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Abstract Accurate forecasting is required to mea-

sure future national energy performance levels in

order to establish clear policies for both monitoring

and reducing Nitrous Oxide and other harmful emis-

sions. Using the well-established and accepted mea-

sures, we predict the Nitrous Oxide emissions for the

year 2030 based on actual data from the years 2000 to

2016 for six countries responsible for 61% of global

emissions (China, Indonesia, India, Japan, Russia and

the USA). Three advanced mathematical grey predic-

tions models were employed, namely the Even Grey

Model (1, 1), the Discrete Grey Model (1, 1) and the

Non-homogeneous Discrete Grey Model, which is

capable of working with poor or limited data. Results

showed that the Non-homogeneous Discrete Grey

Model was a better fit and proved more effective in

forecasting Nitrous Oxide emissions because it pro-

duced the lowest mean absolute percentage error for

all countries when compared to the Even Grey Model

(1, 1) and the Discrete Grey Model (1, 1). The mean

absolute percentage error of the Even Grey Model (1,

1) was 2.4%, that of the Discrete Grey Model (1, 1)

was 2.16%, and that of the Non-homogeneous Dis-

crete Grey Model was 1.9%. Furthermore, the results

show that China has the highest Nitrous Oxide

emissions during the years studied (China

20,578,144, Russia 1,705,110, India 7,806,137,

Indonesia 3,405,389, USA 8,891,219 and Japan

780,118). This study also suggests some implications

for both academicians and practitioners in respect of

reducing Nitrous Oxide emission levels.

Keywords Even Grey Model � Discrete Grey
Model � Non-homogeneous Grey Model � Nitrous
Oxide forecasting � Nitrous Oxide policy

Introduction

Global anthropogenic emissions cause major environ-

mental issues, especially Nitrous Oxide (N2O) which

is the crucial long-lived anthropogenic pollutant

emission. Nitrous Oxide contributes to the damage

of ozone layer. Rapidly growing economic develop-

ment anthropogenic actions, and fossil fuel
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combustion, considerably increase N2O emissions

(Pulido-Fernández et al. 2019). Furthermore, increas-

ing concerns about climate change and the need to

mitigate these impacts have led to a number of

international agreements and policies designed to

achieve this goal. For instance, in 2015, the Confer-

ence of Parties (COP) of the United Nations Frame-

work Convention for Climate Change (UNFCCC)

agreed to limit the increase in the global temperature

to 2 �C above pre-industrial levels by 2100

(UNFCCC, 2015). Thus, this study is aiming to

investigate Nitrous Oxide emissions forecasting based

on grey system models.

Globally, Nitrous Oxide is one of the life-threaten-

ing pollutants as it affects agriculture products, the

ecosystems and diverse human economic activities

(Wang et al. 2019). China, India, Indonesia, the USA,

Russia and Japan are responsible for approximately

61% of the total world emissions (Fufa et al. 2018).

Increasing levels of N2O can result in the following:

(1) problems in the human respiratory system (Yod-

khum et al. 2017); (2) harmful economic effects can

destroy the components and the foundations of

infrastructure projects (Dong et al. 2019) due to

harmful reactions of N2O with the ground surface of

the earth (Meng et al. 2019); (3) Nitrous Oxide acts

together with oxygen, water, nitrate particles and other

toxic materials in the atmosphere to cause acid rain,

and hazy air conditions, and it affects the environment

with toxic particles and pollutants.

Due to these and many more harmful effects, there

have been increasing studies on N2O emission.

However, what has not been given much attention is

the prediction of Nitrous Oxide emission levels

(Grewer et al. 2018). There has been considerable

uncertainty about global N2O emission estimates,

which results in vagueness and ambiguity of the

emission estimates. Rapid Nitrous Oxide emissions

are also uncertain (Shi et al. 2019). Meanwhile, strong

policies are needed to reduce the level of N2O

emissions (Chang et al. 2017). Although it is chal-

lenging to forecast future Nitrous Oxide concentra-

tions, tracking future emissions is a crucial and

meaningful path to follow (Kanter 2018; Xiao et al.

2018; Jiang and Ye 2019).

Therefore, to fill this gap in the literature, this study

attempts to provide the following contributions: (1) to

propose a new forecasting model for Nitrous Oxide

emissions in a holistic way for the six selected

countries; (2) to present the policy guidelines that

address the harmful effects of N2O in societies; (3) to

present the possible solutions that help managing N2O

emissions at different levels; (4) to present the

guidelines for plant security by reducing plant dam-

ages. Several studies have attempted to forecast the

Nitrous Oxide emission levels using soft computing

approaches such as evolutionary algorithms (e.g., Roy

et al. 2012; Wang et al. 2018; Luo et al. 2019; Wang

et al. 2019), trend analysis, macroeconomic or input–

output-based models, surveys (Zhang et al. 2017),

machine learning algorithms, meta-heuristic algo-

rithms and market-based models (Guo et al. 2016)

and a grey-based harmony search optimization model

(Sun et al. 2013). Despite these studies, insufficiencies

and further uncertainties about these data/models

remain. Furthermore, most of the previous methods’

predictions showed a huge variation compared to the

highest official forecasts (Gilmore and Patwardhan

2016), and uncertainties in these studies have also

been ignored (Hao et al. 2017).

The accurate assessment of Nitrous Oxide emis-

sions in countries where the emission rate is highly

alarming is an absolute necessity in terms of the

development of policy to protect vanishing species,

deteriorating environmental quality as well as further

environmental degradation (Pradhan et al. 2017).

Knowing that the Nitrous Oxide emissions levels will

help policymakers develop a clear policy direction that

sets out steady targets to ensure evidential energy

performance (Wesseh and Lin 2016).

There are numerous studies like Sun et al. (2019),

Ye et al. (2019), Jiang et al. (2019), Mason et al.

(2018), Nebenzal and Fishbain (2018) and Noorpoor

and Feiz (2014) which usually emphasize the predic-

tion of CO2 or SO2, but the proposed technique

forecasts the concentrations of Nitrous Oxide emis-

sions with forecasting performance. Furthermore, the

studies in this line of research lack the forecasting of

Nitrous Oxide emissions, especially in the top six

emitting countries. Therefore, in order to address the

above-mentioned gap, we proposed the following

study.

This paper’s contribution is to propose a new

forecasting model for Nitrous Oxide emissions in a

holistic way for the six selected countries (China,

Indonesia, India, Japan, Russia and the USA). These

are the bigger economies on the bases of geographical

reasons, economic conditions, political scenarios,
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including CPEC development and maximum human

resource availability in these contexts. This newmodel

will provide an accurate prediction of Nitrous Oxide

emissions for the year 2030 by taking regional

characteristics into account including the considera-

tion of total energy consumption, alongside the sector-

specific econometric multiple-correlation forecasts

models which require complicated effort, time and

energy, which engender uncertainty both in terms of

verbal ambiguity and numerical ranges. Consequently,

a new prediction model will provide new insights into

uncertainty reduction regarding Nitrous Oxide emis-

sions and thereby increases the understanding of

possible expected Nitrous Oxide emissions in the

study countries. In addition, the study investigated the

future trends in the level of Nitrous Oxide emissions so

that policy makers could take actions based on future

expected outcomes. Therefore, the proposed advance

mathematics techniques, namely Grey models through

good flexibility and high accuracy of forecasting is to

predict the important pollutant Nitrous Oxide for clean

energy economy.

The remainder of the paper is organized as follows.

Section 2 outlines the background of the previous

literature on forecasting Nitrous Oxide emissions,

including a brief study rationale. The methodology

used to predict future Nitrous Oxide emission trends is

described in Sect. 3, and Sect. 4 presents the pertinent

results. Finally, Sect. 5 contains the study’s conclu-

sions and policy implications, along with limitations

and future research directions.

Review of literature and background

Several studies have tried to forecast CO2 emission

using soft computing approaches such as an evolu-

tionary and artificial neural network algorithm (Beh-

rang et al. 2011), trend analysis (Tang et al. 2016),

computational inelegance macroeconomic or input–

output-based models (Atsalakis 2016), surveys, a

machine learning algorithm (Dai et al. 2018), a

meta-heuristic algorithm and genetic algorithm (Yu

et al. 2010) and a support vector machine (Guo et al.

2013). Sun et al. (2013) employed a grey-based

harmony search optimization model to forecast CO2

emissions in China. Unfortunately, an evolutionary

algorithm causes the problem of premature conver-

gence, while local extremism values may

be consequence of adverse configuration and does

not yield a point near the standard extremism. In trend

analysis, it is not easy to select the base year and it is

hard to maintain the consistent accounting principle as

it requires long-term data to conduct the analysis.

Similarly, with surveys, it is often difficult to reach all

the necessary respondents, respondents might not be

fully aware of the subject matter of the survey, and

simple yes/no question options may lead to flawed

results. Moreover, the consistency, honesty and inter-

pretation of the surveys can be compromised.

Using support vector machines is also problematic

because it is a memory-intensive process, support

vector machines are more difficult to set due to the

importance of picking the right kernel, and they do not

scale well larger datasets. Meta-heuristics provides

biased and unfair results to compare with when you

have evaluated the solution of one single run of the

algorithm. Despite its highest performance in terms of

long calculation in estimation, it lacks the trans-

parency due to unnecessary complex and hurdles of

acquisition in periodical variations and due to limited

practical configuration option on ground bases.

Perhaps the biggest problem with a popular and

reliable model is that it is unable to reflect regional

characteristics of GHGs emission and, along with the

methods for predictions mentioned above, shows a

huge variation with high official forecasting. Mean-

while forecasting prediction of Nitrous Oxide emis-

sions by 2030 having regional characteristics

including the consideration of total energy consump-

tion has been done in the present study. Also, the

sector-specific econometric multiple-correlation fore-

casts forecasting models which require a complicated

efforts, time and energy. Consequently, this study

presents an advanced mathematical modeling tech-

nique for use in predicting Nitrous Oxide emissions.

The advantage of the model is that whereas other

traditional techniques are complicated in terms of

evaluation and require several other parameters for

forecasting, this model is simple to use and produces

an accurate estimation based on whatever data are

available. The study intends to adopt this technique to

assess parameters which have effects on global

warming and climate change.

China, Indonesia, India, Japan, Russia and the USA

are the regions with highest producing economies in

the world. They are also the regions that are highest in

terms of emissions, and increasing environmental
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problems in these regions, making life unsustainable.

Nitrous Oxide damages the ozone layer, which

ultimately increases global temperatures which, in

turn, causes rising sea levels, floods, hurricanes,

heatwaves and tsunamis, especially in India, Indonesia

and the USA. Nitrous Oxide also causes the combus-

tion process of the combination of oxygen and

nitrogen, and it contributes to the vulnerability of the

ozone layer in the atmosphere.

These environmental problems, compounded by

the impacts of population explosion, economic pro-

duction and industrialization, are exposing the regions

to climate change disasters (Kakakhel 2012) such as

flash floods, droughts, glacial lake outburst floods,

sand storms, landslides, epidemics, cyclones, ava-

lanches, extreme weather events and forest fires.

Among GHG emissions, Nitrous Oxide is the most

dangerous element for humans, plants and the envi-

ronment in general (Abas et al. 2017; Ye et al. 2019).

For example, increasing levels of Nitrous Oxide can

have serious effects on the human respiratory system,

and higher Nitrous Oxide levels can cause severe

damage to plants by destroying foliage and reducing

crop yields (Hasanuzzaman et al. 2018). Furthermore,

Nitrous Oxide causes acid rain and this acid rain,

mixed with moisture at high concentration, can be

detrimental to buildings, can fade the furnishings and

foundation structure of constructive projects, decrease

visibility and react harmfully with the ground surface

of the Earth. Consequently, these six countries are

more likely to face the destructive effects of climate

change.

These six countries are responsible for 61% of total

global emissions, with 85% of the GHGs emissions

being associated with fossil fuel consumption. These

countries are the largest energy consumers in the

world, and according to the National Bureau of

Statistics (NBS), in China, total energy consumption

in 2017 increased by 2.9%, in 2016 figures, from 4.36

Gigatonne (billion tonnes of standard coal equivalent)

(Reuters 2018). India’s net imports of crude oil are

nearly 198.8 million tons which, along with liquefied

natural gas (LNG) at 25.7 Mtoe, and coal at 129.8

Mtoe, means a total of 354.3 Mtoe of primary energy,

which is equal to 47% of the total primary energy

consumption in 2017, (Sukumaran et al. 2017).

Moreover, about 75% of India’s electricity is

generated using fossil fuels (mainly coal and imported

oil) and it was also a marginal exporter of electricity in

2017 (International Energy Agency 2017). Indonesia’s

primary energy supply mainly depends on fossil fuels

like oil, coal and gas, of which 41% of energy

consumption was from oil, 29% from coal, and 24%

from natural gas in 2015 (Ministry of Energy and

Mineral Resources Republic of Indonesia 2017).

Although Japan’s electricity production in 2015 was

fossil fuel based, currently, Japan produces about 10%

of its electricity from renewable sources (Wong 2018).

The Russian economy is highly dependent on its oil,

hydrocarbons and natural gas revenues, which account

for more than one-third of the federal budget revenues

(Rutland 2018). For all types of energy used in the

USA, about 82% is derived from fossil fuels (British

Petroleum 2017).

Methodology

Even Grey Model GM (1, 1)

The advanced mathematical model, the grey system,

was first introduced by Deng Julong in the 1980s.

Currently, it is considered as a means of forecasting in

an uncertain system by using small amounts of data

and poor data (Zhao and Guo 2016). The advantage of

this model is that it forecasts the system whatever the

data are poorly available or uncertain (Javed et al.

2018; Javed and Liu 2018). GM (1, 1) is a fundamental

and key component of an advanced mathematical

modeling system being used for making a prediction

based on incomplete information with incomplete and

uncertain data. The applications of the grey mathe-

matical forecasting modeling system of GM (1, 1)

have been used in several studies in various fields such

as wind speed (El-Fouly et al. 2006), industrial output

(Wang and Hsu 2008), rural household net income

(Zhao et al. 2012), electricity demand forecasting in

China (Zhou et al. 2006) and, recently, output growth

(Javed and Liu 2018). GM (1, 1) contains one variable

having first-order grey model to obtain forecasting

information from beginning to end the pile up by

means of original sequence of data. Further, GM (1, 1)

consists of four fundamental kinds of forecasting

models. The Even Grey Model is considered to be

more reliable and symmetric in nature having non-

exponential increasing sequence highlighted by Liu

et al. (2017a, b) shown in Eq. 1.
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x̂ 0ð Þ Nð Þ ¼ 1� eað Þ xð0Þ 1ð Þ � b

a

� �
e�aðN�1Þ;

N ¼ 1; 2; . . .n
ð1Þ

x 0ð Þ symbolizes the original sequence of actual data in

the above equation, while the additional parameter a

shows the development index and reflects the trend of

x̂ 0ð Þ and x̂ 1ð Þ, whereas b represents the grey actuating

quantity. The prediction is most suitable in a data

sequence for the first two data values after the last

origin value.

x̂ 1ð Þ Nð Þ ¼ xð0Þ 1ð Þ � b

a

� �
e�aðN� 1Þ þ b

a
;

N ¼ 1; 2; . . .n
ð2Þ

Discrete Grey Model GM (1, 1)

Although outcomes obtained from EGMmodeling are

satisfactory, acceptable and reliable, better and

improved results are required. In order to achieve

this, we employed a DGM model to assess the

accuracy of forecasted results by using actual data

(Liu et al. 2017a, b). The accuracy in estimation by

using GM (1, 1) is a significant problem that has been

addressed by several researchers who have attempted

to solve this problem of obtaining more accurate

results and minimizing errors. Xie and Liu (2009)

undertook an in-depth study in which they measured

the relationship between the EGM and DGM models

using the Maclaurin formula. They proved that the

accuracy level of DGM and its optimization model is

better results than GM (1, 1). In our case, the mean

absolute percentage error (MAPE) of the DGM is

shown to be significantly better than even GM (1, 1) as

indicated in Table 5. If x 0ð Þ represents the actual data

sequence and x 1ð Þ indicates the general accumulated

sequences, then the Discrete Grey Model is given (Liu

et al. 2017a, b, chapter 7).

ẑ 1ð Þ Nð Þ ¼ x 0ð Þ 1ð Þ � b2
1� b1

� �
bN1 þ b2

1� b1
ð3Þ

Non-homogeneous Discrete Grey Model (NDGM)

The Discrete Grey Model is well accepted due to its

popularity in forecasting fields, but, in order to ensure

more reliable analysis, the mechanism of Non-

homogeneous Discrete Grey Model (NDGM) is more

appropriate. NDGM follows the law of approximation

non-homogenous exponential growth (Wu et al.

2014), and it is based on the assumption of a sequence

of actual data. Xie et al. (2013) recommended that the

sequence in the original data is an agreement with a

homogenous trend like GM (1, 1). They also con-

cluded that the Non-homogeneous Discrete Grey

Model’s accuracy level is much better than DGM (1,

1) and GM (1, 1)’s in terms of mean sequence value

and value set of the interval (Xie and Liu 2015). In our

case, Table 5 indicates that the overall accuracy level

of NDGM is 95.47% among five countries, which is

higher than DGM and EGM. The Non-homogeneous

Discrete Grey Model has been applied in different

fields like Pirthee (2017), who predicted tourism in

Mauritius and showed that Non-homogeneous Dis-

crete GreyModel’s forecasting accuracy level is better

than any other grey models. Moreover, Ayvaz and

Kusakci (2017) predicted the electricity consumption

in Turkey and demonstrated that the homogeneous

Discrete Grey Model performs better than other grey

forecasting models. If the same sequence follows the

Non-homogenous Discrete Grey Model x 0ð Þ and x 1ð Þ as
above in EGM (1, 1), DGM (1, 1) in Eqs. 1–3.

x̂ 1ð Þ N þ 1ð Þ ¼ b1x̂
1ð Þ Nð Þ þ b2 � N þ b3 ð4Þ

x̂ 1ð Þ 1ð Þ ¼ xð1Þ 1ð Þ þ b4 ð5Þ

x̂ 1ð Þ(N) is the simulated value of xð1Þ with four

parameters b1; b2; b3 and b4. We can rewrite the

equation in matrix form. If N = 1, 2, 3… , n - 1

x 1ð Þ 2ð Þ
x 1ð Þ 3ð Þ

..

.

x 1ð Þ nð Þ

2
6664

3
7775 ¼

b1
b2
b3

2
4

3
5

x 1ð Þ 1ð Þ 1 1

x 1ð Þ 2ð Þ 2 1

..

. ..
. ..

.

x 1ð Þ n� 1ð Þ N � 1 1

2
6664

3
7775

To input data, the following matrix equation

satisfies parameters b1, b2, b3 and b4 by applying the

following relation in Eq. 6 (Zhou and He 2013). The

solution can be acquired by using the least-squares

method which is given as,

b̂ ¼ BTB
� ��1

BTY ¼ b1; b2; b3½ �T ð6Þ

where
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B ¼

x 1ð Þ 1ð Þ 1 1

x 1ð Þ 2ð Þ 2 1

..

. ..
. ..

.

x 1ð Þ n� 1ð Þ N � 1 1

2
6664

3
7775; Y ¼

x 1ð Þ 2ð Þ
x 1ð Þ 3ð Þ

..

.

x 1ð Þ nð Þ

2
6664

3
7775;

By using the following formula to calculate b4 for
minimizing the sum of square error

b4 ¼

Pn�1
N¼1 x 1ð Þ N þ 1ð Þ � bN1 x

1ð Þ 1ð Þ � b2
PN
j¼1

jbN�j
1 � 1�bN1

1�b1
� b3

" #
� bN1

1�
Pn�1

N¼1 bN1
� �2

ð7Þ

x̂ 1ð ÞðN þ 1Þ ¼ bN1 x̂
ð1Þð1Þ þ b2

XN
j¼1

jbN�j
1 þ 1� bN1

1� b1
� b3;

N ¼ 1; 2; . . .; n� 1

ð8Þ

Hence, the predicted series is intended to calculate

the future values and it works with sequence of

following the formula,

Xforecast 1ð Þ ¼ x 0ð Þ 1ð Þ;Xforecast kð Þ
¼ x̂ 1ð Þ kð Þ � x̂ 1ð Þ k � 1ð Þ;

where k ¼ 1; 2; . . .; n:

ð9Þ

Liu and Forrest (2010) can be consulted for more

details about NDGM and its properties and parame-

ters. Environmental sustainability indexes contain

mostly highest emitting countries, so we have selected

highest emitting countries worldwide which are

responsible for huge amounts of emissions. The data

for the years 2001 to 2016 used in this paper was run

by Grey System software v 8.0 developed by Nanjing

University of Aeronautics and Astronautics (NUAA),

China, which is used to forecast emissions by using the

actual data. Furthermore, Even Grey Model GM(1, 1)

and Discrete Grey Model GM (1, 1) were used

according to Liu et al. (2017a, b) and NDGM (1, 1)

solved with the help of v8.0, MATLAB and Excel.

Performance criterion approach

Mean absolute percentage error (MAPE) represents

the performance criteria for comparative analysis

between the three grey models. Error measurement

information is essential to measure forecasting accu-

racy and for benchmarking the prediction process.

Explanation of these figures can be complicated,

especially when forecasting is done using incomplete

information or accuracy assessment across multiple

elements. Many institutions focus on the mean abso-

lute percentage error when assessing the predictive

accuracy of certain predicted items, and stakeholders

feel reassured by taking decisions based upon the

predicted accuracy using mean absolute percentage

error (Zhou et al. 2006).

MAPE %ð Þ ¼ 1

n

Xn
N¼1

x 0ð Þ Nð Þ � x̂ 0ð Þ Nð Þ
x 0ð Þ Nð Þ

����
����� 100%

ð10Þ

Here, x 0ð Þ kð Þ; x̂ 0ð Þ kð Þ represent forecasting data values

(Chen and Wang 2012).

Lastly, mean absolute percentage error is a statis-

tical tool indicator to confirm the disparity between the

forecast and actual values in terms of percentage. The

smaller the mean absolute percentage error value, the

greater the accuracy of the forecast model. The present

study adopted a forecasting model estimating the

Nitrous Oxide emissions in 2030 by country.

Nitrous Oxide emissions growth and doubling time

analysis

Doubling time is the quantity of time which takes into

account for a amount to be doubled in value with a

constant growth rate. Actually, it determines the

exponential growth in order to double the time of a

simulated variable. Growth can be explained as an

exponential once the rise of an amount is proportional

to the value of the quantity. Exponential growth is low

in the early phases, while it rapidly increases. The

properties of the doubling time analysis show that the

greater the growth rate (r), the faster the doubling time.

Secondly, growth rate varies significantly among

growing organisms and population. Various phenom-

ena cannot be doubled, for example the resistance

variables like natural reserve constraints over time.

Here, in our case if the population and industrial

development continuously grow, the doubling growth

rate may occur in future. The doubling time Dtð Þ and
relative growth rate (RGR) were calculated by

following Javed and Liu (2018). They applied two

parameters (Dt and RGR) to predict certification

growth of four countries by using EGM and NDGM

models.
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The formula of RGR is given by,

RGR ¼ lnK2 � lnK1ð Þ= lnN2 � lnN1ð Þ t2 � t1ð Þ
ð11Þ

where K2 and K1 represent the cumulative number of

certifications in a respective year t2 and t1. In our case,

the above equation can be rewritten because t2 � t1 is

1 year.

RGR ¼ log
K2 � K1

N2 � N1

� �
ð12Þ

Doubling time Dtð Þ indicates time needed to become

double in terms of numbers in specified RGR. The

Dtð Þ is given by:

Dt ¼ t2 � t1ð Þ ln 2

2 lnK2 � lnK1ð Þ lnN2 � lnN1ð Þ

� �
:

ð13Þ

In this study, we used the World Bank data from

2000 to 2016 to calculate simulated values by using

advanced mathematical modeling such as Even Grey

Model GM (1, 1), Discrete Grey Model GM (1, 1) and

Non-homogeneous Discrete Grey Model NDGM

performance criteria approach together with growth

and doubling time analysis to forecast Nitrous Oxide

emissions among the six countries. The World Bank

provides a wide-ranging worldwide emissions data

while our approximations are varying from the

quantification from World Bank, but we have used

the Nitrous Oxide emissions data to forecast the future

Nitrous Oxide emissions. By using the given data set

from 2000 to 2016, it is possible to apply the proposed

models to calculate simulated values. Table 7 shows

the Nitrous Oxide emissions MAPE a and b for EGM,

DGM and NDGM growth/output for selected coun-

tries. All three grey models are tested successfully, and

results reveal that the NDGM model shows MAPE %

overall accuracy results are better than both DGM and

EGM. Nevertheless, in the case of India, Japan and

China, results reveal that accuracy level is better when

compared to other countries in all cases including

EGM, DGM and NDGM, respectively. NDGM was a

better fit and proved more effective in forecasting of

Nitrous Oxide emissions among the three grey models.

Results and discussion

This section deals with the presentation of the results

on the bases of methodology and data sets obtained for

analysis. The section presents the brief results with

advanced mathematical tool, namely grey mathemat-

ical system. Moreover, this section also clarifies the

findings of the study on the bases of study model used

during conceptualization.

China’s future Nitrous Oxide emission shows an

increasing trend with the passage of time. In spite of

China’s 2030 renewable ambitious energy metrics

plan, our results show a contrary Nitrous Oxide

emissions path (Figs. 1, 2). China’s highest Nitrous

Oxide emissions are 988,979.6 and minimum Nitrous

Oxide emissions are 406,932.3, while the total Nitrous

Oxide emissions are 20,578,144 and average value is

663,811.1. Mean absolute percentage error (MAPE)

assesses the criteria performance to measure the

comparative analysis among the three advanced

mathematical models.

Error measurement information is necessary to

evaluate forecasting accuracy by using the Even Grey

Model, Discrete Grey Model and Non-homogeneous

Discrete Grey Model, allowing for benchmarking of

the prediction process of Nitrous Oxide emissions

during the years 2000 to 2030. The MAPE value of

EGM model for China is 1.04%, which implies that

the accuracy path in the proposedmodel is greater than

98%. For NDGM, from 2016 to 2030 simulated values

and for the next 2030 years forecasting values were

calculated (Fig. 3).

The comparison between actual data and simu-

lated/forecasting data is shown in Table 1. Table 2

shows the results for Indonesia. Using the Even Grey
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Fig. 1 China’s Nitrous Oxide emissions based on EGM

(2000–2030)
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Model GM (1, 1), Discrete Grey Model GM (1, 1) and

Non-homogeneous Discrete Grey Model NDGM

performance criteria approach and growth and dou-

bling time analysis to forecast Nitrous Oxide emission

similarly, almost the same results were obtained, while

the Non-homogeneous Discrete Grey Model NDGM

shows slightly more better results compared to EGM

and DGM.

Indonesia’s highest Nitrous Oxide emissions are

136,819.4 and minimum Nitrous Oxide emissions are

91,548.24, while the total Nitrous Oxide emissions are

3,405,388.7 and average value is 109,851.3. The

MAPE value for Indonesia is 4.79%, which implies

that the accuracy path in the proposed model is greater

than 95%. Table 3 presents the results for India, where

MAPE accuracy is obtained by using NDGM, DGM

and EGM. Here, NDGM is a slightly more useful

forecasting model than DGM and EGM.

India has a population of approximately 1.4 billion

and has some of the world’s most congested cities like

Bombay, New Delhi, Kolkata and Ahmadabad.

Moreover, another major issue is India’s reliance on

imported crude oil from OPEC and other international

oil exporters in the world, even though India is trying

to incorporate a renewable energy metrics roadmap in

their national energy consumption roadmap. The

MAPE value for India is 1.01%, which means that

the accuracy path in the forecasting model is greater

than 98%. Meanwhile, the results reveal that the

following EGM-based forecasting equations help out

to measure the parameters a and b for Nitrous Oxide

emissions. Table 4 represents a list of results for

Japan. The results show that, as with other countries,
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Fig. 2 China’s Nitrous Oxide emissions based on DGM
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Fig. 3 China’s Nitrous Oxide emissions based on NDGM

(2000–2030)

Table 1 Nitrous Oxide emissions of China

Year Actual EGM DGM NDGM

2000 414,138.3 414,138.3 414,395.9 414,539.6

2001 421,934.8 406,932.3 407,189.9 407,222.1

2002 421,934.8 420,492.6 420,750.2 420,782.4

2003 423,618.1 434,504.8 434,762.4 434,794.6

2004 450,616.0 448,984.0 449,241.6 449,273.8

2005 460,545.3 463,945.6 464,203.2 464,235.4

2006 478,878.7 479,405.8 479,663.4 479,695.6

2007 492,159.1 495,381.2 495,638.8 495,671

2008 502,550.3 511,889.0 512,146.6 512,178.8

2009 527,747.1 528,946.8 529,194.4 529,236.6

2010 550,296.5 546,573.1 546,820.7 546,862.9

2011 568,731.4 564,786.7 565,034.3 565,076.5

2012 587,166.4 583,607.3 583,854.9 583,897.1

2013 607,176.6 607176.6 607,424.2 607,466.4

2014 625,392.8 625,392.8 625,640.4 625,682.6

2015 640,051.7 640,051.7 640,299.3 640,341.5

2016 665,373.7 665,373.7 665,621.3 665663.5

2017 687,546.2 687,843.8 687,836

2018 710,457.5 710,755.1 710,747.3

2019 734,132.3 734,429.9 734,422.1

2020 758,596.3 758,894.5 758,885.8

2021 783,875.5 784,173 784,164.8

2022 809,996.3 810,293.9 810,286.1

2023 827,694.6 827,996.5 827,983.1

2024 848,962.7 849,264.5 849,252.5

2025 878,959.3 879,256.9 879,249.1

2026 898,968.3 899,262.5 899,252

2027 918,944.3 919,244.8 919,235.1

2028 936,724.3 937,024 937,019.7

2029 956,724.9 957,021.9 957,011.3

2030 988,979.6 989,274 989,268.2
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the NDGM is slightly more useful and showed better

forecasting results than EGM and DGM.

The MAPE value for Japan is 0.84%, which means

that the accuracy path in the forecasting model is

greater than 99%. Meanwhile, the EGM-based fore-

casting equation shows that the values of parameters

a = 0.015 and b = 30,583.59 for Japan. Table 5 shows

the results for USA using the Even Grey Model EGM

(1, 1), Discrete Grey Model DGM (1, 1) and Non-

homogeneous Discrete Grey Model NDGM perfor-

mance criteria approach and growth and doubling time

analysis to forecast Nitrous Oxide emissions. Again,

almost the same results were obtained, although the

Non-homogeneous Discrete Grey Model NDGM

shows slightly more effectiveness compared with

EGM and DGM.

The results show that USA’s highest Nitrous Oxide

emissions are 325,500 and minimum Nitrous Oxide

emissions are 247,671.5, while the total Nitrous Oxide

emissions are 8,891,219 and the average value is

286,813.5. The MAPE value for USA is 1.16%, which

means that the accuracy path in the forecasting model

Table 3 Nitrous Oxide emissions of India

Year Actual EGM DGM NDGM

2000 207,700.0 207,700.0 207,989.8 207,999.8

2001 202,543.2 196,504.8 196,794.6 196,804.6

2002 196,076.9 200,073.6 200,363.4 200,373.4

2003 203,758.4 203,707.2 203,997 204,007.2

2004 209,205.1 207,406.9 207,696.7 207,706.7

2005 209,587.6 211,173.7 211,463.5 211,473.5

2006 213,150.1 215,008.9 215,298.7 215,308.7

2007 216,862.4 218,913.8 219,203.6 219,213.6

2008 219,944.4 222,889.6 223,179.4 223,189.4

2009 226,562.0 226,937.6 227,227.4 227,237.4

2010 234,135.9 231,059.1 231,348.9 231,358.9

2011 236,945.5 235,255.5 235,545.3 235,555.3

2012 239,755.1 239,528.1 239,817.9 239,827.9

2013 243,878.2 207,700.0 207,989.8 207,999.8

2014 248,307.4 196,504.8 196,794.6 196,804.6

2015 252,817.1 200,073.6 200,363.4 200,373.4

2016 257,408.6 203,707.2 203,997.5 257,708.4

2017 262,083.5 262,322.7 262,383.3

2018 266,843.3 267,159.4 267,143.1

2019 271,683.6 271,529.4 271,989.4

2020 276,659.9 276,982.7 276,923.7

2021 281,698.8 281,932.9 281,947.6

2022 286,764.9 287,052.1 287,062.7

2023 298,839.5 299,157.1 299,173.1

2024 296,729.3 297,035.2 297,098.2

2025 306,746.5 307,068.7 307,062.3

2026 308,778.8 309,033.4 309,099.6

2027 318,896.3 319,135.6 319,199.1

2028 318,748.9 319,065.8 319,086.3

2029 338,734.1 339,058.6 339,099.6

2030 348,785.1 349,076.7 349,010.9

Table 2 Nitrous Oxide emissions of Indonesia

Year Actual EGM DGM NDGM

2000 94,932.85 94,932.85 95,234.7 95,253.65

2001 96,600.65 136,819.4 137,121.3 137,140.2

2002 151,117.9 134,307.5 134,609.4 134,628.3

2003 103,095.2 131,841.7 132,143.6 132,162.5

2004 120,281.6 129,421.1 129,723.7 129,741.9

2005 162,715.6 127,045.0 127,346.9 127,365.8

2006 243,198.7 124,712.6 125,014.5 125,033.4

2007 98,407.02 122,422.9 122,724.8 122,743.7

2008 97,405.72 120,175.3 120,477.2 120,496.1

2009 134,060.4 117,969.0 118,270.9 118,289.8

2010 91,312.67 115,803.1 116,105.5 116,123.9

2011 92,225.80 113,677.0 113,978.9 113,997.8

2012 93,138.92 111,590.0 111,891.9 111,910.8

2013 109,541.3 94,932.85 95,234.75 95,253.65

2014 107,530.2 136,819.4 137,121.3 137,140.2

2015 105,556.0 134,307.5 134,609.4 134,628.3

2016 103,618.0 131,841.7 132,143.6 132,162.5

2017 101,716.4 102,055.8 102,036.5

2018 99,848.24 100,150.8 100,169.3

2019 98,015.12 98,316.44 98,335.87

2020 96,215.98 96,556.55 96,536.37

2021 94,476.11 94,751.01 94,769.91

2022 92,715.09 93,094.99 93,035.89

2023 92,212.54 93,034.21 9542.031

2024 92,791.11 92,733.01 92,431.91

2025 91,985.76 91,924.99 92,218.89

2026 91,666.28 92,079.13 92,098.08

2027 91,548.24 92,001.44 91,993.23

2028 91,712.34 91,863.79 91,882.14

2029 91,893.98 91,734.79 91,753.78

2030 99,972.56 100,274.6 100,293.5
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is about 98%. Similarly, NDGM showed slightly

better forecasting results over DGM and EGM.

Meanwhile, the EGM-based forecasting equation

measures the values for USA by using the parameters

a and b for three models. Table 6 shows the result for

Russia: the accuracy level of EGM, DGM and NDGM,

respectively.

The results reveal that the Russia’s highest Nitrous

Oxide emissions are 119,441.5 and minimum Nitrous

Oxide emissions are 31,779.66, while the total Nitrous

Oxide emissions are 1,705,110 and the average value

is 55,003.56. The MAPE value for Russia has been

noted as 5.56%; it implies that the accuracy path in the

forecasting model was found near about greater than

94%. Similarly, NDGM showed slightly better fore-

casting results over DGM and EGM. Meanwhile, the

following EGM-based forecasting equation for Russia

by using the parameters a and b.

As far as the three prediction grey models used in

forecasting of Nitrous Oxide emissions are concerned,

in each of the six countries, NDGM accuracy level

seems more better than EGM and DGM as presented

in Table 7. These results showed satisfactory results;

Table 4 Nitrous Oxide emissions of Japan

Year Actual EGM DGM NDGM

2000 30,411.00 30,411.00 30,411.00 30,411.00

2001 29,488.32 29,689.07 29,689.07 29,689.07

2002 28,920.24 29,253.67 29,253.67 29,253.67

2003 28,660.46 28,824.65 28,824.65 28,824.65

2004 28,474.96 28,401.92 28,401.92 28,401.92

2005 28,427.28 27,985.39 27,985.39 27,985.39

2006 27,837.81 27,574.97 27,574.97 27,574.97

2007 27,770.11 27,170.57 27,170.57 27,170.57

2008 26,747.20 26,772.10 26,772.10 26,772.10

2009 26,287.19 26,379.47 26,379.47 26,379.47

2010 25,761.62 25,992.60 25,992.6 25,992.60

2011 25,599.34 25,611.41 25,611.41 25,611.41

2012 24,911.49 25,235.81 25,235.81 25,235.81

2013 24,865.71 30,411.00 30,411.00 30411.00

2014 24,501.04 29,689.07 29,689.07 29,689.07

2015 24,141.72 29,253.67 29,253.67 29,253.67

2016 23,787.67 28,824.65 28,824.65 28,824.65

2017 23,436.24 23,591.81 23,438.81

2018 23,092.50 23,248.07 23,095.07

2019 22,753.80 22,909.37 22,756.37

2020 22,420.07 22,575.64 22,422.64

2021 22,091.23 22,246.80 22,093.80

2022 21,767.21 21,922.78 21,769.78

2023 21,562.21 21,717.78 21,564.78

2024 21,449.79 21,605.36 21,452.36

2025 21,347.21 21,502.78 21,349.78

2026 21,231.90 21,387.47 21,234.47

2027 20,184.90 20,340.47 20,187.47

2028 20,540.41 20,695.98 20,542.98

2029 20,390.25 20,545.82 20,392.82

2030 20,369.64 20,525.21 20,372.21

Table 5 Nitrous Oxide emissions of USA

Year Actual EGM DGM NDGM

2000 325,500.0 325,500.0 325,500.0 325,500.0

2001 319,346.5 319,346.5 319,346.5 319,346.5

2002 317,486.5 317,486.5 317,486.5 317,486.5

2003 318,013.5 318,013.5 318,013.5 318,013.5

2004 321,857.5 321,857.5 321,857.5 321,857.5

2005 320,397.4 320,397.4 320,397.4 320,397.4

2006 311,987.1 311,987.1 311,987.1 311,987.1

2007 311,664.7 311,664.7 311,664.7 311,664.7

2008 302,405.0 302,405.3 302,476.9 302,414.7

2009 304,609.1 304,609.1 304,609.1 304,609.1

2010 304,082.1 304,082.1 304,082.1 304,082.1

2011 296,743.5 296,743.5 296,743.5 296,743.5

2012 288,878.0 288,878.1 288,823.0 288,845.0

2013 293,020.2 293,020.2 293,020.2 293,020.2

2014 290,541.1 290,541.1 290,541.1 290,541.1

2015 288,082.9 288,082.9 288,082.9 288,082.9

2016 285,645.5 285,645.5 285,645.5 285,645.5

2017 283,226.2 283,226.2 283,226.2

2018 280,829.9 280,829.9 280,829.9

2019 278,453.8 278,453.8 278,453.8

2020 276,097.9 276,097.9 276,097.9

2021 273,761.9 273,761.9 273,761.9

2022 271,445.7 271,445.7 271,445.7

2023 264,240.5 264,240.5 264,240.5

2024 256,191.6 256,191.6 256,191.6

2025 251,231.0 251,231.0 251,231.0

2026 259,523.1 259,523.1 259,523.1

2027 250,521.0 250,521.0 250,521.0

2028 248,341.8 248,341.8 248,341.8

2029 249,422.3 249,422.3 249,422.3

2030 247,671.5 247,671.5 247,671.5
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Non-homogeneous Discrete Grey Model was a better

fit and proved more effective in forecasting of Nitrous

Oxide emissions because using the Non-homogeneous

Discrete Grey Model the mean absolute percentage

error of all countries has lowest values as compared to

Even Grey Model (1, 1) and Discrete Grey Model (1,

1).

The above results show that China has the highest

growth rate followed by India and Indonesia, while

Japan, Russia and USA have the negative growth rate.

The results also show that in developing countries like

China and India, Nitrous Oxide emissions are increas-

ing but decreasing in developed countries (Fig. 4).

Using the Even Grey Model forecasted/simulated

based data to predict the future trend of Nitrous Oxide

emissions among six countries, according to the total

emissions the following sequence was obtained:

China 20;578;144ð Þ [USA 8;891;219ð Þ [ India 7;806;137ð Þ

[ Indonesia 3;405;389ð Þ [Russia 1;705;110ð Þ

[ Japan 780;118ð Þ

These interesting results show that India is expect-

ing a higher growth rate in the coming years followed

by Indonesia and Japan. Similarly, based on relative

growth rate, India required almost several years to

double Nitrous Oxide emissions. By using the actual

and forecasting data, this study proposes a novel grey

synthetic model of both doubling time and relative

growth rate (RGR). Liu et al. (2017a, b) developed two

synthetic grey indices: synthetic relative growth and

synthetic doubling time. By using the actual data and

forecasted/simulated data, based on relative growth

rate the synthetic relative growth rate equation is

given by:

RGRsynthetic ¼ a RGRactualð Þ þ 1� að Þ RGRsimulatedð Þ
ð14Þ

Hence, a represents the coefficients of relative

weights and values of a can be taken as 0.5. If the

decision makers in decision making take the relative

growth rate of actual data more important, then

Table 6 Nitrous Oxide emission of Russia

Year Actual EGM DGM NDGM

2000 93,000.00 93,000.00 93,009.99 930,067.9

2001 90,116.38 90,116.38 90,116.38 90,116.38

2002 108,805.7 108,805.7 108,805.7 108,805.7

2003 119,441.5 119,441.5 119,441.5 119,441.5

2004 77,519.22 77,519.22 77,519.22 77,519.22

2005 77,471.17 77,471.17 77,471.17 77,471.17

2006 65,002.04 65,002.04 65,002.04 65,002.04

2007 65,020.33 65,020.33 65,020.33 65,020.33

2008 62,545.60 62,545.60 62,523.72 62,545.6

2009 64,810.77 64,810.77 64,810.77 64,810.77

2010 63,728.25 63,728.25 63,728.25 63,728.25

2011 64,461.12 64,461.12 64,461.12 64,461.12

2012 65,194.00 65,194.00 65,123.21 65,194.02

2013 52,888.30 52,888.30 52,865.31 52,888.45

2014 50,060.53 50,060.53 50,060.53 50,060.53

2015 47,383.95 47,383.95 47,383.95 47,383.95

2016 44,850.47 44,850.47 44,850.47 44,850.47

2017 42,449.89 42,605.46 42,452.46

2018 40,180.09 40,335.66 40,182.66

2019 38,031.65 38,187.22 38,034.22

2020 35,998.07 36,153.64 36,000.64

2021 35,220.23 35,375.8 35,222.8

2022 34,982.86 35,138.43 34,985.43

2023 34,431.64 34,587.21 34,434.21

2024 34,118.64 34,274.21 34,121.21

2025 33,829.55 33,985.12 33,832.12

2026 33,551.30 33,706.87 33,553.87

2027 33,741.30 33,896.87 33,743.87

2028 32,245.24 32,400.81 32,247.81

2029 31,779.66 31,935.23 31,782.23

2030 32,250.95 32,406.52 32,253.52

Table 7 MAPE, a and

b for EGM, DGM and

NDGM

Country EGM (%) DGM (%) NDGM (%) a b

China 1.04 1.00 0.91 - 0.032 380,453.8

Indonesia 4.79 4.11 3.62 0.009 141,153.8

India 1.01 0.97 0.86 - 0.018 189,294.8

Japan 0.84 0.77 0.63 0.015 30,583.59

Russia 5.56 4.98 4.42 0.026 113,295.7

USA 1.16 1.11 0.98 0.009 330,018.9
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1� a\a. Furthermore, by using the actual data and

forecasted/simulated data, based on doubling time the

synthetic doubling time equation is given by:

Dsynthetic ¼ a Dactualð Þ þ 1� að Þ Dforecastedð Þ ð15Þ

Here,Dactual indicates the doubling time from actual

data, Dforecasted shows the doubling time from simu-

lated/forecasting data, and a shows the coefficient of

relative weights. By using the synthetic grey model

based on relative growth rate at a = 0.5, the following

sequence of the result was obtained: Likewise, by

using the synthetic grey model based on doubling time

at a = 0.5, the following sequence of the result was

obtained. By successfully applying the two synthetic

grey indices, synthetic RGR and synthetic doubling

time, we obtained similar sequence from simulated

data, and the results are aligned with forecasting data.

Discussion

Indonesia has the highest renewable energy consump-

tion share contributing to 37.45% of its total final

energy consumption, while China has the medium

ratio of renewable energy consumption share con-

tributing to 12.22% of its total final energy consump-

tion. China has the highest CO2 emissions of 10877.2

million tons, while Indonesia has the lowest CO2

emissions (511.3 million ton) contributing 1.38% of

the total world’s CO2 emissions. Every country in the

world is making efforts to reduce emissions to adapt to

climate change. It is a global problem which is not

restricted to a specific area. People from all over the

world are in a danger due to the continuous rise in the

earth’s temperature which is causing melting of the

permafrost and polar ice cap, and this will certainly

affect the planet’s ecosystems. Unfortunately, in the

past few decades the undue fossil fuel consumption

and deforestation have aggravated the situation. The

atmosphere holds approximately 44%more dangerous

emitting molecules as compared to the level of 1750 in

the previous time. This problem has led to the global

warming at 0.8 �C since 1880 through continuous

increase rate of nearly 0.15–0.20 �C/decade. Share of
renewable sources in USA’s energy mix is 8.75% of

the national energy mix and Japan having 3.42% in its

national energy mix. Even though these figures are

continuously rising with passage of time, but accord-

ing to the Paris agreement it requires a substantial

improvement to increase the clean energy mix in order

to cope with controlling the global temperature

(Tables 8, 9).

This is why China’s Nitrous Oxide emission shows

a rising (with decreasing) trend during this period. It

means that China’s actual performance toward emis-

sion reduction with the Paris Agreement shows a close

semblance to increase the renewable energy sources as

well. The renewable energy consumption share of

Russia accounts for only 3.42% of its total final energy

consumption, while its emission contribution toward

world total emission is 4.76%. Russia’s emissions and

renewable energy share scarcely have increased which

is beyond the expectation that the Russian can increase

its renewable figure by 5% in near future, to match

with the ratio of pollution emissions.

Regarding India’s emission, it is 6.62% while its

renewable consumption is 36.65% which seems better

than Russia. Similarly, Japan’s situation is the same as

India’s, but for Indonesia, it is leading in renewable

(including hydro) energy sources. China’s current

environmental situations showed that the status (http://

www.gov.cn/xinwen/2017-06/06/content_5200281.

htm), with regard to air quality in the 338 prefecture-

level cities, 84 cities, attained the standard of envi-

ronmental air quality which accounted for 24.9%,

while 254 urban air quality indexes surpassed the

desired standard, which accounted for 75.1%.

Through the involvement of policies of national gov-

ernment in 2016, the concentration of Nitrous Oxide

varied from 9 to 61 lg/m3; through an average value

of 30 lg/m3, this value was equal to 2015’ value (Feng

et al. 2019). But it is still far from the Paris Agree-

ment’s goal.
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123

926 Environ Geochem Health (2020) 42:915–931

http://www.gov.cn/xinwen/2017-06/06/content_5200281.htm
http://www.gov.cn/xinwen/2017-06/06/content_5200281.htm
http://www.gov.cn/xinwen/2017-06/06/content_5200281.htm


Sensitivity analysis

We have conducted sensitivity analysis to measure the

robustness of the employed methodology. Since

poorly developed methodology may lead to a mis-

leading and non-robust policy, we have undertaken

this task. The results in Table 10 obviously demon-

strate the effect of data variation on the overall results.

The sampling variation and the uncertainty are not

objectives of the paper, while still the data accuracy is

one more important task. In the case of Nitrous Oxide

data, as suggested by Zhou et al. (2016) the level of

uncertainty in measuring the accuracy of the data

formed the forecasting of Nitrous Oxide emissions.

On the other hand, using the grey mathematical

models, the sensitivity analysis for data can be

theoretically checked. In the current study, the sensi-

tivity analysis of Nitrous Oxide emission has been

carried out, by using the newly developed data with

± 10% variation in the original data sets, which

generating the random numbers within the range of

interval [- 10%, 10%]. Results show that the impact

of forecasted values of Nitrous Oxide emission is

comparatively similar to results generated by original

data which may indicate the robustness of the

methodology in terms of accurate assessment of

predicting capacity.

Conclusion and policy implication

We forecasted the Nitrous Oxide emissions levels for

some selected countries—China, Indonesia, India,

Japan, Russia and the USA for the year 2030 based on

actual data from 2000 to 2016. The forecast is done

using the best and well-accepted methods that pro-

vides specific measurement criteria at micro- and

macro-level. Further, the outcomes provide a feasible

solution, whereas clarity makes things easier for

policy and decision makers and makes it role play to

reduce the Nitrous Oxide emissions. The results

presented that all three grey predictions models, Even

Grey Model (1, 1), Discrete Grey Model (1, 1) and

Non-homogeneous Discrete Grey Model NDGM,

were tested successfully and showed satisfactory

results; Non-homogeneous Discrete Grey Model was

a better fit and proved more effective in forecasting of

Nitrous Oxide emissions. Results shows that by using

the Non-homogeneous Discrete Grey Model the mean

absolute percentage error of all countries has lowest

values as compared to Even Grey Model (1, 1) and

Discrete Grey Model (1, 1).

Mean absolute percentage error of Even Grey

Model (1, 1) is 2.4%, that of Discrete Grey Model (1,

1) is 2.16%, and that of Non-homogeneous Discrete

Grey Model is 1.9%. Further, the results show that

China has highest Nitrous Oxide emissions during the

years, i.e., China 20,578,144, USA 8,891,219, India

7,806,137, Indonesia 3,405,389, Russia 1,705,110 and

Japan 780,118 Nitrous Oxide emissions. Nitrous

Oxide emissions projections are predisposed by var-

ious parameters such as technological advances, types

of fuel consumptions, political initiatives and eco-

nomic growth rates. For attainment of more realistic

Table 8 Global

contribution of CO2

emission level of 2017 (Mt/

yr)

Country Contribution in global emission (%) Total emission

China 29.34 10877.2

Indonesia 1.38 511.3

India 6.62 2454.8

Japan 3.56 1320.8

Russia 4.76 1764.9

USA 13.78 5107.4

Table 9 Renewable energy consumption in 2014

Country Renewable

energy consumption share

(% of total final energy

consumption)

Energy use (kg of

oil equivalent per

capita)

China 12.22 2236.7

Indonesia 37.45 883.9

India 36.65 636.6

Japan 5.63 3470.8

Russia 3.42 4942.9

USA 8.75 6960.7
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and successful results, projections should be done

together with additional factors of technological

advances, types of fuel consumptions, and political

initiatives and economic growth rates. The detailed

study can be done for developing countries because

these countries are more vulnerable to climate change.

Globally, every country is trying its best to solve the

problem of greenhouse gas emissions. This study

suggests some implications for both academicians and

practitioners. From an academic point of view, the

application of NDGM grey prediction models showed

overall better results than other grey models used in

the analyses of future trends in different countries and

sectors. Based on Discrete Grey Model and Non-

homogeneous Discrete Grey Model technique, the

projected values showed that there is a direct rela-

tionship between energy consumption, Nitrous Oxide

emissions and real GDP for economic development.

Consequently, energy consumption is a crucial ele-

ment of Nitrous Oxide emissions. In order to decrease

the Nitrous Oxide emissions, there is the need to

control the chemical wastage during industrial

production.

• Undertake the execution of tighter less emission

vehicle standards and promote the awareness of

zero emission vehicles to manage environmental

protection.

• Construction of national environment protection

precautionary measures against fossil fuel to

overcome harms of GHGs emissions.

• Increase the level of renewable energy in total

national energy mix. This will enhance green

environmental productivity and sustainability

including environmental cleanliness and availabil-

ity of hygienic system for social stakeholders.

• There should be development of emissions and

pollution forecasting systems for highly congested

societies to reduce GHGs issues for society.

• Use bicycle and electric vehicles for near com-

muting to reduce environmental pollution.

• Get rid of coal power plants and thermal plants for

power production so that air pollution and envi-

ronmental dehydration may reduce.

• There should be subsidy on renewable energy in

total energy mix.

• There should be proper underground system of

industrial chemical waste management.

• There should be a special percentage of forest land

in the country for generation of green oxygen to

combat with harms of GHGs emission.

• Green mutual fund should be established to

continuously monitor the environmental degrada-

tion and other harmful effects.

• The targets of sustainable development policies

and sustainable development achievement play a

major role in growth rate, while it decreases the

depletion of natural resources possible by the

above-mentioned environment protection

strategies.

Table 10 Sensitivity analysis of Nitrous Oxide emissions of

China

Year Actual EGM DGM NDGM

2000 414,138.3 414,422.3 414,567.9 414,567.6

2001 421,934.8 406,821.3 407,630.9 407,682.1

2002 421,934.8 420,492.6 420,750.2 420,782.4

2003 423,618.1 434,504.8 434,762.4 434,794.6

2004 450,616.0 448,984.0 449,241.6 449,273.8

2005 460,545.3 463,945.6 464,203.2 464,235.4

2006 478,878.7 479,405.8 479,663.4 479,695.6

2007 492,159.1 495,381.2 495,638.8 495,671

2008 502,550.3 511,889.0 512,146.6 512,178.8

2009 527,747.1 528,946.8 529,194.4 529,236.6

2010 550,296.5 546,573.1 546,820.7 546,862.9

2011 568,731.4 564,786.7 565,034.3 565,076.5

2012 587,166.4 583,607.3 583,854.9 583,897.1

2013 607,176.6 607,176.6 607,424.2 607,466.4

2014 625,392.8 625,392.8 625,640.4 625,682.6

2015 640,051.7 640,051.7 640,299.3 640,341.5

2016 665,373.7 665,373.7 665,621.3 665,663.5

2017 687,375.2 687,983.8 687,826.4

2018 710,983.5 710,432.1 710,983.3

2019 734,436.3 734,984.9 734,432.1

2020 758,732.3 758,455.5 758,671.8

2021 783,963.5 784,542.9 784,198.8

2022 809,964.3 810,234.9 810,298.1

2023 827,635.6 827,996.5 827,989.1

2024 848,963.7 849,298.5 849,100.6

2025 878,959.3 879,256.9 879,249.1

2026 898,968.3 899,262.5 899,420.5

2027 918,944.3 919,409.8 919,235.1

2028 936,724.3 937,024 937,019.7

2029 956,762.8 957,856.4 957,395.3

2030 988,458.6 989,745.3 989,345.8
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• There should be a balanced equilibrium approach

among population growth and economic develop-

ment in order to control the environmental

degradation.

• The irreparable severe impacts of Nitrous Oxide

need a worldwide joint effort to deal with these

worst situations to maintain sustainable

development.

Limitations There is little or no other way out for

environmental diversification. Moreover, some rare

studies, however, have found evidence of investigat-

ing environmental diversification portfolios to over-

come GHGs issues, but these concepts have not

assessed comparatively. This is the major limitation

that is faced by researchers to operationalize recent

investigation. Due to the study’s entire focus on

Nitrous Oxide emissions assessment and national

peculiarities/characteristics presenting less support to

society, more work needs to be done in the practical

implementation. Due to time and data constraints,

macroeconomic environmental factors were not incor-

porated in the investigation model. This could be

included in future studies for a more in-depth analysis.
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