive PTEs including Cr(VI). The potential of Cr

remediation by biochar under different reaction con-

ditions also remain not reviewed, and the underlying

essences of these influencing factors on removal

efficiency even remain unresolved. Therefore, it is

essential to underpin the modification mechanisms of

biochar to improve its Cr sorption capability.
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Understanding these processes and mechanisms is also

a key factor in evaluating reality and feasibility of

applying biochar to remediate Cr(VI)-contaminated

soils and wastewater.

Hence, this review focuses on the different dimen-

sions of Cr remediation trials using biochar. Here, we

slightly summarized Cr chemistry, the source and use

of Cr, and toxic as well as health effects of Cr. We

introduced the feedstock-dependent production of

biochar and its application potential on Cr(VI) reme-

diation.We also critically elucidated the processes and

mechanisms of immobilization and removal of Cr by

biochar, and latest research progress on biochar

modification to improve Cr adsorption capacity, as

well as the factors affecting removal efficiency of

biochar for Cr(VI) in response to external conditions.

Lastly, we identified current issues, challenges, and

propose recommendations as well as future research

directions in this field.

Chromium in the environment

Chromium species and characteristics

Understanding the chemical species of Cr is necessary

to evaluate the ecological hazards and risk assessment

concerned with Cr-contaminated soils and wastewa-

ter. The total Cr contents in soils usually do not explain

its biogeochemical behavior, which is governed by

different chemical species. Cr is in the form of

different valence states, varying from 0 to VI, in which

Cr(III) and Cr(VI) are the predominant and

stable species in natural conditions (Fig. 1) (Choppala

et al. 2013; Wang et al. 2015; Arian et al. 2018).

Cr(III) mainly exists in the form of Cr(OH)5
2-,

Cr(OH)4
-, Cr(OH)3, Cr(OH)2

?, Cr(OH)2?, and Cr3?

and usually combines easily with oxygen, sulfate,

hydroxide, and organic matter (OM) to form insoluble

chelates or is adsorbed by soil colloids to constitute

Cr(III) precipitate, which has the characteristics of

insolubility, low migration, and low bioavailability in

the soil. Hence, Cr(III) toxicity to organisms is

comparatively lower than Cr(VI) (Rakhunde et al.

2012; Saha et al. 2011). However, its disposal as

soluble compounds into soils and waters may cause a

serious health risk because Cr(III) will be oxidized to

Cr(VI) in the natural environment (Fendorf et al.

2000). The Cr(VI) usually occurs as oxyanions with

strong oxidation performance, namely Cr2O7
2-,

HCrO4
- (pH\ 6.0), and CrO4

2- (pH[ 6.0). These

hexavalent compounds are highly soluble and mobile

and easily migrate in soil and its pore water and hence

are difficult to get adsorbed by soil colloid, thus

causing seriously toxicity to living organisms (Dota-

niya et al. 2014). The other transitional species

including Cr(V), Cr(IV), and Cr(II) are normally

unstable when occurred to oxidize and reduce between

Cr(III) and Cr(VI) (Shahid et al. 2017).

Chromium sources and uses

High concentrations of Cr(VI) in the environment

usually come from anthropogenic activities (Fig. 2),

especially widespread usage in industries because of

its corrosion resistance, strong crystalline structure,

and yellow color. Cr is one of the basic materials in

tanning, electroplating, printing, dyeing, papermak-

ing, wood preservation, alloy making processes, etc.

(Dhal et al. 2013; da Costa Cunha et al. 2016). In

China alone, metal finishing is the major industrial

source of Cr(VI) for Cr-containing discharge wastew-

ater. Besides, the tannery is one of the largest

industries; approximately 40 million tons per year of

Cr-containing waste is discharged by tanneries around

the world (Papp 2004). Correspondingly, the number

of published articles regarding ‘‘Hexavalent chro-

mium’’ is inevitably increasing year by year from 2000

to 2018 (Fig. 3). Mohan and Pittman (2006) have

reported that the discharge of Cr is at 142 and 896

metric tons/year into water and soil at the global scale,

respectively. Deng and Chen (2012) analyzed Cr

content in industrial and solid waste, blast furnace

slag, paint coating sludge, and solid waste (waste III)

and reported that they have reached up to 2600, 1500,

and 1400 mg Cr kg-1, respectively. Furthermore,

these industrial wastes containing Cr are usually used

as landfill materials to reclaim marshlands and tank

dikes at some locations. The seeping and leaching of

Cr(VI) from polluted soil into groundwater would

increase Cr(VI) concentration (Jobby et al. 2018).

Hence, the discharge of Cr-containing waste by

industries onto land and into water bodies is the

foremost source of Cr in our living environment.

Ross (1994) has grouped the anthropogenic sources

of Cr pollution into five categories: (1) Cr-containing

emissions into the atmosphere, mainly coming from

chemical manufacturing and metallurgical industries,
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Fig. 1 The Eh–pH diagram

of conversion between

Cr(VI) and Cr(III) in Cr–O–

H system (Modified from

McNeill et al. 2012;

Rakhunde et al. 2012)

Cr sources:
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Leather tanning
Paper production
Fertilizer
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……
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(3) Ion exchange
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Fig. 2 The source of chromium contamination and Cr remediation technologies by biochar (Modified from Xia et al. 2019)
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and the burning of fossil fuels (coal, oil, and gas) (Saha

et al. 2011); (2) operation of solid wastes, consisting of

fly ash, coal, and rubbish (Dhal et al. 2013); (3)

roadside soils contamination coming from Cr-con-

taining asbestos brake linings in vehicles and atmo-

spheric aerosols (Saha et al. 2011); (4) improper use of

fertilizer and pesticide (Vogel et al. 2015), e.g., the Cr

levels in some phosphate fertilizers are ranging from

30 to 3000 mg kg-1 (NRCC 1976); (5) discharge of

industrial waste such as sewage, sewage sludge, and

solid wastes in the process of industrial production,

especially in the Cr residue stacking site, where Cr

pollution is more serious (Vimercati et al. 2017).

Maximum allowable levels of Cr in soils and water

Based on the critical values in soils formulated by

Kabata-Pendias (2010), the trigger action value (TAV)

and the maximum allowable concentration (MAC) are

50–450 and 50–200 mg Cr kg-1, respectively. Cer-

tainly, the environmental quality standards of Cr for

agricultural soil are the most concerned issue for

human health, and regulations are vary from one

country to another (Antoniadis et al. 2019). In China,

government department, in order to safeguard the

agricultural production and protect human health,

have regulated the risk value of Cr limits of the

environmental quality standards (EQS) under different

pH ranges of pH\ 6.5, 6.5 B pH B 7.5, pH[ 7.5.

For the dry lands, the limitations are B

150, B 200, B 250 mg kg-1, and for paddy fields

the corresponding values are B 250, B 300,

B 350 mg kg-1, respectively (GB 15618-2018). The

maximum allowable concentration of total Cr for

agricultural soils in Serbia, Austria, Poland, and Czech

Republic are 100, 100, 150, and 100–200 mg Cr kg-1,

respectively (Ding et al. 2014), while the accept-

able concentration for Canada has been assessed at

64 mg kg-1 concerning the protection of environ-

mental quality and human health (CCME 2015). The

health investigation levels (HIL) of Cr is also in view

of the land use practices in the contaminated sites. For

Australia, HIL for Cr(VI) in residential areas, recre-

ational, and commercial/industrial areas is 100–500,

300, and 3600 mg kg–1, respectively (NEPM 2013).

Correspondingly, the critical value of Cr is regulated

with 30 mg kg-1 for Cr(VI) and 1000 mg kg-1 for

total Cr in the commercial land in China, respectively

(Lyu et al. 2018).

The maximum recommended concentration of

Cr(VI) in drinking water for many countries is limited

to 0.05 mg L-1 (Lilli et al. 2015), while the maximum

total Cr level in drinking water set by USEPA (1995) is

0.1 mg L-1. Zayed and Terry (2003) defined that the

critical limits for Cr(III) levels in sea water, fresh

water, and irrigation water are 50, 8, and 5 lg L-1,

Fig. 3 The discharge of chromium from different industries in the year of 2010 in China (Data from Cao and Jin 2015) and the

published articles regarding ‘‘Hexavalent chromium’’ (Data from Google Scholar)
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while these for Cr(VI) are 1, 1, and 8 lg L-1,

respectively. The surface and wastewater discharge,

to some extent, affect groundwater quality, especially

for drinking water. In China, the discharge limit of

Cr(VI) is regulated with 0.05 mg L-1 in surface water

(Zhou et al. 2016; Zelmanov and Semiat 2011) and

0.5 mg L-1 in wastewater (PRC 1996). Nevertheless,

in some areas developed by ultramafic rocks, the

recorded values in groundwater resources remarkably

exceed the limits of 0.05 mg L-1 by the World Health

Organization (WHO) for drinking water, e.g., the

value of the province of La Spezia, Italy, the Mojave

Desert, USA, and New Caledonia have reached

0.005–0.073, 0.06, and 0.7 mg L-1, respectively

(Fantoni et al. 2002; Ball and Izbicki 2004).

Cr toxicity and health

Chromium is a common dietary supplement (Table 1).

The Cr(III), an necessary trace element for human

health which exerts an indispensable function in the

metabolism of sugar, lipid and proteins. In addition,

Cr(III) is also found in different organs of the human

beings, and hair has the most accumulation of Cr with

0.234–3.8 mg kg-1. However, high concentrations

Cr(III) in the human body can cause negative effects

on cellular structures. Headlam and Lay (2016) have

evidenced that Cr(III) in dietary supplements can be

partly oxidized to Cr(IV), Cr(V), and Cr(VI) in vivo

through intracellular oxidation in the process of

metabolism. Compared with Cr(III), Cr(VI) is about

100 times more toxic to living organisms. Most

importantly, Cr is a non-degradable metal element

(Jobby et al. 2018), which persists in nature environ-

ment and enriches in a series of food chain. Therefore,

it can reach ecological risk for environment and

detrimental levels for human beings over time. This

warns us that people should eat less Cr-containing

foods.

The health problem in human results from the high

concentrations of Cr(VI) in surrounding environments

which exceeds the global allowable levels in soils and

groundwater (Gil-Cardeza et al. 2014; Shahid et al.

2017; Ballesteros et al. 2017). The toxic sites have

been reported that there examined over 300 Cr-

contaminated sites around the world, and it was

estimated that about 16 million people are at risk due

to Cr exposure (Pure Earth 2018; Jobby and Desai

2017). For example, the Cr(VI) concentration in the

drinking water has increased the village-level human

carcinogenic incidences in some areas of Liaoning

Province, China (Beaumont et al. 2008).

Cr(VI) is considered highly poisonous because it

causes serious harm to human beings such as lung

cancer, kidney dysfunction, diarrhea, ulcers, kidney,

liver, and gastric damage, as well as eye and skin

irritations (Fig. 2) (Cefalu and Hu 2004). It not only

causes high mutagenicity, carcinogenicity, and terato-

genicity but also leads to birth defects and decreases

reproductive health (Saha et al. 2011; Mishra and

Bharagava 2016). CrO4
2- can substitute the SO4

2-

and will transport into human cells through the sulfate

transport system (Zhitkovich 2011). The Cr(VI)

toxicity is mainly attributed to its easy diffusion

penetrating the cell membrane and accompanied with

the Cr(VI) reduction to Cr(III) in cells creating free

radicals such as peroxo ions (O2H
-), hydroxyl ions

(OH-), superoxide ions (O2
-), and nascent oxygen

(O), which may directly lead to DNA alterations and

some related toxic effects (Jaishankar et al. 2014).

Cellular metabolism of Cr(VI) bring about both non-

oxidative and oxidative processes of DNA damage, of

which Cr-DNA binding is one of the most common

and specific types. It has been reported that this

reaction has been observed in reduction reactions of

different cultured cells in vitro, thus leading to

mutations and chromosomal breaks in cells (Zhitko-

vich 2011). Moreover, the electrostatic interaction

would occur between the negatively charged phos-

phate groups on DNA and the positively charged

Cr(III) species, thereby forming Cr(III)-DNA com-

plexes with mutagenicity and toxicity. These com-

plexes will further affect the normal DNA replication,

transcription and then further cause mutagenesis.

Some researchers have reported that the occurrence

of DNA single-strand breaks was related to Cr(VI)

metabolism (e.g., Messer et al. 2006), which can

seriously impact the function of cells and further cause

cancers in the kidney, liver, and lungs. In addition,

different passivation would take place when the skin

directly contacted with Cr(VI), and this would cause

dermatitis, dermal corrosion, and dermal necrosis

(Zhang et al. 2008).We found that exposures to Cr(VI)

via dust inhalation for occupational people obviously

increase the hazard of cancers in the respiratory

system (Costa and Klein 2006).
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Feedstock, production of biochar, and its

applications for Cr remediation in soils

and wastewater

In recent years, many researchers have been develop-

ing economical, environmentally friendly and practi-

cal remediation technologies for Cr(VI)

contamination, in which biomaterial remediation is

considered as an alternative and promising technique

(Yahya et al. 2015). Biochar, with high sorption

capacity owing to favorable porosity, large specific

surface area, and surface activity, is being widely

applied for the remediation of PTEs-contaminated soil

and water resources (Xie et al. 2015; Shaheen et al.

2019).

Biochar is a carbon-rich material pyrolyzed by

thermal decomposition of biomass under oxygen-

limited conditions at temperature usually\ 900 �C
(Ahmed et al. 2016; Xin et al. 2017). The feedstock

source and calcination temperature are the pivotal

factors influencing the sorption efficiency of biochar

for PTEs-contaminated soils and water. It is obtained

from various biomass feedstocks through different

thermal conditions (constant temperature, heating rate

and residence time), in which the slow pyrolysis is one

of the most widely adopted method due to its moderate

treatment conditions and optimization of biochar

production yields (Fig. 4) (Tripathi et al. 2016).

Biochar has attracted more attention because of low

cost, a wide range of raw materials, the convenience of

raw material, relatively high sorption performance,

and no secondary pollution (Wu et al. 2012; Sud et al.

2008; Keng et al. 2014).

Biochars are made from various feedstocks, which

mainly consists of four categories that include: (1)

agricultural and forestry residual biomass; (2) animal

wastes; (3) industrial wastes; and (4) non-conventional

wastes. Agricultural and forestry biomass are consid-

ered as the major contributor to biochar feedstock

(Jindo et al. 2014; Inyang et al. 2016). Annual

production of agricultural residues, on a global scale,

can be used for biochar making that has been predicted

Table 1 List of the content of chromium in food and the human body (Collected data from Gheju et al. 2011; Bielicka et al. 2005;

Cherfi et al. 2015; FAO/WHO 2001)

Food Cr content (lg/100 g food) Organ/tissue/fluid Total chromium concentration

Apple 14 Serum 0.01–0.38 lg L-1

Banana 10 Blood 0.12–0.67 lg L-1

Blueberry 5 Urine 0.05–1.80 lg L-1

Brewer’s yeast 112 Saliva 0.55–0.70 lg L-1

Butter 13 Breast milk 0.06–1.56 lg L-1

Cabbage 4 Lung 130–1375 lg kg-1

Carrot 9 Liver 5–15 lg kg-1

Cheese 13 Spleen 7–29 lg kg-1

Egg 20 Nail 0.52–172.92 mg kg-1

Fresh fish 6 Hair 0.234–3.80 mg kg-1

Green bean 4 Teeth 7.20–35.00 mg kg-1

Green pepper 19 Skeleton 5–15 lg kg-1

Liver 55 Muscle 5–10 lg kg-1

Navy bean, dry 8 Skin 50–200 lg kg-1

Orange 5 Average amount per human body 0.4–6 mg

Potato 24 – –

Rye bread 30 – –

Wheat bran 38 – –

Wheat germ 23 – –

Whole-wheat bread 42 – –

Global estimated daily intake 7547 lg/day kg body weight Provisional tolerable daily intake 1500 lg/day kg body weight
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about 500 million tons (Duku et al. 2011). Most

residues are by-products and direct waste from

processing and harvesting of crops, including corn

stalks (Dong et al. 2017), soybean, peanut shells (Yuan

et al. 2011), sugarcane bagasse (Nie et al. 2018), wheat

straw (Lyu et al. 2017), bamboo, rice straw (Lu et al.

2017), coconut fiber (Wu et al. 2017), cassava residue

(Huang et al. 2018), and forestry wood waste (Sun

et al. 2019). Biochar feedstock derived from animal

waste include dead animal including poultry and pigs

(Yang et al. 2017; He et al. 2018; Qin et al. 2018), pig

manure (Song et al. 2018), poultry litter (bedding

materials, feathers, and spilled feed) (Sehrish et al.

2019), and dairy manure (Xu et al. 2013; Choppala

et al. 2016; Mandal et al. 2017). More and more

researchers are interested in the biochar feedstock of

municipal and industrial wastes and their by-products.

Some studies have indicated the biochar feedstocks

generated from bioenergy facilities (e.g., digested

residues) (Li et al. 2018) and wastewater treatment

plants (e.g., sewage sludge) (Melo et al. 2019; Zhang

and Tsang 2019). Alternative feedstock sources of

some non-conventional materials for biochar

production, including plastics (Gil et al. 2010), food

wastes (Rhee and Park 2010), bones (Park et al. 2015),

waste tires (Karakoyun et al. 2011), periwinkle shells

(Bello and Ahmad 2011), diatoms and algae (Grierson

et al. 2011; Yu et al. 2017), and bioenergy residues

(Yao et al. 2015) are currently being explored.

There are a number of studies available in literature

on Cr(VI) remediation in soils and waters by biochar

(Table 2). A typical example is that the biochar

derived from sugar beet tailing (SBT) has the maxi-

mum adsorption capacity of 123 mg g-1 under pH 2,

and therefore, it has an excellent removal efficiency of

Cr(VI) from aqueous media (Dong et al. 2011).

Desorption and X-ray photoelectron spectroscopy

experiment demonstrated that Cr(III) was the foremost

form binding to SBT biochar. It was deduced that the

Cr(VI) was first adsorbed by biochar via electrostatic

attractions; then, it was reduced to Cr(III) by the OM

contained in the biochar, and finally, complexation

occur between Cr(III) and SBT biochar’s functional

groups (Dong et al. 2011). The physicochemical

properties of biochar suggests that it can act as an

effective sorbent to absorb and remove Cr(VI) from

Fig. 4 Schematic diagram of various production processes of

different feedstock-derived biochar. (Referred from Shaheen

et al. 2019b). Note: In the left section, A is the wheat straw,

representing agricultural and forest residues; B is cattle manure,

representing animal wastes; C is sewage sludge, representing

industrial by-products; D is waste tires, representing the non-

conventional material. In the right of the chart, a is columnar

biochar; b is granular biochar; c is powder biochar
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wastewater or groundwater and can also be used as a

reaction barrier for remedy efforts, which highlights

the remediation potential of biochar as the filter

medium for Cr(VI)-contaminated water.

Biochar also has a strong fixation capacity for PTEs

in contaminated soils (Yang et al. 2016; Lu et al. 2017;

Nie et al. 2018) including Cr (Yuan et al. 2017; Lyu

et al. 2018). More importantly, biochar can ameliorate

the soil structure and can be used as slow-release

carriers of fertilizer and as an attachment sites for soil

microbe (Li et al. 2019; Zhu et al. 2017), thereby it

improves the potential of microbial remediation for Cr

contamination (Wang et al. 2018). Hence, applications

of biochar to fields have confirmed its effect on Cr(VI)

sorption and reduction, and its potential on in situ

remediation for PTEs-contaminated sites (Choppala

et al. 2016; Mandal et al. 2017).

Processes and mechanisms of immobilization

and removal of Cr in soils and wastewater

There are five mechanisms (Fig. 5) which govern the

immobilization and removal of Cr from soils and

wastewater that have been proposed in the literature

(e.g., Inyang et al. 2016; Li et al. 2017), including

metal complexation, electrostatic interaction, ion

exchange, Cr(VI) reduction coupled subsequent sorp-

tion, and the formation of insoluble metal precipitates.

Complexation

Both outer- and inner-sphere complexation processes of

Crwith biochar control the immobilization and removal

process.While the former is physical sorptionwhere the

metal ions can be directly adsorbed on the surface of

biochar, the latter is involved in the interactions between

metals and specific ligand forming the multi-atom

structures (i.e., complexes). Specially, the oxygen-

containing functional groups (e.g., phenolic, carboxyl,

and lactonic) on biochars were evidenced to effectively

bind Cr(III), following the first step involving the

reduction of Cr(VI) to Cr(III) in the binding process (Li

et al. 2017; Rosales et al. 2017). Oxygen content in

biochar has also been demonstrated to increase with

pyrolysis time or aging time, and this may be owing to

the oxidation of biochar surface and then the formation

of carboxyl groups (Harvey et al. 2011), and therefore

metal complexation may enhance over time.

Electrostatic interaction

Electrostatic interaction between PTEs and charged

biochar surfaces is another immobilization mecha-

nism. The electrostatic process depends on pH in the

media solution and point of zero charge (PZC) of

biochar (Mukherjee et al. 2011; Dong et al. 2011).

Biochar has been shown to adsorb both positively and

negatively charged metal(loid) species, including

CrOx
n- (Solaiman and Anawar 2015). Chromium, not

like other PTEs, shows a different behavior with

biochar in soils and aqueous environments. The Cr

species control its adsorption or immobilization

mechanisms by biochar (Mandal et al. 2017; Li et al.

2017). When solution pH is more than pHPZC, the

negatively charged biochar combines with metal

cations such as Cr3?; when solution pH is less than

pHPZC, the positively charged biochar combines with

metal anions such as Cr2O7
2-, CrO4

2-, and HCrO4
-

(Shaheen et al. 2019). It was reported that pHPZC

would improve with the increase in pyrolysis temper-

ature in the process of biochar production, because the

quantity of negatively charged functional groups (i.e.,

–COH, –COO-, and –OH) on biochars decreased, thus

resulting in less negatively surface charges and

increased pHPZC (Yuan et al. 2011). It has been

reported that electrostatic attractions are more likely to

occur between positively charged biochar surfaces and

negatively charged Cr(VI) at pH 2, which will reach

the maximum sorption capacity (Dong et al. 2011). In

addition, another study demonstrated that carboniza-

tion high temperatures ([ 400 �C) could facilitate the

formation of graphene structures in biochars, which

contribute to the occurrence of electrostatic attractions

(Keiluweit and Kleber 2009).

Ion exchange

Sorption of PTEs through the exchange of ionizable

protons/cations on biochar surfaces is another primary

mechanism. The cation exchange capacities (CEC) of

most biochars are comparatively high, partly because

of their negatively charged surface which promotes

affinity for PTEs such as Cr(III). CEC of different

types of biochar significantly varies ranging from 4.5

to 40 cmol kg-1 (Bird et al. 2011; Rondon et al. 2007;

Uzoma et al. 2011). Mineral components in biochar,

such as potassium (K), magnesium (Mg), calcium

(Ca), and phosphorus (P), are in charge of metal
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sorption from Cr-contaminated sites, especially aque-

ous environments. They can generate ion exchange or

precipitate with PTEs and decrease their bioavailabil-

ity (Li et al. 2017). During sorption of Cr cations onto

biochar, base cations like Na?, K?, Ca2?, and Mg2?

were released into the solution media from biochar

through cation exchange process (Uchimiya et al.

2010).

Sorption-coupled reduction

The sorption of Cr(VI) may be related to the redox

reactions because of the high redox potential value

(? 1.3 V) of Cr(VI) (Yuan et al. 2017; Choppala et al.

2016). Biochar usually contains carbon reaching up to

30–70%, a source of protons which are essential for

Cr(VI) reduction and serves as an immobilizer for

Cr(III) (Rajapaksha et al. 2013). Biochar derived from

agricultural and forestry residual biomass may yield

abundant functional groups (e.g., C–O, C–OH, C–O–

R), as the feedstocks have complicated heteropolysac-

charides associated with galactose, arabinose, galac-

turonic acid, and some pectin substances (Aksu and

Isoglu 2005). These oxygen functional groups can act

as electron donors (p electrons) that promote the

reduction of Cr(VI) to Cr(III) to facilitate surface

sorption (Dong et al. 2014; Choppala et al. 2016;

Shaheen et al. 2019).

Moreover, this reduction was also fulfilled by p-
electrons offered by the disordered polycyclic aro-

matic hydrocarbons sheets (Wang et al. 2010).

Specifically, biochar, pyrolyzed under higher temper-

atures, has more well-ordered graphene sheets, which

is estimated to be a better donator of p-electrons (Xu
et al. 2019).Wood-based biochars have a large amount

of oxygen (8–12%) as wood feedstock contain more

lignin, celluloses, and hemicelluloses. These oxygen-

containing compounds, such as catechol, diols, unsat-

urated anhydrosugars, and substituted catechol, are

normally conducive to reducing Cr(VI) to Cr(III)

(Mohan et al. 2011; Ahmad et al. 2014).

The ‘‘sorption-reduction theory’’ is a more persua-

sive explanation of the removal and immobilization of

Cr(VI) by biochar in aqueous environment. ‘‘Sorption-

reduction’’ mechanism is grouped into (a) direct

reduction mechanism, which Cr(VI) is reduced to

Cr(III) by the electrons on biochar surfaces, and

Cr(III) is complexed with the functional group on

biochar surfaces or stranded in water (Dong et al.

2014); and (b) indirect reduction mechanism, mainly

involving three steps: (1) Cr(VI) binds to the posi-

tively charged functional groups on the surface of

Fig. 5 Conceptual

illustrations of Cr sorption

mechanisms by biochar

(Modified from Li et al.

2017)
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biochar; (2) Cr(VI) is reduced to Cr(III) by the

electrons on the surface of biochar; and (3) Cr(III) is

released into water through positively charged func-

tional groups due to electron repulsion or complexed

with other adjacent functional groups on the surface of

biochar (Park et al. 2005; Zhou et al. 2016). Hence, the

reduction of Cr(VI) to Cr(III) accompanied with

Cr(III) complexation is a foremost mechanism for

Cr(VI) remediation by biochar (Mandal et al. 2017;

Xia et al. 2019).

Application of biochar to Cr-contaminated soils

and sediments increase the content of soil organic

matter (SOM) and thus can promote adsorption of

Cr(VI) (Antoniadis et al. 2017, 2018). The involved

mechanisms are as follows: On the one hand, SOM

promotes microbe growth, thereby motivating biotic

reduction of Cr(VI) (Palansooriya et al. 2019); on the

other hand, it creates a reduced condition and alters

redox potential through proliferation of the microbes

(Bolan et al. 2003b), facilitating the reduction of

Cr(VI) to Cr(III) (Banks et al. 2006; Shaheen et al.

2014; Rinklebe et al. 2016); lastly, Dong et al. (2014)

found that dissolved organic matter (DOM) derived

from biochar can act as both electron acceptor and

donor, and it was a better reductant than oxidant

because it has more positive effect on Cr(VI) reduction

(Kunhikrishnan et al. 2017).

Precipitation

Precipitation includes surface/micro-precipitation and

co-precipitation, the former occurs between the neg-

atively charged hydroxyl on the biochar surface and

positively reduced Cr(III); the latter is that mineral

components (e.g., CO3
2-, PO4

3-, and SO4
2-) in

biochar which contributes to bind with cationic PTEs

including Cr to form co-precipitation. A few studies

have proposed inorganic mineral species in biochar

exist crystalline mineral compound, including calcite

(CaCO3), gonnardite [(Na, Ca)2(Si, Al)5O10�3H2O],

quartz (SiO2), and garnet (Ca3Al2(SiO4)(OH)8) (Hug-

gins et al. 2016; Tripathi et al. 2016; Abdel-Fattah

et al. 2015).

Reduction of anionic Cr(VI) to cationic Cr(III)

species increases the pH of variable charge surfaces

like biochar (Bolan et al. 2003a). This Cr(VI) reduc-

tion-induced increase in pH creates additional nega-

tive charges on biochar, thereby facilitating the

adsorption of positively charged Cr(III) species. The

increase in pH also accelerates the precipitation of

Cr(III) as Cr(OH)3, thereby enhancing its immobi-

lization process.

Modification of biochar to improve Cr sorption

Although biochar has the ability to adsorb PTEs from

contaminated sites, its capacity is usually lower than

other sorbents such as granular activated carbon

(GAC). Hence, approaches to manipulate biochar to

improve PTE sorption have been described by many

studies, such as physical/mechanical modification,

chemical modification, biological modification,

immobilization, combining with mineral sorbents,

and magnetic modification (Fomina and Gadd 2014).

These modification processes will increase surface

area, porosity, pHPZC, functional groups, activation in

surface area, which can alter Cr sorption processes and

efficiency in biochar (Ahmed et al. 2016; Mandal et al.

2017) (Fig. 6). In recent years, the modification

technology mainly focused on polyethylenimine mod-

ification (Ma et al. 2014), chitosan loading (Mandal

et al. 2017), b-cyclodextrin/poly (L-glutamic acid)

modification (Jiang et al. 2017), ultraviolet modified

biochar (UV-BC) (Peng et al. 2018), diluted sulfuric

acid-assisted MgO-coated biochar (Xiao et al. 2018),

biochar-supported carboxymethyl cellulose (CMC)-

stabilized nanoscale iron sulfide (FeS) composite

(CMC-FeS-biochar) (Lyu et al. 2018), nanoscale

zero-valent iron stabilization (Fan et al. 2019), acid

(HCl)/base (NaOH)/ethanol (C2H5OH) treatment

(Zhou et al. 2019), etc. Specifically, Gan et al.

(2015) synthesized Zn-biochar nanocomposites

derived from sugarcane bagasse, and it showed an

increase in Cr(VI) removal efficiency by 1.2–2.0 times

higher than that of pristine biochar. Specific surface

areas and oxygen-containing functional groups of

biochars obviously increased by UV irradiation, and

thus, the Cr(VI) adsorption increased from

1.11 mg g-1 for BC to 20.04 mg g-1 for UV-BC

(Peng et al. 2018). From X-ray photoelectron spec-

troscopy (XPS) and Fourier transform infrared spec-

troscopy (FTIR) analysis, it has been inferred that the

mechanisms of Cr(VI) adsorption by UV-BC were the

surface complexation coupled Cr(VI) reduction. Sim-

ilarly, c-Fe2O3 was loaded onto the peanut hull-

derived biochar and the amount of Cr(VI) adsorption

enhanced 1–2 orders of magnitude that of the pristine
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biochar (Han et al. 2016). Low-cost walnut shell

biochars modified with b-cyclodextrin-chitosan (b-
CCWB) were synthesized, and the removal efficiency

of Cr(VI) was found to be much higher for b-CCWB

(93%) than for pristine biochar (27%). From the FTIR

spectral data and XPS analysis, the Cr(VI) removal

mechanisms mainly include the electrostatic attraction

between negatively charged Cr(VI) and the positively

charged biochar surface, and the complexation

between Cr(III) ions and functional groups of b-
CCWB, and the reduction of Cr(VI) to Cr(III) (Huang

et al. 2016).

Investigation of recent literature has indicated that

nanoscale zero-valent iron (nZVI) is the most wide

application modification material. These modified

biochars contain nanoparticles of mineral phases of

Fe with redox activity, which can serve as catalysts for

redox reactions such as the reduction of Cr(VI) to

Cr(III); the magnetized biochars also contribute to

their easy recovery from wastewater after the adsorp-

tion and removal of Cr(VI) (Ahmed et al. 2016).

Factors affecting remediation capability of Cr

in soils and wastewater

The removal efficiency of biochar for Cr depends on

the biosorption system, and it is influenced by different

factors, including pH in solution media, temperature,

reaction time and speed, initial concentration of Cr,

the amount of biochar dosage, physical and chemical

properties of biochar, as well as the other competing

pollutants in reaction systems.

pH

Compared with other PTEs, the pH-dependent sorp-

tion of Cr(VI) results in differences in speciation

(Fig. 1), and it also affects the dissociation of the

active functional groups (–OH, –COOH, and –NH2)

on biochar surface (Dong et al. 2011). Most studies

showed low pH is conducive to the Cr(VI) sorption,

and the maximum sorption point is usually at pH 2

(e.g., Zhang et al. 2017; Choppala et al. 2018; Xu et al.

Fig. 6 Sketch diagram

illustrating the modification

of biochar to improve

chromium remediation.

DOC dissolved organic

carbon, SOM soil organic

matter
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2019). Cr mainly exists in the forms of HCrO4
- and

H2CrO4 under low pH, and it will gradually convert

into CrO4
2- and Cr2O7

2- when the solution pH

increases (Shahid et al. 2017). This behavior might be

interpreted by the strong protonation on the surface of

biochar at low pH, which favors the occurrence of

electrostatic interactions between the positively

charged functional groups on biochar surface and the

negatively charged chromate ions (Abdel-Fattah et al.

2015; Shaheen et al. 2019). No significant adsorption

of Cr(VI) occurs under the condition of pH values

higher than 6.0 owing to the competition between the

Cr anions (e.g., HCrO4
-, Cr2O7

2-) and OH- anions

for adsorption sites (Miretzky and Cirelli 2010).

Temperature

Due to the endothermic sorption of Cr(VI) by most

biochars (e.g., Jiang et al. 2017; Lyu et al. 2017), the

adsorption capability of PTEs by biochar generally

increases with the increasing temperature. This indi-

cates that an increase in temperature provides suffi-

cient energy to metal ions to conquer a diffuse double-

layer and sequester into the internal structure of

biochar (Liu and Zhang 2009). Thus, the diffusion rate

of adsorbents and the probability of contact with the

sorption sites also increased due to the increases in the

kinetic energy and surface activity of biochar, which

facilitates an increase in sorption effect with the

increasing temperature (Mohan et al. 2011). However,

higher temperatures possibly damage the physical

microstructure of the adsorbent (Park et al. 2010),

thereby impacting the sorption capacity for PTE

including Cr.

Reaction time and speed

The basic reaction conditions include contact time,

agitation time, and speed. Biochar feedstocks have

different lignin and cellulose contents; thus, there exist

differences in the functional groups and adsorption

sites. The sorption rate will decrease when the sorption

sites are gradually occupied, whereby the sorption

process reaches the equilibrium state (Deveci and Kar

2013; Jain et al. 2013; Ullah et al. 2013). Besides, the

agitation time and speed also influence the sorption

rate of Cr by minimizing the mass transfer resistance;

however, it may cause damages to the physical

structure of adsorbent (Park et al. 2010).

Initial concentration and biochar dosage

The quantity of adsorbed Cr(VI) per unit weight of

biosorbent can be increased by the increasing initial

concentration of Cr(VI), but decrease the percentage

of removal efficiency (Barakat 2011; Fomina and

Gadd 2014). Generally, the higher exchangeable

capacity of PTEs evidently increase in response to

the addition of biochar; however, the immobilization

effects will decrease at higher initial concentrations of

PTEs (Jiang et al. 2012). It is demonstrated that the

biochar application dosage contributes to a greater

percentage of PTEs removal (Chen et al. 2011). For

example, Dong et al. (2011) reported that the percent

of Cr(VI) sorption improved from 19.8 to 88.5% when

the dosage of biochar increased from 0.2 to 8.0 g L-1.

However, the amount of biochar application at higher

rate decreased the sorption efficiency of PTEs, which

are possibly because of the formation of aggregates

between the biochar particles, thus reducing the

available surface area for PTEs sorption (Chen et al.

2011). Dong et al. (2017) found that the lower mass of

BC which loaded with nZVI could not prevent the

aggregation of nZVI particles on the surface of BC;

however, excessive BC would obstruct the active sites

of nZVI, thereby leading to the decrease of reduction

capacity of nZVI. More importantly, the soil pH

usually increased, and the soil CEC and zeta potential

decreased in response to biochar addition, which

would affect the complexation and electrostatic

attraction processes.

Biochar characteristics

The sorption performance of biochar is a function of

its characteristics such as specific surface area, pHPZC,

pore size, and functional groups on biochar surface,

which in turn mainly depends on biochar feedstock

and pyrolysis temperature (Li et al. 2017). In general,

biomass rich in cellulose (e.g., husks) mainly develops

microporous-structured biochar, while biomass rich in

lignin (e.g., coconut shell and bamboo) predominantly

yields macroporous-structured biochar (Joseph et al.

2007). Grassy and non-woody biochars, containing

high oxygen contents and acidic surface sites, usually

have higher CECs than woody-derived biochars with

low oxygen-containing functional groups (Harvey

et al. 2011). Bird et al. (2011) reported that the CEC

of algae-derived biochar is 29–41 cmol kg-1 and
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extractable K, Ca, and Mg vary from 27 to

485 cmol kg-1 compared to biochars derived from

higher plants. Hence, the feedstock of biochar largely

determines the adsorption capability.

Elevated pyrolysis temperature usually results in

larger pore size and surface area of biochar. However,

in some cases, porous structure of biochar may be

blocked or even destroyed by tar, thus leading to

decrease in surface area and lower porosity under high

temperature (Jin et al. 2016). Besides, when pyrolytic

temperature increases, the carbon content will increase

accompanied by a decrease in oxygen and hydrogen

contents, indicating an increase in the carbonization of

the chars (Chun et al. 2004). Shen et al. (2012)

demonstrated that Cr(VI) sorption by biochar

decreased drastically from 31.1 to 4.10 mg g-1 with

increasing pyrolysis temperature from 250 to 600 �C;
at the same time, the acidic functional groups

(carboxyl, lactonic, and phenolic) decreased sharply

from 1.78 to 0.12 mmol g-1 because of the decrease

in the O/C molar ratio. Consistently, some studies

have also reported that Cr(VI) sorption capacity by

biochars was relatively higher under pyrolysis low

temperature (e.g., Han et al. 2016; Zhou et al. 2016).

Moreover, many studies have proved that biochar pH

increases with increasing pyrolysis temperature (e.g.,

Zhang et al. 2015a, b; Jin et al. 2016; Subedi et al. 2016).

This is mainly related with three factors: (1) higher

temperature leads tomore ash component that positively

correlated with biochar pH (Jin et al. 2016); (2) the

increase in base cations and carbonates contributes to

increased pH (Yuan et al. 2011); (3) acidic functional

groups (e.g., –COOH) decrease under high temperature

(Al-Wabel et al. 2013). In addition, Cr(VI) sorption

capacity would lower under longer pyrolysis residence

time. With residence time of biochar pyrolysis increas-

ing from 1 to 2 h, Cr(VI) sorption by municipal sludge-

derived biochars decreased from 69.0–118 mg g-1 to

19.6–45.2 mg g-1 at temperature 400–600 �C,which is
mainly because of loss of functional groups (Zhang et al.

2013).

In conclusion, biochar possesses high pH, CEC, and

surface areas produced at higher temperatures, while it

has more stable C–O complexes and active sites

produced at lower temperature (Kumar et al. 2011).

The C–O-containing functional groups are important

for various sorption/chemical reaction potentials (Xie

et al. 2015). Hence, the production processes are very

important to attain maximum sorption capability.

Coexisting contaminants

In general, more than one PTE coexist in contaminated

soils or wastewater. Therefore, the sorption of PTEs by

biochars was affected by the concentration and pres-

ence of these coexisting contaminants in media. The

effects of coexisting ions on the targetedmetal sorption

capability depend on specific metal speciation, coex-

isting ions concentration and charge, and the nature of

biochars. The research results are inconsistent in

different reaction environments. The inhibitory effects

for the biosorption of Cr(III) and Cr(VI) ions are:

SO4
2-[Cl- & NO3

- and NO3
-[Cl-[ SO4

2-,

respectively (Michalak et al. 2013). However, Zhu

et al. (2018) reported that Cr(VI) removal efficiency is

weakly inhibited by the presence of coexisting anions

(SO4
2-, PO4

3-, and NO3
-). In contrast, Shang et al.

(2017) reported that the presence of SO4
2- and humic

acid promoted Cr(VI) removal at both low and high

concentrations,while theHCO3
- inhibited the reaction

rate. The amount of Cr(VI) sorption by b-cyclodex-
trin�poly(L-glutamic acid)-modified biochar (CGA-

biochar) gradually decreased with increasing ionic

strength in solution (Na?, K?, Ca2?, and Mg2?)

varying from 0 to 1 mmol L-1 (Jiang et al. 2017). This

phenomenon might be explained by the hindrance of

electrostatic interactions between Cr(VI) ions and the

charges on the CGA-biochar surface (Gan et al. 2015).

Relative tomonovalent cations (Na? andK?), divalent

cations (Ca2? and Mg2?) resulted in a lower removal

efficiency of Cr(VI) (Jiang et al. 2017). This indicated

that the electrostatic attraction of bivalent cations was

more intense than that of monovalent cations, which

would bring about stronger hindrance of electrostatic

interaction between Cr(VI) ions and the charges on

CGA-biochar surface (Hu et al. 2014). For coexisting

organic contaminants, Wang et al. (2016) found that

pyrene inhibit the adsorption efficiency ofCr(VI)when

pyrene and Cr(VI) coexist in the media, as the inner

complex exists between the hydroxyl groups on

pineapple peel-derived biochar (PABC) and pyrene

flushbonading the H bond with Cr(VI).

Concluding remarks, recommendations,

and future challenges

Chromium is a highly potential toxic element, which is

considered as a priority pollutant impacting
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ecosystems and human health. Biochar, having the

advantages of a wide range of feedstock materials, no

secondary pollution, low cost, high sorption capacity,

and relatively simple operation, provides greater

practical value and significance for Cr contamination

(Xie et al. 2015; Zama et al. 2018). However, there are

still some issues in the practical process of Cr(VI)

remediation. Therefore, in order to fully exploit field

application and efficient sorption for Cr pollution, we

should comprehend the detailed processes and mech-

anisms of Cr(VI) remediation by biochar and its

multiple influencing factors as well as the intrinsic

nature of these affecting factors. Here, we put forward

recommendations and challenges for biochar practice,

thus providing a theoretical basis for further study of

the mechanisms of Cr(VI) remediation.

The research areas that require further study are as

follows:

1. The necessity to modify biochar through environ-

mentally friendly green methods to introduce

more active functional groups, increase surface

area, improve the mechanical strength and chem-

ical stability, such as chitosan, diatomite carrier,

acid/base modification, nanoscale zero-valent iron

(nZVI), etc., in order to get the best remediation

effect of Cr(VI). However, nZVI, as the most

widely used modifier in recent studies, has some

undesirable effects. nZVI tends to agglomerate

rapidly due to its nanosize effect and magnetic

interaction, which then reduces its reactivity and

mobility and weakens its remediation efficiency,

especially in contaminated soils (Xu and Zhao

2007; He and Zhao 2005). Moreover, nanoparti-

cles, to some extent, may impact soil properties

and decrease soil fertility because of their stronger

activity, which negatively affects soil re-use and

plant regeneration (McBride and MartÍnez 2000;

Kumpiene et al. 2008).

2. Generally, both PTEs and organic pollutants often

coexist in contaminated sites. It is necessary to

bolster the study of sorption of Cr by biochar in the

presence of multiple contaminants in contami-

nated soil and wastewater, especially in the

presence of inorganic metals. Because some

functional groups for the adsorption of PTEs are

chemically similar, competition for binding sites

of PTEs will occur, thus influencing immobiliza-

tion effect for individual metal in metal-mixed

contaminated sites. The immobilization effects of

biochar on PTEs and other contaminants in field

polluted soils need to be assessed in the future.

3. The Cr recycling and regeneration of biochar are

two important factors for the prospective applica-

tion of biochar. At present, the inherent problem is

that although Cr(VI) is reduced to Cr(III) with less

bioavailability, the total contaminant concentra-

tions in soils remains to be unchanged. It may

become bioavailable with time via advanced

decomposition of SOM and natural weathering

process. Thus, it is necessary to clarify the

probability and efficiency of suitable methods to

dispose the adsorbed biochar safely after the

completed Cr sorption. However, there are few

studies on the methods for recycling that are

concerned with economical and environmental

impacts.

4. It has been well demonstrated that the sorption-

coupled reduction is the primary mechanism of

Cr(VI) remediation by biochar. It is essential to

explore and differentiate the mechanisms of

electron transfer regarding biochars, which comes

from their electrical conductivity (transferring

electrons between two bio/chemical entities) and

redox functional groups (accepting or donating

electrons) on the surface. The sorption-reduction

mechanism of pollutant removal by biochar needs

to be further studied. A combination of tools

which contributes to understanding how Cr(VI) is

bound to biochar, including X-ray diffraction

(XRD), micro-X-ray fluorescence (l-XRF), scan-
ning electron microscope (SEM), energy-disper-

sive spectroscopy (EDS), extended bulk-EXAFS

spectroscopy, Fourier transform-infrared spec-

troscopy (FTIR), and Brunauer–Emmett–Teller

(BET) techniques.

5. Some studies indicated that biochar itself may

contain organic pollutants or other PTEs that

produce toxic substances in the process of Cr(VI)

remediation. Hence, it is necessary to study the

advance environmental toxicological effect of

biochar counteracting the soil and water resources.

6. Biochar, due to its designable surface chemistry

and better sorption performance, offers great

potential in various engineering applications.

However, there are rarely few published litera-

tures about cost–benefit studies of biochars

through different production processes, e.g.,
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biomass availability, production scale, raw mate-

rial collection and transportation, calcination

temperature, residence time, and biochar modifi-

cation. The absence of these data about all

parameters during the production process com-

plexes the estimation of the economic cost of

biochar. Hence, large-scale application in differ-

ent contaminated sites is not realistic, and it is still

in the laboratory stage or only suitable for small-

scale, intensive application at severe sites.

7. In order to achieve effective, large-scale produc-

tion of biochar and its implications for application

to contaminated sites as an engineered material,

the predicted models among feedstock composi-

tion, production conditions and biochar properties

must be established.

Still, there still exists a huge gap between success-

ful implementation and laboratory findings of biochar

for the remediation of Cr(VI)-contaminated sites

under field conditions. Most studies are a batch mode

of remediation for small quantities of effluents.

Therefore, it is necessary to develop a suitable oper-

ational strategy, for the continuous removal of Cr(VI)

from the industrial effluents to handle this global risk.

Application of biochar in redox-sensitive environ-

ments such as aquatic media (e.g., lakes and wetlands)

is an effective method to detoxify and reduce PTEs,

including Cr(VI) (Yuan et al. 2017). Overall, using

biochar for the remediation of Cr-contaminated soil

and wastewater is a promising technique aiming to

substitute the expensive, traditional, less-efficient, and

non-applicable methods (e.g., physical and chemical

remediation technologies) to the cost-effective, high

performance, easily applicable, and emerging

biomaterials.
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