
Vol.:(0123456789)

Environmental Fluid Mechanics
https://doi.org/10.1007/s10652-023-09933-1

1 3

ORIGINAL ARTICLE

Unsteady two‑dimensional distribution of suspended 
sediment transport in open channels

Arun Kumar1 · Sumit Sen1 · Sourav Hossain1 · Koeli Ghoshal1

Received: 1 February 2023 / Accepted: 11 June 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
The current work presents a two-dimensional (2D) unsteady suspended sediment transport 
model for an open channel turbulent flow. Unlike most of the existing similar works in 
literature who describes either the spatial change or the temporal change in concentration 
along with vertical distribution, the present study describes spatial, temporal and vertical 
variation of concentration together. The model is developed from the mixing length point 
of view, which is an important feature of turbulent flow. It also incorporates the effect of 
hindered settling velocity of a sediment particle resulting from the presence of other par-
ticles in the flow. The developed non-linear partial differential equation together with the 
most realistic boundary condition has been solved numerically. The findings indicate that 
the suspension region experiences a decrease in concentration value far from downstream 
as a result of the modified mixing length of sediment-laden flow and opposite is the case 
for the hindered settling velocity at any downstream position. Over all, a reduction in the 
concentration value occurs in the suspension due to the inclusion of these two effects. Also, 
the hindered settling increases the magnitude of the bottom concentration and the damp-
ing factor of mixing length decreases the magnitude of the bottom concentration both the 
effects being very small. The model has been validated with laboratory data under speci-
fied conditions.
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1 Introduction

The transportation mechanisms of suspended sediments are observed in natural waterways, 
including rivers, lakes and oceans and are of significant importance in water supply sys-
tems, harbours and other man-made hydraulic structures that undergo turbulent flow. Thus, 
it has been studied by various branches of engineering and science disciplines, such as 
environmental engineering, sedimentology, fluid dynamics, ecology, etc.

For a better understanding of suspended sediment transport and the interaction between 
fluid and sediment particles in turbulent flow, a reliable mathematical model for concentra-
tion distribution is necessary. Though several models can be found in the literature that 
describe the sediment distribution in suspension, most of the available models deal with 
either steady or unsteady one-dimensional (1D) distribution or steady 2D distribution of 
sediment concentration in the suspension. Rouse [1], a pioneer in the area of sediment 
transport, established a 1D sediment transport model that utilized the concept of diffusion 
and subsequently provided an analytical solution for the model. The major drawback of the 
Rouse model is that it cannot predict the sediment concentration well near the channel bed 
and close to the free surface. In order to address the disadvantages, Hunt [2] then analysed 
the vertical distribution of concentration by studying the sediment phase and water phase 
separately. To improve the vertical concentration distribution, many works [3–8] have been 
done using different approaches and considering different turbulent phenomena. The lit-
erature in this regard is so vast that any survey is insufficient. Several researchers consid-
ered the changes of concentration profiles with temporal variation and variation along the 
main flow direction also, which makes the model more realistic and difficult to solve than 
the steady vertical distribution of concentration. Mei [9] and Hjelmfelt and Lenau [10], 
investigated the non-equilibrium sediment transport with constant advection velocity and 
solved the steady 2D convection-diffusion equation analytically. In their studies, Mei [9] 
considered a specified constant concentration at the bottom and zero sediment flux at the 
free surface, while Hjelmfelt and Lenau [10] used a specified constant concentration at 
the bottom and zero concentration at the free surface. Also, several works can be found 
in the literature [11–13] that have solved steady 2D problem by incorporating constant 
boundary conditions. Monin [14] and Calder [15] proposed a near-bed boundary condi-
tion where the deposition was considered and entrainment was ignored. Considering both 
entrainment and deposition in the bottom boundary condition, Dobbins [16] solved the 
unsteady 1D transport problem; but in that work, entrainment rate and deposition flux both 
were constant, which was an unnecessary constraint. Cheng [17] formulated the general-
ized boundary conditions at the bottom for non-equilibrium sediment transport in terms 
of two parameters - the deposition velocity and the equilibrium constant. With this more 
realistic bottom boundary condition, Liu and Nayamatullah [18] and Liu [19], respectively, 
solved the unsteady 1D transport equation and the steady 2D transport equation analyti-
cally by employing the generalized integral transform technique (GITT) for arbitrary eddy 
viscosity.

Majority of the previous studies on sediment concentration distribution in suspension 
assumed constant settling velocity of the sediments [18–20]. However, the presence of 
sediments in sediment-laden flows increases the density resulting in an increment in the 
buoyancy force of the fluids. This upward force leads to a significant reduction in par-
ticle settling velocity, which is referred in the literature [21] as ‘hindered settling veloc-
ity’. Various studies [22–24] of sediment transport in the literature, considered the effect 
of hindered settling of sediment to compute the vertical distribution of the sediment 
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concentration. Richardson and Zaki [21] proposed a relation between sediment concentra-
tion and sediment settling velocity. The researchers [6, 8, 25–28] who considered Rich-
ardson and Zaki’s expression for settling velocity, mostly studied 1D steady concentration 
only. Jing et al. [29] proposed a 2D suspended sediment transport model by incorporating 
concentration-dependent settling velocity and provided a numerical solution. Mohan et al. 
[30] and Kumbhakar et  al. [31] incorporated this effect and semi-analytically solved the 
unsteady 1D and the steady 2D transport model by the homotopy analysis method (HAM), 
respectively.

The present study analyses the unsteady 2D sediment transport on the basis of the mix-
ing length formulation. Prandtl [32] initially developed the mixing length theory, which 
is based on the concept of momentum exchange between layers of fluid in clear water tur-
bulent flow. He correlated the fluctuating velocity in turbulent flow with the momentum 
transfer that occurs within the flow. During assimilation of fluid parcels, the average dis-
tance that the parcels travel, is called ‘mixing length’. Prandtl [32] proposed two expres-
sions of mixing length l: one of them is linear and the other one is parabolic. The linear 
type expression of mixing length leads to the well-known expression of the universal log-
law of velocity distribution. In the literature, there are a number of mixing length expres-
sions developed after Prandtl [32]; but only a few of them are concentration-dependent. 
Umeyama and Gerritsen [33] proposed a mixing length expression for sediment-mixed 
flow which was used in their work to construct a model for vertical velocity distribution. 
They came to the conclusion that the mixing length in high concentration flow is smaller 
than in low concentration flow or clear water flow. Later, by using the same mixing length, 
Umeyama [34] investigated the sediment concentration distribution in an open channel tur-
bulent flow. Kovacs [4] generalized the Prandtl-von Karman mixing length expression for 
sediment-laden flows by including a damping factor 

(
1 − c1∕3

)
 . Ghoshal et al. [35] consid-

ered a 1D unsteady advection–diffusion equation that incorporated the hindered settling 
and the mixing length of Kovacs [4], which made the equation non-linear and provided a 
numerical solution for sediment concentration in suspension.

From the above literature review, it is observed that the available models of sediment 
transport in an open channel turbulent flow are mostly in a one-dimensional steady and 
unsteady state. For two-dimensional case, most of the available models for sediment trans-
port are in a steady state. Under the constant advection assumption, 2D steady transport 
models are mathematically equivalent to 1D unsteady transport model [18]. Thus, the 
researchers mostly considered either one of these two, but not the two together. A com-
bination of these two, that is, 2D unsteady transport model is considered by very few 
researchers [36] may be due to the difficulty in tackling the problem both analytically and 
numerically. Also, researchers did not consider a combination of mixing length with damp-
ing factor and hindered settling effect simultaneously in a 2D unsteady transport model. 
Variation of sediment distributions in streamwise as well as in vertical direction with 
time, helps to get a better understanding of sediment transport process. This motivates to 
broaden the work of Ghoshal et al. [35] who developed a one-dimensional (i.e., vertical) 
unsteady transport framework with the previously mentioned two important effects. Hence, 
the present work can be considered as an extension of the work of Ghoshal et al. [35] by 
including one more dimension in the horizontal direction in an unsteady framework. More 
precisely, the objective of the present study is to develop a reliable mathematical model 
for unsteady 2D sediment transport by considering the modified mixing length and set-
tling velocity due to presence of particles in the flow. Due to the inclusion of hindered set-
tling and mixing length with damping factor in the transport model, the developed model 
becomes a highly non-linear partial differential equation (PDE). Finite difference method 
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with Euler’s implicit scheme, is used to solve the PDE. The sediment concentration profiles 
are discussed for various cases, such as for the effects of concentration-dependent mix-
ing length and the hindered settling. Also, the variation of concentration profiles along the 
streamwise direction for a fixed time and variation of the same with time for a fixed longi-
tudinal distance are studied. In addition, the concentration at the bottom is discussed sepa-
rately due to the consideration of the effects of mixing length and hindered settling. Finally, 
the proposed model has been verified using appropriate experimental data under specified 
conditions.

2  Mathematical formulation

The generalised form of the unsteady three-dimensional advection–diffusion equation in a 
wide open channel can be derived from the mass conservation law for sediment and is as 
follows:

where c is the time-averaged volumetric concentration of suspended sediment; t is the time; 
x, y and z are the cartesian coordinates in the longitudinal (stream-wise), transverse and 
vertical directions, respectively; u, v and w are the time-averaged velocity components 
along x, y and z directions, respectively; �sx , �sy and �sz are the sediment diffusion coeffi-
cients in the x, y and z directions, respectively; and �m is the molecular diffusion coefficient. 
A schematic diagram of the non-equilibrium suspended sediment concentration and flow 
velocity is shown in Fig. 1. This work assumes that the fluid flow is independent of time 
and uniform along the longitudinal direction. The concentration variation in the transverse 
direction is not considered and diffusion in the longitudinal direction is neglected as advec-
tion is dominant in that direction [19]. For simplification, the sediment diffusion coefficient 
�sz in the vertical direction z has been replaced by �s . The vertical velocity component w is 
a combination of the mean velocity of fluid flow wf  along the vertical direction and the 
downward sediment settling velocity ws , i.e., w = wf − ws in sediment-mixed fluid. The 
effect of settling velocity is much more prominent than the effect of fluid flow in a vertical 
direction; so, the term �(wf c)

�z
 is negligible compared to the term �(wsc)

�z
 [37]. Then the govern-

ing equation (1) becomes

To analyze the concentration profile from Eq. (2), some key parameters must be known, 
such as sediment settling velocity ws , sediment diffusivity �s and flow velocity distribution 
u which are discussed subsequently.

Many authors [21, 38] proposed correlations between sediment settling velocity and 
concentration. It is shown in the existing literature that the magnitude of sediment set-
tling velocity in sediment-mixed flow is lower than the clear water settling velocity due 
to the presence of particles in suspension as already mentioned in the introduction part. 

(1)

�c

�t
+

�(uc)

�x
+

�(vc)

�y
+

�(wc)

�z
=

�

�x

[
(�m + �sx)

�c

�x

]
+

�

�y

[

(�m + �sy)
�c

�y

]

+
�

�z

[

(�m + �sz)
�c

�z

]

(2)
�c

�t
+ u

�c

�x
−
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=

�

�z

(

�s
�c

�z

)
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Richardson and Zaki [21] proposed a relation between settling velocity and concentra-
tion, which is as follows

where w0 is the settling velocity of a sediment particle in clear water and �H is the exponent 
of settling velocity reduction. It has been observed that the value of �H changes according 
to the particle’s Reynolds number and it ranges from 2.4 to 4.9 [21]. Few researchers [6, 
30] have chosen an average value of �H = 4 in order to minimize the mathematical compu-
tation. The present study also considers the value of �H = 4 . The expression of sediment 
settling velocity in clear water has been considered from Cheng [39], which is as follows:

where �f  is the kinematic viscosity of clear water; g is the gravitational acceleration; d 
is the sediment diameter and d∗ is the dimensionless diameter of the sediment, which is 
expressed as follows:

where Δ = s − 1 , s is the relative density of sediment particles and the value of s is taken 
as 2.65.

The sediment diffusion coefficient �s can be approximated near the bed as [40]

where l is the mixing length and u∗ is the shear velocity. Following the work of Castro-
Orgaz et al. [41], the above expression of sediment diffusion coefficient has been used in 
this work throughout the whole water depth. To use the expression of �s , one must know 
the expression of mixing length. In 1933, Prandtl [32] established two expressions on nor-
malized mixing length in clear water flow: one is of linear type as l = �z and the other one 
is of parabolic type as l = �z

√
1 −

z

h
 . Kovacs [4] modified the Prandtl’s [32] mixing length 

expression to provide a generalised formula for sediment-mixed flow. According to Kovacs 
[4], the volume occupied by the suspended particles in a unit volume can be given by their 
concentration c in sediment-mixed flow. Assuming that a small cube is filled with sus-
pended particles, the length of the side of the cube is proportional to c1∕3 . Since the space 
occupied by suspended particles is unavailable for travelling fluid particles, their mixing 
length l is reduced by the length taken by suspended particles. Thus, the damping function, 
1 − c1∕3 , is introduced in the mixing length expression, which is purely based on the volu-
metric presence of sediment particles in the sediment-laden flow [4]. Consequently, the 
expression of concentration-dependent mixing length becomes [4]

where l0 is the mixing length in clear water flow and the remaining factor, i.e., (1 − c
1

3 ) , 
is the damping factor. The findings of Umeyama and Gerritsen [33] indicated that the 
parabolic mixing length profile exhibited better agreement with experimental data in 

(3)ws = w0(1 − c)�H

(4)w0 =
�f

d

(√
25 + 1.2d2

∗
− 5

)1.5

(5)d∗ =

(
Δg

�2
f

) 1

3

d

(6)�s = u∗l

(7)l = l0(1 − c
1

3 )
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comparison to the linear profile. Thus, this study employs Prandtl’s [32] parabolic formula-
tion of the clear water mixing length expression which is the following

where � is the von-Karman constant. The expression of sediment diffusivity �s can be found 
by combining Eqs. (6), (7), and (8). Substituting the expressions of the settling velocity ws 
and the sediment diffusivity �s into Eq. (2), the governing equation of suspended sediment 
transport becomes

The following non-dimensional parameters are introduced to transform the governing 
equation in the non-dimensional form:

where h is the maximum flow depth and Ca represents the reference concentration at the 
reference height z = a . By using the above-defined dimensionless parameters in Eq. (9), we 
can get the non-dimensional form of Eq. (9) as

Equation (10) represents the unsteady 2D sediment concentration distribution in suspen-
sion in an open channel turbulent flow which incorporates the effects of concentration 
dependent mixing length and hindered settling.

2.1  Initial and boundary conditions

The non-dimensional form of the suspended sediment transport equation given in Eq. (10) 
is an unsteady two-dimensional initial boundary value problem. Specific values of the ini-
tial and boundary conditions are required to achieve the numerical solution of Eq. (10). It 
is assumed that sediment particles occur in suspension from a particular reference height 
z = a to the free surface z = h.

Several kinds of bottom boundary condition at the reference level z = a has been used 
in the literature by many researchers ( [10, 42, 17]) in their study of sediment transport. 
Cheng [17] proposed a boundary condition at the bottom surface, by making the flux equal 
to the rate of placing the sediment into suspension and showed that all the existing bot-
tom boundary conditions are special cases of the boundary condition proposed by him. 
This study considers Cheng’s [17] generalized bottom boundary condition, which can be 
expressed as

where Qa is the net sediment flux at the bottom surface, � and c∗ are the depth independent 
parameters determined by the hydraulic conditions and the characteristics of the bottom 
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√
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z

h
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3
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c

Ca
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h
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u
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x

h
, ẑ =

z

h
, ŵ0 =

w0
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(10)
𝜕Ĉ
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+ û(ẑ)
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𝜕
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1 − ẑ
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surface. In the transient process, for the adjustment of sediment concentration from an ini-
tial condition to a final equilibrium steady-state value, the net sediment flux Qa must tend 
to zero. In other words, as equilibrium is approached, limt→∞ Qa = 0 and c∗ = limt→∞ ca 
[17]. Here, ca is referred as the value of c at z = a . Thus, c∗ can be viewed as the equilib-
rium sediment concentration at the bottom surface and � is a ratio of the deposition flux 
and the bottom concentration [17]. From the physical point of view, � is considered as 
reflectivity coefficient at the bottom surface. If � = 0 then it represents a completely reflec-
tive surface, while � = ∞ represents a completely absorbing surface ( [17, 19]). This bot-
tom boundary condition was also used by Liu and Nayamatullah [18], Liu [19], Mohan 
et al. [30] and Kumbhakar et al. [31]. For the boundary condition at the free surface, it is 
assumed that there is no mass flux at the free surface z = h . Hence the boundary condition 
at the free surface is as follows:

The sediment concentration at the inlet is assumed to be uniform. So, the inlet condition can 
be written as

In the boundary conditions, hindered settling effect or change of mixing length due to 
concentration has not been taken into account. Recently it has been shown by Hossain 
et al. [36] that inclusion of hindered settling in the boundary condition does not bring any 
change in the result. Replacing the expressions of �s and ws with u∗l0 and w0 , respectively, 
as also done by Ghoshal et al. [35] and using dimensionless scale parameters in Eqs. (11) 
to (12), the boundary conditions take the form as

where Ĉ∗ =
c∗

Ca

, �̂� =
𝛾

u∗
 and â =

a

h
 are dimensionless parameters.

The dimensionless form of the initial condition can be chosen as

Eq. (10) with the aforementioned generalized initial and boundary conditions given by 
Eqs.(13) to (16) is highly non-linear partial differential equation and therefore obtain-
ing the analytical solution is not an easy task. As an alternative, the present study looks 
for an approximate numerical solution. In the following section, the numerical method is 
described, which is used to solve the problem in the present study.

(12)�s
�c

�z
+ wsc = 0 at z = h

(13)Ĉ(x̂ = 0, ẑ) = Ĉx̂0
(ẑ) = 1

(14)𝜅 ẑ
√
1 − ẑ

𝜕Ĉ

𝜕ẑ
+ ŵ0Ĉ = 0 at ẑ = 1

(15)𝜅 ẑ
√
1 − ẑ

𝜕Ĉ

𝜕ẑ
+ ŵ0Ĉ = �̂�(Ĉ − Ĉ∗) at ẑ = â

(16)Ĉ(t̂ = 0, x̂, ẑ) = 1
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3  Numerical procedure

In order to solve Eq. (10) with the conditions given in Eqs. (13) to (16), this study employs 
the standard finite difference method along with a fully implicit Euler time marching scheme. 
Equation (10) can be expressed as follows

where

Eq. (17) can be re-written as

By using a fully implicit backward Euler method, Eq. (20) can be expressed as a semi-
discretized form:

The superscripts n and n + 1 stands for the previous and present time levels, t̂n and t̂n+1 , 
respectively. The variable Δt̂(= t̂n+1 − t̂n) specifies the time step. Ĉn represents the value of 
Ĉ at the previous time step t̂n . The values of Ĉn+1 , which represent the unknown value of 
Ĉ at the present time step t̂n+1 , can be used to calculate the functions �n+1 and �n+1 . First, 
the functions � and � are linearized, because these functions are non-linear in Ĉ and then 
the concentration equation (21) is linearized by Picard’s iterative methods. Using the most 
recent estimates of �n+1 and �n+1 , Ĉn+1 has been estimated successively according to Pic-
ard’s iterative approach. The superscripts n and m denote the time level and Picard’s itera-
tion level, respectively. The linearized form of Eq. (21) is as follows:

where

The computational space domain is assumed rectangular with lengths Lx and Hz cor-
responding to the stream-wise and vertical directions, respectively. The entire space 
domain can be discretized into M − 1 equally spaced grid size Δx̂ = Lx̂

M−1
 with M 
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𝜕ẑ

]
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𝜕Ĉ

𝜕ẑ
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Δt̂
+ û

𝜕Ĉn+1,m+1

𝜕x̂
− 𝜙n+1,m 𝜕Ĉ
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number of grid points in x̂ direction and N − 1 equally spaced grid size Δẑ = Hẑ

N−1
 with 

N number of grid points in ẑ direction. The grid point coordinates are defined as follows: 
x̂i = x1 + (i − 1) ∗ Δx̂ for i = 1, 2, 3, ...,M and ẑj = a + (j − 1) ∗ Δẑ for j = 1, 2, 3, ...,N in 
the x̂ and in ẑ directions, respectively. A second-order finite difference approximation is 
used to discretize the space derivatives as follows:

Using Eq. (25) to Eq. (27) into Eq. (22) and rearranging the terms, one can obtain the fol-
lowing discretized equation:

where

for i = 2, 3, 4, ...,M − 1 and j = 2, 3, 4, ...,N − 1 . The boundary conditions given in Eqs. 
(14) to (15) can be discretized as follows:
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2Δẑ
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= 𝛾(Ĉn+1,m+1

i,1
− Ĉ∗) for i = 2, 3, ...,M − 1
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The discretized system of linear algebraic equations (28) is solved using the Gauss-Seidel 
iterative method. A MATLAB code has been developed to solve the system and obtain the 
numerical solution.

4  Results and discussion

This section begins with a description of the input functions that are necessary to solve 
Eq. (10). Then, transient sediment concentration profile, concentration profiles at different 
downstream positions and concentration distributions for simultaneous variations in time 
and downstream location, have been analyzed both theoretically and graphically. Follow-
ing this, both physical phenomena of sediment transport, mixing length effect and hindered 
settling effect on the distribution of suspended sediment concentration are described. Addi-
tionally, the behaviour of sediment concentration near the bed has been discussed. At the 
end, the derived numerical solution of the present mathematical framework is validated 
with the available experimental data in the literature.

4.1  Expression for input function

From Eq. (10), it can be seen that apart from the expressions of ws and �s , the flow velocity 
û(ẑ) is essential to obtain the solution of the proposed model. Since the flow is uniform in 
the main direction, so the flow velocity û(ẑ) can be considered a constant value as in Hjelm-
felt and Lenau [10]. However, this study considers the log-law of advection velocity, which 
is more realistic and given as follows:

where z0 is the start elevation of the log-law formula. The value of � is taken as 0.41 
throughout the study. Equation (39) can be further rewritten into the following normalized 
form as [19]

where ẑ0 =
z0

h
 . The value of ẑ0 is usually small and it is considered as 0.001 [19]. The pre-

sent study uses Eq. (40) to compute the velocity component û(ẑ) which was used by Liu 
[19] and Kumbhakar et al. [31] also in their 2D steady transport models.

(36)
𝜅 ẑ
√
1 − ẑ

�
3Ĉ

n+1,m+1

i,N
− 4Ĉ

n+1,m+1

i,N−1
+ Ĉ

n+1,m+1

i,N−2

2Δẑ

�

+

ŵ0Ĉ
n+1,m+1

i,N
= 0 for i = 2, 3, ...,M − 1

(37)Ĉ
n+1,m+1

1,j
= 0 for j = 1, 2, 3, ...,N

(38)Ĉ
n+1,m+1

M,j
= Ĉ

n+1,m+1

M−1,j
for j = 1, 2, 3, ...,N

(39)u(z) =
u∗

�
ln

z

z0

(40)û(ẑ) =
1 − ẑ0

ẑ0 − lnẑ0 − 1
ln

ẑ

ẑ0
for ẑ0 ≤ ẑ ≤ 1
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4.2  Temporal and horizontal variation of concentration profiles

Figures  2a and b illustrates the temporal and stream-wise variations of concentration 
distributions, respectively. For both the figures, the initial concentration distribution is 
Ĉ(t̂ = 0, x̂, ẑ) = 1 . The values of required parameters are �H = 4 , d = 0.105 mm, â = 0.05 , 
Ca = 0.014 , �̂� = 1 and Ĉ∗ = 1 . Figure 2a shows the transient sediment concentration pro-
files at various times, i.e., t̂ = 0.5, 1.0, 2.0, 4.0, 5.0 and 10.0 for a particular downstream 
x̂ = 80 . From Fig. 2a, it can be observed that the concentration profile becomes steady at 
large time.

Figure 2b demonstrates the stream-wise concentration distributions for distinct down-
stream positions, i.e., x̂ = 2, 3, 5, 10, 20, 50 and 80 at a particular time t̂ = 10 . From Fig. 2b, 
one can notice that, as x̂ increases, the magnitude of the concentration profile increases 
and after some particular value of x̂ = 80 , the concentration profile does not change and 
behaves like a uniform one at that specific time t̂ = 10 . It can be seen from Fig. 2a and b 
that the concentration profiles exhibit the same pattern for change with time at fixed loca-
tion and for change with location at fixed time.

Figure  3 demonstrates concentration profiles for simultaneous variation in times t̂ 
and downstream locations x̂ . The inlet and initial concentration are Ĉ(t̂, x̂ = 0, ẑ) = 1 and 
Ĉ(t̂ = 0, x̂, ẑ) = 1 , respectively. The required parameters are â = 0.035 , Ca = 0.014 , �̂� = 1 , 
and Ĉ∗ = 1 . From Fig. 3, it is clear that the magnitude of sediment concentration increases 
as the increase in values of time t̂ and downstream location x̂ . The concentration profiles 
do not alter and behave like uniform concentration distribution from particular values of 
t̂ = 20 and x̂ = 50.

4.3  Influence of mixing length on vertical distribution of sediment concentration

As already mentioned, Ghoshal et al. [35] used the mixing length from Kovacs [4] to inves-
tigate 1D unsteady sediment concentration distribution in an open channel steady fluid 
flow. Following the study of Ghoshal et al. [35], the present study assumes the concentra-
tion-dependent mixing length in an unsteady 2D model of suspended sediment transport.

Although the effect of mixing length has been taken into account in the study of sedi-
ment transport by Ghoshal et al. [35], they could not demonstrate the change in concentra-
tion distribution along the downstream direction as their model did not include spatial vari-
ation. Present study demonstrates the impact of mixing length through the damping factor 
(1 − C

1∕3
a Ĉ1∕3) on sediment concentration profile at various downstream positions ( ̂x = 1, 

2, 5, 20, 30, 50) for a particular time t̂ = 20 in Fig. 4. Initially, uniform sediment distribu-
tion in the whole computational domain is considered. Also, the uniform sediment distribu-
tion is considered at the inlet, i.e., Ĉ(t̂, x̂ = 0, ẑ) = 1 . The values of the required parameters 
are �H = 4 , â = 0.035 , Ca = 0.014 , �̂� = 2 , u∗ = 4.1 cm, and h = 17 cm. The solid line rep-
resents the concentration profile, which includes the mixing length with the damping fac-
tor, i.e., l = l0(1 − C

1∕3
a Ĉ1∕3) , whereas the dashed line represents the sediment concentra-

tion distribution corresponding to mixing length without damping factor, i.e., l = l0 . From 
Fig. 4, it is observed that the differences in concentration distributions are much more in 
the central suspension region compared to the region near the free surface and close to 
the bed. From Fig. 4a–c, it can be observed that the concentration distribution is higher in 
the case of mixing length with the damping factor as compared to the mixing length with-
out damping factor. But, from Fig. 4d–f, the concentration distributions start getting lower, 



 Environmental Fluid Mechanics

1 3

corresponding to mixing length with the damping factor compared to the mixing length 
without damping factor and as the downstream distance increases the effect stabilizes. The 
explanation for this can be made as follows: at a particular time, the sediment concentration 
close to the inlet boundary is high and as distance increases from the inlet, the magnitude 
of the concentration profile becomes less. In Fig. 4, the sediment concentration is greater in 
downstream locations close to the inlet boundaries than in downstream locations far from 
the boundary. More specifically, the magnitude of the concentration profile is smaller after 
x̂ = 5 than it was before (Fig. 4). As shown in Fig. 4a–c, the mixing length effect is consid-
erably less pronounced before x̂ = 5 and has a different effect than anticipated. But, as we 
go away from the stream-wise distance x̂ = 5 , (Fig. 4d–f) the magnitude of concentration 
becomes less and here the impact of mixing length becomes more effective with a dampen-
ing in the concentration profile due to concentration-dependent mixing length. The region 
up to x̂ = 5 behaves like a transition region. It can be seen from Fig. 4a–c, the magnitude 
of the concentration profile becomes greater than unity at some of the nodes of the compu-
tational domain. For example, in Fig. 4a, at vertical distance ẑ = 0.1508 , the magnitude of 
the concentration is Ĉ = 1.02338 , which is greater than unity. An increment in the concen-
tration distribution has been observed while incorporating the mixing length in Fig. 4a–c. 
On the other hand, from Fig. 4d–f, it can be observed that the magnitude of the concentra-
tion at any height ẑ is less than unity. The mixing length effect dampens the concentration 
profile from these cases which is after the transition zone.

For a better understanding, the impact of mixing length with and without the damping 
factor has been shown in a three-dimensional (3D) concentration plot at time t̂ = 10 in 
Fig. 5. The values of the required parameters are the same as those mentioned in the above 
paragraph. From Fig. 5, it can be observed that there is a clear difference between the sedi-
ment concentration distribution of mixing length with the inclusion and omission of the 
damping component. It is pertinent to mention here that Fig. 5 has been plotted after the 
transition region. This is the reason why the mixing length in this case dampens the con-
centration values rather than raising them. Hence major significance is that this effect helps 
not to overestimate the magnitude of the sediment concentration in suspension.

4.4  Influence of hindered settling mechanism on distribution of sediment 
concentration

Although the impact of hindered settling has been taken into account in studies of 1D 
unsteady sediment transport by Mohan et  al. [30] and 2D steady transport by Kumbha-
kar et al. [31], they did not demonstrate the variation in sediment concentration distribu-
tion with time or space by including the hindered settling effect. Ghoshal et al. [35] dem-
onstrated the variation of sediment concentration distribution with time only due to the 
inclusion of hindered settling effect as their model did not include any spatial variation of 
concentration. The impact of hindered settling phenomenon on the sediment concentration 
profile has been demonstrated in Fig.  6 through the exponent of settling velocity reduc-
tion �H . Figure 6 demonstrates the concentration profiles at various downstream positions 
( ̂x = 1, 2, 5, 20, 50, 80) for a particular time t̂ = 20 . A value of �H = 4 incorporates the 
effect of hindered settling whereas a value of �H = 0 does not consider the hindered settling 
effect. The concentration profiles are plotted for both scenarios: with ( �H = 4 ) and without 
( �H = 0 ) hindered settling effects. A uniform concentration is assumed at the inlet, i.e., 
ĉ(t̂, x̂ = 0, ẑ) = ĉ0(ẑ) = 1 and also in the initial condition, i.e., ĉ(t̂ = 0, x̂, ẑ) = 1 . For all the 
cases, the required parameters are â = 0.03 , Ca = 0.0772 , �̂� = 2 , u∗ = 10.09 cm, d = 0.274 
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Table 1  Experimental data of Coleman [47], Vanoni [48] and Einstein and Chien [49] and calculated value 
of ŵ

0

Data source Run â d (mm) h (cm) u∗ (cm/s) ŵ
0

C
a
 (%)

Coleman [47] 4 0.035 0.105 17.1 4.1 0.1615 0.280
5 0.035 0.105 17.1 4.1 0.1615 0.400
29 0.036 0.210 16.8 4.0 0.5200 0.950

Vanoni [48] 7 0.05 0.16 15.10 6.1 0.2236 0.219
21 0.05 0.16 16.40  6.34 0.2152 0.343
29 0.05 0.133 9.0  4.69 0.2138 0.255

Einstein and Chien [49] S1 0.040 1.30 13.8 11.47 1.1783 2.189
S6 0.043 0.94 14.3 11.82 0.8987 1.057
S11 0.029 0.274 13.3 10.61 0.2846 1.185

Fig. 1  Schematic diagram of suspended sediment distribution in an open channel [19]

Fig. 2  Sediment concentration profiles a for different times at a particular downstream distance and b for 
different downstream distances for a particular time
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mm, h = 13.2 cm and Ĉ∗ = 1 . From Fig.  6, it is observed that the concentration value 
increases due to inclusion of the hindered settling effect and its impact on the concentration 
profile is prominent in the main flow region. No significant impact is observed near the free 
surface and close to the bottom region. This happens because the sediment particles are 
much lower at the free surface than in the main flow region; whereas in the bottom region 
of the channel, the combination of the lower flow velocity due to the frictional forces and 
the higher density lead to fewer eddies, which are responsible for the transportation of 
momentum [43]. From Fig. 6a–c, it is observed that the differences between the sediment 
concentration profiles start to increase with respect to space until x̂ = 5 , and then start to 
decrease until x̂ = 50 . After downstream position x̂ = 50 , the difference between the sedi-
ment concentrations does not alter and becomes uniform.

For a better understanding, the influence of hindered settling with and without hindered 
settling has been shown in Fig.  7 in a 3D concentration profile that has been plotted at 
t̂ = 10 . The required parameter values are as specified in the preceding paragraph. From 
Fig. 7, it can be seen that there is a significant difference between the sediment concentra-
tion distribution due to inclusion and omission of hindered settling.

4.5  Overshooting effect on bottom concentration

Overshooting phenomenon is an interesting aspect of the suspended sediment transport. 
Overshooting means the concentration profile overshoots its equilibrium value and slowly 
decreases to equilibrium. Under certain inlet conditions, the bottom concentration profile 
at the downstream position will overshoot its equilibrium value and attain a higher con-
centration than equilibrium [17]. The overshooting phenomenon has been observed in 
experiments conducted by Jobson and Sayre [44]. Celik and Rodi [45] presented a numeri-
cal model that simulates the initial increase in the near-bed concentration and the over-
shooting of its equilibrium value. As far as the authors’ knowledge, the overshooting effect 
for the unsteady 2D suspended sediment transport model in sediment-mixed flow is yet 
to be addressed. Hence, the present study shows the effect of the overshooting phenom-
enon on bottom concentration at different downstream distances. Figure 8 plots the bottom 

Fig. 3  Time-dependent and 
stream-wise position-specific 
concentration profiles
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sediment concentration at three dimensionless downstream distances ( ̂x = 2.5 , 5 and 10) 
for two different values of the depth-independent parameter �̂� = 0.4 and 1. In each of the 
figures, the value of the equilibrium sediment concentration Ĉ∗ has been kept at 1. The 
values of the other required parameters are considered as â = 0.03 , ŵ0 = 0.2 , Ca = 0.01 , 
�H = 4 and Ĉ∗ = 1 . Figure 8 shows the evolution of bottom concentration with time at dif-
ferent downstream positions, which indicates that initially bottom sediment concentration 
overshoots the values of Ĉ∗ . As the downstream distance x̂ increases, the bottom sediment 
concentration goes closer to the equilibrium value and at the far field position, the bot-
tom concentration converges to it. This happens as the inlet and initial concentration are 
not compatible with the bottom boundary condition and thus the overshooting occurs [18, 
19]. Also, it can be observed from the figure that as the value of �̂� decreases, the peak of 

Fig. 4  Influence of mixing length on vertical distributions of sediment concentration for different down-
stream positions x̂ at time t̂ = 20
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the bottom concentration profile increases. This happens because the bottom reflects more 
sediments as the value of �̂� decreases and as a result the sediment concentration at the bot-
tom increases. The values of the other parameters are listed in the figure. This phenomenon 
has also been reported by Liu and Nayamatullah [18], Sen et al. [46] and Mohan et al. [30] 
in their respective studies of unsteady 1D transport of sediment concentration, whereas 
Hossain et al. [36] showed this effect in the study of unsteady 2D transport.

4.6  Influence of hindered settling and mixing length on bottom concentration

Figure  9 shows the effect of hindered settling on bottom concentration through the 
exponent of settling velocity reduction �H in the presence of mixing length and Fig.  10 
shows the impact of mixing length on bottom concentration through the damping factor 
(1 − C

1∕3
a Ĉ1∕3) in the presence of hindered settling. Both the figures are plotted at x̂ = 3 and 

the same parameters are considered, which are taken as â = 0.035 , ŵ0 = 0.2 , Ca = 0.02 , 
�H = 4 , Ĉ∗ = 1 and �̂� = 1 . These effects on bottom concentration show the same character-
istics as those mentioned previously in Sects. 4.3 and 4.4 on the whole suspension region. 
That is, the hindered settling increases the magnitude of the bottom concentration and the 
damping factor of mixing length decreases the magnitude of the bottom concentration. 
Though it has been observed that both effects on bottom concentration are very low, one 
can conclude from comparing Figs. 9 and 10 that the impact of hindered settling is almost 
negligible on the bottom. On the other hand, the concentration-dependent mixing length 
has a small but still significant effect on the concentration distribution which ascertains the 
importance of the concentration-dependent mixing length in the distribution of sediment 
concentration. The finding regarding the hindered settling effect is supported by the study 
of Hossain et al. [36] also, who considered this effect in the bottom boundary condition and 
showed that it has negligible effect there.

4.7  Validation with the existing experimental data

There is a lack of experimental data in the literature on the unsteady 2D distribution of 
sediment in suspension. Therefore, there is no direct way to examine the accuracy of the 

Fig. 5  Influence of mixing length 
on three-dimensional (3D) distri-
bution of sediment concentration 
at time t̂ = 10
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proposed model. However, plenty of experimental data is available for the distribution of 
suspended sediment concentration along the vertical direction in an steady uniform flow. 
The proposed model behaves like a one-dimensional steady uniform transport model at a 
large time t̂ and far from the downstream [36]. Therefore, at a large value of t̂ and far from 
downstream, the proposed model’s solution is validated by using proper experimental data. 
The present study considers the experimental data from Coleman [47], Vanoni [48] and 
Einstein and Chien [49].

Coleman [47] used a 15 m long and 356 mm wide smooth flume to conduct 40 sepa-
rate experiments of sediment particles of three distinct diameters 0.105, 0.210 and 0.420 

Fig. 6  Influence of hindered settling on vertical distributions of sediment concentration for different down-
stream positions x̂ at time t̂ = 20
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mm. Out of all these experiments, three data sets—Run 4, Run 5 and Run 29 are chosen 
randomly. Figure 11 shows the comparison between the chosen experimental data and the 
proposed model. The values of the required parameters and calculated settling velocities 
of sediment are listed in Table 1. In Fig. 11a, the concentration distributions for different 
cases have been demonstrated. The impacts of hindered settling and mixing length with 
damping component are incorporated by �H = 4 and l = l0(1 − CaĈ

1∕3) , respectively. The 
solid line represents these effects on the concentration profile in Fig.  11a; on the other 

Fig. 7  Influence of hindered 
settling on three-dimensional 
(3D) distribution of sediment 
concentration at time t̂ = 10

Fig. 8  Bottom concentration profiles at different downstream positions - a x̂ = 2.5 , b x̂ = 2.5 and c x̂ = 2.5 
for two different values of �̂� = 0.4 and 1
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hand, �H = 0 and l = l0 account for no hindered settling effect and the clear water mixing 
length effect, respectively and is shown by the dashed line. From Fig. 11a, it can be seen 
that the proposed model, which includes the hindered settling effect and the concentration-
dependent mixing length effect, agrees well with the experimental data. But the concentra-
tion profile with the clear water mixing length and no hindered settling effect do not agree 
with the experimental data. This indicates the necessity of including both effects when 
comparing the present solution to experimental data; consequently, the remaining figures 
are generated by including both effects. For the sake of simplicity, the effects of hindered 
settling and mixing length have not been depicted separately in the remaining figures.

Vanoni [48] conducted 29 different experiments with three distinct sediment of diam-
eters 0.16, 0.10 and 0.133 mm. For the validation purpose, three of these data sets, Run 7, 
Run 21 and Run 29, are chosen randomly. Figure 12 compares the present solution to the 

Fig. 9  Influence of hindered 
settling on bottom concentration 
at x̂ = 3

Fig. 10  Effect of mixing length 
on bottom concentration at x̂ = 3
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experimental data of Vanoni [48]. Table 1 contains the computed values of the sediment 
settling velocities ŵ0 and all other necessary parameters.

Einstein and Chien [49] performed 16 different experiments near the channel bed using 
three different particle diameters: d = 1.3 , d = 0.940 , and d = 0.274 mm. Figure 13 depicts 
a comparison between the observed data of Einstein and Chien [49] and the current model 
solution. The obtained dimensionless sediment settling velocities corresponding to differ-
ent size of particles and other values of parameters can be found in Table 1. From Figs. 11, 
12, 13, It is clear that the model agrees with the experimental data quite well in every case 
when both the effects of hindered settling and mixing length are considered.

5  Conclusion

This study presents a mathematical framework for two-dimensional unsteady sediment 
transport in a sediment-mixed turbulent flow through an open channel. Unlike the most 
existing works in the literature that deal with either 1D unsteady or 2D steady, the present 
work considers the concentration variation with time, longitudinal and vertical directions 

Fig. 11  Validation of the present numerical solution with experimental data of Coleman [47]
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all together. The model incorporates two important features of sediment-mixed flow: (i) 
modified mixing length and (ii) modified settling velocity of a particle due to the presence 
of particles in suspension. Inclusion of these effects make the governing equation non-lin-
ear which has been solved numerically.

As the model contains concentration as a function of horizontal coordinate, verti-
cal coordinate and time, it can exhibit together all the horizontal, vertical and tem-
poral variation of concentration. The inclusion of modified mixing length increases 
the concentration in the beginning and then decreases which becomes stable after a 
certain downstream position. Apart from that, consideration of hindered settling phe-
nomenon increases the concentration at any downstream position and the difference in 
concentration first increases and then becomes stable after a certain downstream posi-
tion. Both the effects are shown separately on bottom concentration and it is observed 
that these effects are prominent only in the main suspension region.

At the end, due to lack of similar experimental data, the model has been compared 
with steady and only vertically varying experimental data on concentration distribu-
tion. A close agreement between the model and observed data proves the validity of the 
model.

Fig. 12  Validation of the present numerical solution with experimental data of Vanoni [48]
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