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Abstract We report an assessment of the quality of

surface water from the River Gharasoo, Iran, with

rainfall data. EC, pH, HCO3
-, Cl-, SO4, Ca2?, Mg2?,

Na?, %Na, and sodium adsorption ratio results,

monitored monthly by two sampling stations over a

period of 40 years, were held by the Hydraulic Works

Organization in Kermanshah City. Principal-compo-

nents analysis of the data revealed three factors for

each station explaining 90.36 and 79.52 % of the total

variance in the respective water-quality data. The first

factor was chemical components resulting from point

and non-point source pollution, especially industrial

and domestic waste, and agricultural runoff, as a result

of anthropogenic activity. Rainfall had significant

negative correlation with bicarbonate only, at a level

of 0.05, at station 1. Box-plot analysis revealed that,

except for pH, the other studied characteristics were

indicative of high pollution at station 1. Among the

sources of pollution at station 1, Mg2? and Cl- data

deviated most from normal distribution and included

outliers and extremes. Hierarchical cluster analysis

showed EC was substantially affected by rainfall. It is

thus essential to treat industrial wastewater and

municipal sewage from point sources by adoption of

the best management practices to control diffuse

pollutants and improve water quality of the Gharasoo

River basin.

Keywords Agricultural runoff � Industrial

wastewater � Municipal sewage �Water pollution

Introduction

Human activity has negatively affected water quality

and aquatic ecosystems, particularly in urban areas.

Rivers passing through cities receive many contami-

nants as a result of release of domestic sewage and

agricultural activity. This has imposed great pressure

on ecosystems, resulting in a reduction of water

quality and biodiversity (Wang et al. 2013). Surface

water suffers from a variety of practices that lead to

introduction of high nutrient loads, hazardous chem-

icals, and pathogens, causing diseases (Singh et al.

2005; Sayadi and Sayyed 2011). There is a need to

preserve the quality of raw water in rivers to ensure the

its safety, because deterioration of its quality reduces

its usability (Fulazzaky 2005; Sayadi et al. 2010).

Advanced water quality or ecologically based stan-

dards that integrate physical, chemical, and biological

criteria have the potential to enable better understand-

ing, management, protection, and restoration of water

bodies (Magner and Brooks 2008). Characterization

and interpretation of different physicochemical river
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water data require the handling of large datasets.

Complexity is mainly associated with interpretation of

many measured variables, with high variability arising

as a result of a variety of natural and anthropogenic

factors (Simeonov et al. 2002; Sayyed and Sayadi

2011). Multivariate statistical techniques, for example

cluster analysis (CA), factor analysis (FA), principal-

components analysis (PCA), and box and whisker

plots, have been used to evaluate water quality (Singh

et al. 2004, 2005; Sayadi et al. 2008; Wang et al. 2013;

Shrestha and Kazama 2007). In this paper we report

usefulness of multivariate statistical techniques for

evaluation and interpretation of large complex water-

quality datasets and identification of sources of

pollution, with the intention of acquiring better

information about water quality and designing a

monitoring network for effective management of

water resources.

The principal objectives of the study were:

1 assessment surface water quality changes over a

period of 40 years;

2 identification of sources of contamination;

3 evaluation of the effect of such human activities as

urban development, agriculture, and industry; and

4 determination of the effect of rainfall in the

catchment area.

Materials and methods

Study area

The length of the River Gharasoo is approximately

20.7 km. The river runs through the city of Kerman-

shah, which is situated in the diplomatic area in Iran.

The study area lies between latitudes 46� 360 and 47�

Fig. 1 Location of sample sites on the Gharasoo River
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370 N and longitudes 34� 000 and 34� 910 E, at a height

of 1,322 m above sea level (Fig. 1).

Datasets

Datasets from two sampling stations which included

results for 10 water-quality characteristics monitored

monthly over a period of 40 years were obtained from

the city’s Hydraulic Works. The monitoring stations

are shown in Fig. 1. All samples were taken monthly

for each year from 1970 to 2009. The samples were

stored in pre-cleaned, distilled water-rinsed plastic

bottles. pH and EC were noted at the sampling site by

use of portable meters. The other characteristics of the

water samples were analyzed in the laboratory.

Chemical analysis was performed in triplicate in

accordance with standard recommended methods

(Eaton et al. 1994), using double glass-distilled water

and analytical-grade chemicals. Total dissolved solids

were estimated gravimetrically; bicarbonate and chlo-

ride content were estimated by volumetric analysis;

calcium, magnesium, sodium, and sulfate were deter-

mined by use of photometric methods. Sodium

adsorption ratio (SAR) and percent sodium (%Na)

were calculated as reported by Richards (1954),

Wilcox (1948), and Paliwal (1972):

SAR ¼ Naþ= Ca2þ þMg2þ=2
� �1=2

% Na ¼ Naþ þ kþð Þ100½ � =
Ca2þ þ Mg2þ þ Naþ þ Lþ
� �

All statistical computations (Table 1) were per-

formed by use of (SPSS 16) and (Excel 2010)

statistical software.

Principal-components analysis (PCA)

PCA is a mathematical procedure in which the original

variables are orthogonally transformed into new

variables called principal components, which are

linear combinations of the original variables. The

number of principal components is less than or equal

to the number of original variables. PCA defines a new

orthogonal coordinate system that optimally describes

the variance in a single dataset. Use of PCA enables

the number of variables in a multivariate dataset to be

reduced while retaining as much as possible of the T
a
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variation present in the data (Huang et al. 2010;

Helena et al. 2000; Singh et al. 2005). The principal

components can be expressed as:

Zij ¼ ai1x1j þ ai2x2j þ . . . þ aimxmj ð1Þ

where z is the component score, a is the component

loading, x is the measured value of the variable, I is the

component number, j is the sample number, and m is

the total number of variables.

Factor analysis (FA)

FA is conducted after PCA and is used:

1 to reduce the number of variables; and

2 to detect structure in the relationships between

variables, i.e. to classify variables.

FA is used as a method of data reduction or

structure detection. This can be achieved by rotating

the axis defined by PCA according to well established

rules, and constructing new variables, also called

factor variables. A small number of factors will

usually account for approximately the same amount of

information as the much larger set of original obser-

vations (Varol and Sen 2009; Shrestha and Kazama

2007). FA can be expressed as:

Zji ¼ af1f1i þ af2f2i þ af3f3i þ . . . þ afmfmi þ efi

ð2Þ

where z is the measured value of a variable, a is the

factor loading, f is the factor score, e is the residual

term accounting for errors or other sources of varia-

tion, and m is the total number of factors.

Cluster analysis (CA)

CA is a multivariate procedure for detecting natural

groupings of data. It is based on placing objects into

more or less homogeneous groups in a manner such

that the relationship between the groups is revealed.

CA requires decisions to be made by the user relating

to the calculation of clusters, decisions which have a

substantial effect on the results of the classification.

CA was applied to surface water-quality data by use of

the single-linkage method. In the single-linkage

method, the distances or similarities between two

clusters A and B are defined as the minimum distance

between a point A and a point in B:

D A; Bð Þ ¼min d xiþ xj

� �
; for xi in A and xj in B

� �

ð3Þ

where d(xi ? xj), is the Euclidean distance. At each

step the distance is found for every pair of clusters and

the two clusters with smallest distance are merged. If

more than two clusters are merged the procedure is

repeated for the next step: the distances between all

pairs of clusters are calculated again, and the pair with

the minimum distance is merged into a single cluster.

The result of this hierarchical clustering procedure can

be displayed graphically by use of a tree diagram, also

known as a dendrogram, which shows all the steps in

the hierarchical procedure (Juahir et al. 2011; Alkarkhi

et al. 2008; Johnson and Wichern 2002).

Box plot

A box plot is a convenient means of graphical

depiction of groups of numerical data by use of their

quartiles. Box plots may also have lines extending

vertically from the boxes (whiskers) indicating vari-

ability outside the upper and lower quartiles, hence the

terms box-and-whisker plot and box-and-whisker

diagram. Outliers may be plotted as individual points.

Box and whisker plots are uniform in their use of the

box: the bottom and top of the box are always the first

and third quartiles, and the band inside in the box is

always the second quartile (the median). Any data not

included between the whiskers should be plotted as

outliers with a dot, small circle, or star, but occasion-

ally this is not done (Vega et al. 1998).

Results

Climate

Integrated rainfall data were collected from daily

synoptic meteorological data published by the Iran

Meteorological Organization (IRIMO) for one station

within the Gharasoo River basin for the years

1970–2009; these are presented in Fig. 2. Mean

annual temperature and rainfall were 14 �C and

456.8 mm, respectively. Rainfall often occurs during

the autumn and winter (December to March). Differ-

ences between rainfall between 1970 and 2009 for

Kermanshah station are slight and variable. In recent

years the Gharasoo River received less rainfall than

254 Environ Geochem Health (2015) 37:251–261
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the long-term average. It seems rainfall has decreased

recently; because of the short period during which

the data were recorded, however, it is not known

whether this is a result of the normal variability of

rainfall, drought, or climate change. Fluctuations of

the flow of the Gharasoo River follow a specific

cycle and are closely related to precipitation (Zhang

et al. 2012).

Chemical and physical characteristics of the river

water

The mean pH of the river water was neutral at the two

stations for the study period; the range was 7.08–8.24

at station 1 and 7.47–8.71 at station 2. The pH fell

within the range associated with most natural waters

which is between 6.5 and 8.5 (Sundaray et al. 2006).

The mean EC of the river water ranged between 412

and 684.60 mS/cm-1 at station 1 and ranged from 312

to 450 mg/l at station 2, the order of increasing

magnitude was: downstream [ selected site [ up-

stream. This may be because of dilution by the river

water, which has much higher conductivity. Mean

HCO3
- content of the river water ranged between 3.00

and 5.33 mg/l at station 1 and between 2.29 and

4.46 mg/l at station 2. Mean Cl- ranged between 0.20

and 0.97 mg/l at station 1 and between 0.13 and

0.90 mg/l at station 2. Mean SO4
2? ranged between

0.20 and 0.94 at station 1 and between 0.10 and

1.06 mg/l at station 2. Mean Ca2? ranged between

2.32 and 3.61 mg/l at the station 1 and between 1.47

and 3.25 mg/l at station 2. Mean Mg2? ranged

between 1.12 and 2.44 mg/l at station 1 and between

0.54 and 2.05 mg/l at station 2. Mean Na? ranged

between 0.37 and 1.42 mg/l at station 1 and between

0.20 and 0.47 mg/l at station 2.

Discussion

PCA was applied to standardized log-transformed data

(10 variables) not only to examine differences

between stations 1 and 2 but also identify latent

factors in the different spatial variability, as shown in

Table 2. PCA of the datasets furnished three factors

each for stations 1 and 2, explaining 90.36 and

79.52 % of the total variance in the respective water

quality datasets. Singh et al. (2004) classified factor

loadings as ‘‘strong’’, ‘‘moderate’’, or ‘‘weak’’ corre-

sponding to absolute loading values of [0.75,

0.75–0.50, and 0.50–0.30, respectively. The corre-

sponding factor variables explained by loading and

variance are presented in Table 2.

As shown in Table 2, for station 1, among the three

factors, the first factor, explaining 52.11 % of the total

variance, had strong positive loading on EC, Cl-,

SO4
2-, Na?, %Na, and SAR, which were 0.723, 0.773,

0.781, 0.969, 0.963, and 0.974, respectively. This first

factor could be explained by point source and non-

point source pollution arising as a result of anthropo-

genic activity, especially from industrial and domestic

waste and agricultural runoff. The concentration of

Cl- is higher in wastewater than in raw water because

sodium chloride, a common component of the human

and diet, passes unchanged through the digestive

system (WHO 2008). The high loading of EC and Cl-

may be attributed to anthropogenic input, i.e. indus-

trial discharge wastewater and domestic sewage, into

the Gharasoo River. The increase of Cl- concentra-

tions, particularly the peak value, seems to be

attributable to industrial and domestic sewage. Cl-

increases the EC of water and its corrosive nature

(WHO 2008). SO4
2- from different sources can have

different isotopic profiles (Grasby et al. 1997). Sources

of SO4
2- include atmospheric sulfur compounds, soil

sulfur compounds, sulfur minerals in rocks, sulfur in

hydrocarbon deposits, and sulfur in fertilizers, for

example ammonium sulfate, (NH4) 2SO4
2- (Krouse

and Grinenko 1991). High loading of SO4
2- in some

areas may be related to farmers’ use of sulfate

fertilizers, and the river receiving sulfate via surface

runoff and irrigation water. Agricultural activities lead

to accumulation of fertilizer in the soil, and use of

Fig. 2 Annual mean rainfall (mm) in the Gharasoo River basin

for the years 1970–2009

Environ Geochem Health (2015) 37:251–261 255

123



ammonium sulfate fertilizers is high in this region.

Fertilizer surface runoff contributes to the abundance

of sulfate in the river water (Grasby et al. 1997). It is

well reported that agricultural land use substantially

affects river sulfate levels. The second factor (23.37 %

of the total variance) had a strong negative loading on

pH and a moderate positive loading on HCO3
- and

Ca2?, which were -0.912, 0.694, and 0.676, respec-

tively. This factor represents the contribution of point

and non-point pollution and the physical chemistry of

the stream. Point pollution arises from domestic

wastewater, non-point pollution from agriculture and

livestock farms. Hydrolysis of acidic materials causes

a decrease in pH (Vega et al. 1998; Singh et al. 2004).

The low loading of pH may be attributed to anthro-

pogenic input—discharges of industrial wastewater

and domestic sewage into the Gharasoo River. The

third factor (14.88 % of the total variance) had strong

positive loadings on Mg2?(0.985). This factor repre-

sents the contribution of point source of pollution of

the stream.

At station 2, among the three factors, the first factor

explaining 29.82 % of the total variance had strong

positive loadings on EC, pH, HCO3
-, and Ca2?, which

were 0.926, 0.110, 0.941, and 0.883, respectively. This

factor can be interpreted as physicochemical variabil-

ity. The second factor (29.70 % of the total variance)

had strong loadings on Na, %Na, and SAR, which

were 0.942, 0.910, and 0.924, respectively. Factor 3

(19.99 % of the total variance) had strong loadings on

Cl-, SO4
2-, and Mg2? which were 0.655, 0.560, and

0.708, respectively. Increases in the amounts major

chemical species, especially EC, Cl-, SO4
2-, and Na?

from upstream to downstream, are related to releases

from agricultural, industrial, and domestic areas into

the river network (Chen et al. 2002). Therefore, it may

be concluded that point-source pollution was stronger

than non-point-source pollution in the study area.

Moreover, the water quality upstream was better than

that downstream.

Correlation between environmental variables

Pearson correlation coefficients (r) were calculated for

the water-quality data. The results are listed in

Table 3. At station 1, EC was negatively correlated

with pH (r = -0.543) and positively correlated with

HCO3
- (0.873), Cl- (0.823), SO4

2- (0.456), Ca2?

(0.802), Mg2? (0.483), Na? (0.770), %Na (0.582), and

SAR (0.711). Ion chemistry can be affected by human

activity (Meybeck and Helmer 1989). The large

variety of EC concentrations, reflecting dissolved

solutes, is related to lithology, land use, and human

activity in the basin (Li and Zhang 2008; Li et al.

2008). EC depends on discharge into the river via

surface runoff of domestic waste and fertilizer used in

agricultural activity. pH was negatively correlated

with HCO3
- (r = -0.62), Cl- (r = -0.51) and Ca2?

Table 2 Rotated patterns of factors after varimax rotations

Variable Station 1 Station 2

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

EC 0.723 0.496 0.426 0.926 -0.051 0.219

PH -0.201 -0.912 0.076 0.110 0.086 -0.789

HCO3
- 0.461 0.694 0.465 0.941 -0.190 0.104

CL- 0.773 0.363 0.235 0.132 0.465 0.655

SO4
2- 0.781 -0.368 0.141 -0.408 -0.353 0.560

Ca2? 0.634 0.676 -0.021 0.883 -0.032 -0.208

Mg2? 0.096 0.036 0.985 0.284 -0.120 0.708

Na? 0.969 0.191 -0.033 0.167 0.942 -0.025

%Na 0.963 -0.056 -0.174 -0.326 0.910 -0.170

SAR 0.974 0.118 -0.092 -0.219 0.924 -0.024

Eigenvalue 5.99 1.79 1.24 3.45 2.57 1.92

%Total variance 52.11 23.37 14.88 29.82 29.70 19.99

Cumulative % variance 52.11 75.48 90.36 29.82 59.52 79.52

256 Environ Geochem Health (2015) 37:251–261
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(r = -0.70). HCO3
- was positively correlation with

Cl- (r = 0.62), Ca2? (r = 79), Mg2? (r = 52), Na

(r = 59), and SAR (r = 51). Cl- was positively

correlated with SO4
2- (0.43), Ca2? (0.63), Na? (0.81),

%Na (0.68), and SAR (0.78). The presence of Cl- is

because of discharge into the river via surface runoff

of domestic sewage waste and industrial waste. A high

positive correlation between Cl- and Na? concentra-

tions has been reported (Giridharan et al. 2009).

Similarly, SO4
2- was a positively correlated with Na?

(0.62), %Na (0.68), and SAR (0.62). A high positive

correlation between sulfate and sodium concentration

has been reported (Li and Zhang 2009). Ca2? was

positively correlated with Na? (0.72), %Na (0.53), and

SAR (0.66), and Na? was positively correlated with

%Na (0.95) and SAR (0.99). A high positive correla-

tion between Na? and SAR concentrations has been

reported (Rasouli et al. 2012). At station 1 rain was

significantly negatively correlated with HCO3
- only,

at a level of 0.05.

At station 2, EC was positively significantly

correlated with HCO3
- (0.87) and Ca2? (0.77). pH

was negatively significantly correlated with Cl-

(-0.40). HCO3
- was positively significantly corre-

lated with Ca2? (0.76) and Mg2? (0.41) and negatively

significantly correlated with Na? (-0.47). Na? was

positively significantly correlated with %Na (0.82)

and SAR (0.84). It is interesting to note there were no

significant correlations between water data and rain at

the station 2.

Box and whisker plots

Box and whisker plots of the water quality data over

the 40-year period (1970–2009) are shown in Fig. 3.

The trend for pH suggested that the average

Table 3 Pearson correlation coefficients for water quality data and rain

Station 1 EC pH HCO3
- Cl- SO4

2- Ca2? Mg2? Na? %Na SAR Rain

EC 1

pH -0.54** 1

HCO3
- 0.87** -0.62** 1

Cl- 0.82** -0.51** 0.62** 1

SO4
2- 0.46** 0.11 0.13 0.43** 1

Ca2? 0.80** -0.70** 0.79** 0.63** 0.35* 1

Mg2? 0.48** -0.00 0.52** 0.33* 0.18 0.04 1

Na? 0.77** -0.35* 0.59** 0.81** 0.62** 0.72** 0.08 1

%Na 0.58** -0.15 0.35* 0.68** 0.68** 0.53** -0.07 0.95** 1

SAR 0.71** -0.29 0.51** 0.78** 0.63** 0.66** 0.02 0.99** 0.97** 1

Rain -0.15 0.25 -0.32* -0.19 0.19 -0.27 0.002 -0.21 -0.10 -0.18 1

Station 2 EC pH HCO3
- Cl- SO4

2- Ca2? Mg2? Na? %Na SAR Rain

EC 1

pH -0.08 1

HCO3
- 0.87** -0.02 1

Cl- 0.21 -0.40** 0.04 1

SO4
2- -0.17 -0.39* -0.30 0.03 1

Ca2? 0.77** 0.22 0.76** -0.02 -0.29 1

Mg2? 0.37* -0.28 0.41** 0.30 0.31 -0.04 1

Na? 0.01 0.13 -0.02 0.34* -0.31* 0.16 -0.03 1

%Na -0.36* 0.17 -0.47** 0.21 -0.26 -0.30 -0.30 0.82** 1

SAR -0.24 0.08 -0.36* 0.28 -0.16 -0.19 -0.15 0.84** 0.91** 1

Rain 0.32 -0.02 0.03 -0.22 0.14 -0.04 0.01 -0.30 -0.20 -0.11 1

** Correlation is significant at the 0.01 level (2-tailed)

* Correlation is significant at the 0.05 level (2-tailed)
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concentration at station 1 was lower than at station 2.

Except for pH, the normalized data revealed high

pollution at station 1. In statistics, an outlier is an

observation that is numerically distant from the rest of

the data (Grubbs 1969). Among large datasets, some

data points will be farther from the sample mean than

is deemed reasonable. This can be because of

incidental systematic errors or flaws in the theory that

generated an assumed family of probability distribu-

tions, or it may be that some observations are far from

the center of the data (Vega et al. 1998; McGill et al.

1978). As Fig. 3 shows, Mg2? and Cl- deviated most

from normal distribution and included outliers and

extremes.

Fig. 3 Box and whisker

plots of the water parameters

for Gharasoo River over the

40-year period
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Hierarchical cluster analysis (HCA)

Spatial similarity and grouping of monitoring data at

stations 1 and 2 are shown in Fig. 4. In this study,

monitoring data at stations 1 and 2 were classified by

use of HCA, and a dendrogram was produced. The

clustering procedure generated two very convincing

groups from the data from stations 1 and 2. At station

1, cluster 1 (Cl-, SAR, SO4
2-, Na?, Mg2?, HCO3

-,

Ca2?, and pH) and cluster 2 (EC and rainfall)

correspond to relatively low pollution in the high-

pollution region. Hence, the temporal variation of

water quality at station 1 was greatly shaped by

industrial and municipal activities and agricultural and

climate change (Sayadi et al. 2014; Sundaray et al.

2006), which confirms the outcome of the PCA. At

station 2, cluster 1 (Na?, SAR, Cl-, SO4
2-, Mg2?,

HCO3
-, Ca2?, pH, and %Na) and cluster 2 (EC and

rainfall) correspond to a relatively low pollution in the

high-pollution region. Hence, the temporal variation

of water quality at station 2 was greatly shaped by

agricultural activities and lithogenic sources, which

confirms the outcome from PCA (Sayadi et al. 2014;

Sundaray et al. 2006).

Conclusion

Data from 1970 to 2009 revealed distinctly different

River Gharasoo water-quality characteristics. PCA of

the two datasets revealed three factors each for stations

1 and 2; these showed that water-quality indicators

vary substantially from upstream downward. The

increase of solute concentrations from the upper basin

downward is a result of anthropogenic input. HCA

revealed that EC, only, was strongly affected by rain;

Pearson correlation coefficients revealed that HCO3
-,

only, significantly correlated negatively with rainfall.

Increases of EC, Cl-, SO4
2-, and Na?, especially,

from upstream to downstream are related to release of

agricultural, industrial, and domestic waste into the

river network. River water quality is better upstream

Fig. 4 Hierarchical cluster

analysis of Gharasoo River

water parameters and rain at

the stations
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of the city than downstream. To improve the quality of

water of the Gharasoo River basin it is essential to treat

industrial wastewater and municipal sewage and to

adopt the best management practices to control diverse

pollutants from agricultural land and urban surface

runoff.
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