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Abstract
Natural levees are wedge-shaped morphological features developing along the boundaries 
of mass flows. When they form in fluvial landscapes, they can have multiple implications 
for river management of trained inland rivers. This paper summarizes the present knowl-
edge in regard to the formation and evolution of so-called fluvial levees of trained inland 
river sections and provides novel hypotheses in regard to the significance of bedforms and 
vegetation strips along the floodplain on levee formation, evolution, and characteristics. 
The hypotheses that (i) bedforms contribute to levee formation by altering the interface 
hydraulics between the main channel and the floodplain and enhancing entrainment of sed-
iment into suspension and (ii) vegetation stripes along the floodplain additionally affect 
the interface hydraulics resulting in a changed levee geometry are supported by combining 
existing knowledge on bedform dynamics and flow-vegetation-sediment interaction with 
results reported in recent flume studies.

Article Highlights

•	 Levee formation is associated with both turbulence induced and advective lateral sedi-
ment transport processes.

•	 Flume experiments indicate that main channel bedform dynamics is an important factor 
enhancing levee formation.

•	 Riparian floodplain edge vegetation enhances levee formation and alters its typical 
geometry.
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1  Introduction

The term ’natural levee’ is used to describe longitudinal wedge-shaped morphological fea-
tures that develop along the boundaries of mass flows as a result of self-channelization 
processes. Natural levees are formed by a variety of sediment-laden geophysical flows such 
as debris flows, lahars, avalanches, turbidity currents, tidal flows, and fluvial flows, and are 
therefore observed in different environments, as depicted in Fig.  1. Consequently, these 
morphological features have been in the focus of different scientific disciplines ranging 
from volcanology through glaciology, oceanography, geology, geomorphology to envi-
ronmental hydraulics and hydraulic engineering. An abundance of studies has revealed 
specific differences in the formation processes and characteristics of natural levees with 
respect to the aforementioned geophysical flows. In the case of debris flows, lahars, and 
avalanches, levee characteristics depend on the rheology and composition of the flow [e.g. 
1–3], and in submarine valleys and submarine sections of river deltas, they are formed by 
turbidity currents and are typically referred to as submarine levees [e.g. 4–6].

The formation and growth of natural levees in fluvial landscapes, where they are referred 
to as fluvial levees [e.g. 7–9] or alluvial levees [e.g. 10, 11], is associated with the deposi-
tion of suspended sediments along the floodplain edge which are supplied from the main 
channel during overbank flow. Fluvial levees form the highest surface elevations along the 
active floodplain [12], and their shape, size, sediment texture, growth rate and longitudi-
nal variability depends on many different factors which are indicated in Fig. 1b. Most of 
these factors, which depend on morphological, hydrological, hydraulic, and anthropogenic 
boundary conditions along the river course, will be discussed in more detail in the follow-
ing sections.

Three different fluvial environments can be distinguished regarding the formation of flu-
vial levees, namely, inland rivers, tidal rivers, and river deltas. Compared to inland rivers, 
the additional source of fluctuation in both water stage and discharge in tidal rivers affects 
levee dimensions [13, 14]. Smaller levees have been observed in such environments, which 
has been associated with downstream sediment fining [15] and an increase in wash load 
[16, 17]. In river deltas, levee formation is related to delta formation processes, but also 
submarine levees induced by turbidity currents can be found in such environments [18]. 
Further details on the evolution of natural levees in fluvial-tidal landscapes can be found in 
recent papers [e.g. 14, 19] and will not be repeated here, as the focus of the present paper is 
on the levee formation in inland rivers in general and in trained river sections in particular 
(cf. Fig. 1).

Inland rivers can generally be subdivided in unconfined (i.e., natural) and trained river 
systems. The former, being dynamic in planform, are prone to lateral channel migration 
or avulsion, which might limit the lifespan of fluvial levees and restrain their development 
[20, 21]. On the other hand, the increasing anthropogenic pressure on fluvial landscapes 
during the last centuries was associated with river corrections and river training meas-
ures to suppress the natural morphological variability of rivers. This is why most rivers 
in densely populated areas, and especially those with fixed banks, are characterized by a 
rather static planform. The occurrence of fluvial levees may reduce the hydraulic capacity 
of such rivers so that regular maintenance works are required. An example is the heavily 
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trained Kinzig river in the Black Forest in Germany, in which the formation of levees with 
accumulation rates up to 3.6 cm per year requires a costly and periodical removal of levee 
sediments to maintain the desired conveyance capacity [22].

In other words, the formation of fluvial levees can increase the risks of floods to human 
health, infrastructure and the environment and hence threaten the achievement of the objec-
tives of water legislation such as the European Flood Risk Management Directive aiming 
to reduce and manage the risks of floods in the European Union [23]. In this context, flu-
vial levees are often overgrown with riparian vegetation [7, 24–26] which enhances their 
formation and growth [e.g. 17, 27–30] and contributes to a further decrease in convey-
ance capacity during overbank flood events. On the other hand, fluvial levees represent a 
dynamic natural interface between terrestrial and aquatic ecosystems and provide a distinct 
habitat profile with an important role for the biodiversity of the entire fluvial landscape 
[31]. Therefore, fluvial levees can be seen as morphological features supporting environ-
mental and ecological water legislation such as the European Water Framework Directive 
(WFD) requiring a good ecological status of the water bodies in the European Union [32].

To resolve the area of conflict between environmental and flood hazard concerns in rela-
tion to fluvial levees, it is necessary to develop a better understanding of the formative and 
evolutive processes of these alluvial deposits in trained rivers. Even if many factors impact-
ing the characteristics of fluvial levees have been identified in field studies by investigat-
ing levee characteristics or levee deposits after specific flood events at specific sites, the 
interconnection between these factors and their importance for the development of fluvial 
levees in trained river sections is not yet completely understood. This can be attributed to 
the large number of relevant factors that hamper the isolation and identification of both key 
parameters and processes from empirical field data.

The goal of the present paper is to summarize the current state of knowledge in regard 
to the formation of fluvial levees in trained and straight river sections, and to shed new 
light on impact factors that have rarely been discussed in the literature such as main chan-
nel bedform dynamics and vegetation along the floodplain edge. The rest of the paper is 
structured as follows: In Sect. 2, we review the morphology of levees in inland rivers. In 
Sect. 3 we summarize the state of knowledge regarding the basic hydrodynamic processes 
involved in the formation and evolution of fluvial levees. In Sects. 4 and 5 we discuss the 
role of bedforms in lowland rivers and floodplain vegetation on the formation and evolu-
tion of fluvial levees. Section 6 concludes the paper and points out existing knowledge gaps 
about fluvial levees morphodynamics.

2 � Morphology of fluvial levees

Most of the existing knowledge on the morphology of fluvial levees originates from field 
studies that were carried out all over the world [e.g. 9, 13, 25, 26, 33–35]. The surveys 
carried out in these studies showed that the ubiquitous and characteristic geometry of flu-
vial levees is characterised by a stream-channel parallel topographic high elevation with 
a steep-slope towards the main channel and a gentle-slope facing towards the floodplain 
(Fig. 2) [e.g. 7, 24, 36]. Fluvial levees composed of coarser sediment are generally reported 
to be steeper sloped than those composed of fine material [25]. The vertical and lateral 
extent of fluvial levees, as well as their sediment texture, vary between different streams 
or even between sections within the same channel [37]. The heights of fluvial levees range 
from few centimetres up to several meters, while their width can range from few meters up 
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to several kilometres [7, 24]. In general, the size of a fluvial levee increases with the river 
size but, at the same time, decreases towards the mouth or delta section of a stream due 
to the aforementioned downstream sediment fining and tidal influences [e.g. 16, 17]. It is 
worth mentioning that the gentle slope of fluvial levees towards the floodplain complicates 
the practical delimitation of their width in field surveys [17, 25]. Since arbitrary criteria 
have been used to identify the extent of a levee, comparisons between studies must be con-
sidered with caution.

Fluvial levees are typically characterized by finer grain size distributions than the main 
channel since they are mainly formed from suspended main channel bed material. At the 
same time, they are characterized by larger grain sizes than the floodplain sediments [12, 
25]. This is reflected by a fining trend of the sediment composition towards the floodplain 
[e.g. 24, 38–40], which in turn can be associated with the hydrodynamic processes at the 
interface between the main-channel and the floodplain (cf. Sect.  3). Some studies also 
reported a vertical fining trend which is, however, not mirrored by all fluvial levees [12, 25, 
41, 42].

The morphology of fluvial levees depends also on their age, as their formation and 
evolution is typically a gradual process which can take decades to centuries, depending 
on catchment characteristics as well as morphological and hydrological boundary condi-
tions, such as the occurrence of flood events [26, 34, 43, 44] (cf. Fig.  1). For example, 
high and large-scale fluvial levees that developed over long time periods were important 
places for early human settlement, agriculture, and infrastructure, as they offered natural 
protection against small floods [e.g. 45, 46]. Reported average growth rates of fluvial levee 
heights typically vary between few millimetres to centimetres per year, but larger growth 
rates exceeding these average rates were also reported for single flood events. For instance, 
Benedetti [34] reported the formation of up to 0.5 m high levees during a single flood event 
at the Mississippi River, while Smith and Pérez-Arlucea [38] measured deposited sediment 
layers ranging from a few millimetres up to a thickness of 0.7 m after a single flood event in 
the Saskatchewan River in Canada. Furthermore, higher levees have been observed down-
stream of tributaries indicating the dependency of the growth rate from tributary inputs of 
sediment [16]. Thus, defining the maturity of levees at specific sites entails some difficul-
ties due to the dynamic nature of fluvial environments and of levee forming processes. 
For example, the development of fluvial levees in naturally meandering streams might be 
restrained by lateral erosion. In this case, levee sediments are regularly reworked by the 
flow through outer-bank erosion and the age of the fluvial levees might be controlled by 
the migration speed of the river [20]. Moreover, the width of fluvial levees increases with 
decreasing meander bend radius [16] and increasing age of the levee [9, 20]. Further diffi-
culties in defining mature levees are related to the fact that the shape and width of a fluvial 
levee might change due to factors unconnected to main channel hydraulics and sediment 
transport conditions [8]. Examples are floodplain flows which are disconnected from the 
main channel, a process also known as back loading [27], rainfall erosion [47] or aeolian 
induced drifting of dry sandy overbank deposits [24]. We note that Rommel [48] hypoth-
esized that the latter process caused the formation of an extraordinarily high levee, which 
exceeded the height of the artificial levee at one location in the Elbe River in Germany.

The morphology of fluvial levees can also be affected by breaching, especially dur-
ing the initial phase of flooding, so that their longitudinal continuity is interrupted. 
Diversion of water and sediment from the main channel through breaches leads to the 
formation of crevasse splays [e.g. 49], i.e. sediment deposits on the floodplain simi-
lar to an alluvial fan, which may trigger river avulsion processes [50–53]. Crevasse 
splays contribute to the variability in floodplain topography, and thus to biodiversity by 
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encouraging the renewal and diversification of habitats [54]. Since crevasse splays are 
contingent upon the existence of levees, the development of fluvial levees, levee breach-
ing and the formation of splays are interacting processes contributing to an enhanced 
dynamic behaviour of the channel-floodplain system thereby increasing the biocomplex-
ity and diversity of a river [55].

3 � Hydrodynamic processes governing fluvial levee formation 
and evolution

It has already been highlighted that the interface hydrodynamics between the main chan-
nel and the floodplain govern the lateral transport of suspended bed material particles 
and their deposition along the floodplain edge (cf. Fig. 3). This interconnected chain of 
hydrodynamic and sediment transport processes, which is also referred to as front load-
ing [27], is of particular importance for the formation and growth of fluvial levees.

A detailed review of suspended sediment transport dynamics is beyond the scope 
of the present paper and can be found in the literature and textbooks [e.g. 56–58]. In 
brief, the onset of bed sediment into suspension is caused by turbulence close to the 
streambed so that bed sediment particles are entrained into the water column when the 
exerted lift force by the turbulent motion exceeds the submerged particle-weight. Once 
the bed material particles are in suspension, the water stage in the main channel must 
exceed the bankfull stage to a certain extent to allow the lateral transport of significant 
amounts of sediment towards the floodplain edge. This has been confirmed by several 

Fig. 3   General chain of processes associated with fluvial levee formation due to front loading: (i) sediment 
suspension, (ii) lateral sediment transport, and (iii) deposition of bed material sediment
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flume studies that report an increase in overbank sedimentation with higher water stages 
[59–61]. Cazanacli and Smith [25] propose a ratio between the floodplain water depth 
and bankfull channel depth of at least 1/10 so that significant amounts of suspended bed 
sediments are likely to be transported towards the floodplain to build up the levee.

The lateral sediment transport from the main channel onto the floodplains is controlled 
by the complex hydrodynamics of compound channels during overbank flow situations. In 
straight prismatic sections, the flow velocity gradient between the main channel and the 
floodplain creates a shear layer which is characterized by macro-eddies producing a lateral 
mass and momentum exchange. The hydraulic characteristics of such flows under steady 
flow conditions in compound channels with a fixed geometry have been investigated in 
numerous experimental studies [e.g. 62–64]. These studies have shown that the roughness 
characteristics of the floodplains and banks, as well as the bank slope, have a strong impact 
on (i) the interface hydraulics, i.e. the eddy structure at the interface [e.g. 65], (ii) convey-
ance capacity, (iii) velocity distribution, and (iv) water stage [e.g. 66]. Moreover, the inter-
face hydraulics and hence lateral sediment transport can be affected by transverse currents, 
i.e. non-uniform flow conditions. Such non-uniform flow conditions affect the structure of 
turbulent coherent structures (macro eddies), secondary flow cells, and shear layer charac-
teristics [e.g. 64, 67, 68] and can be triggered by, e.g., a difference in water surface eleva-
tion between main channel and floodplain, a varying floodplain width and height, a sudden 
change in floodplain roughness, or river bends [69].

Transverse currents and shear layer hydrodynamics provided the basis for the defini-
tion of two distinct lateral sediment transport mechanisms for the formation and evolution 
of fluvial levees, advective and turbulence induced sediment transport, respectively [26]. 
Advective transport is associated with a lateral flow component caused by non-uniform 
flow conditions and the related transport of suspended sediment from the main channel 
onto the floodplain (Fig. 4a). Conversely, turbulence induced transport, often reported as 
diffusive sediment transport, results from the macro eddy structures in the hydraulic inter-
face conveying suspended sediment from the main channel towards the floodplains. This 
transport mode occurs without a direct lateral flow component (Fig. 4b).

Once suspended sediment is transported onto the edge of the floodplain, the hydrau-
lics must change to facilitate conditions for its deposition so that it can contribute to the 
front loading of levees. This is closely connected to the aforementioned ratio between the 
floodplain water depth and bankfull channel depth and, hence, also to the preexisting levee 
height, the difference in water surface elevation between main channel and floodplain (in 
case of advective transport), shear layer hydrodynamics (in case of turbulence induced 
transport) and grain size of the suspended particles. Consequently, the prevailing hydraulic 
conditions define the available time for settling and thus how far the suspended sediments 
can be transported onto the floodplain before they will be deposited [60]. For example, if 
the suspended sediment is composed of mainly wash load, it will decant evenly over the 
floodplain or only in the stagnant zones [70, 71], being one reason for the observed smaller 
levees in tidal rivers (cf. Sect. 1). In the case of turbulence induced transport, there exists 
a close connection between the width of the shear layer and the lateral extent of the over-
bank deposition [59] due to the shear layer hydrodynamics. Moreover, the flume studies 
of James [72] and Fraselle [73] provide evidence that also the floodplain roughness affects 
the depositional pattern, as these studies showed that overbank sedimentation occurs closer 
to the floodplain edge in the case of a rough floodplain compared to a smooth floodplain. 
This observation can be associated with the modification of the shear layer hydrodynam-
ics by the floodplain roughness. We note that interface hydraulics and sediment deposition 
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processes are also impacted by the presence of riparian vegetation [e.g. 74–77], which we 
will highlight in some more detail in Sect. 5.

The question which transport process dominates levee formation has been controver-
sially discussed. Several studies, mainly flume studies, investigated the sediment transport 
to overbank sections due to turbulence induced transport in straight prismatic sections 
[e.g., 33, 59, 60, 72, 73, 78], but it was also argued that turbulent induced transport is 
limited to the simplified conditions of a straight channel and that it may hence not be rel-
evant in field conditions characterized by, e.g., changing floodplain widths [79]. The latter 
statement can be supported by the findings of the field study of Iseya and Ikeda [40] who 
observed fluvial levees at locations where water flowed from the main channel onto the 
floodplain, indicating advective transport conditions. Similarly, based on their investigation 
of the levee evolution at sections of the Columbia River during a flood in 2000, Filgueira-
Rivera et al. [27] concluded that advective transport was the dominant process at this flow 
situation and assumed that turbulent induced transport is only important during the initial 
process of levee formation. This indicates that both advective and turbulent induced trans-
port are relevant for fluvial levee dynamics, which was indirectly confirmed by Smith and 
Perez-Arlucea [38] in their investigation of flood deposits at the Saskatchewan River, Can-
ada. On the one hand they observed ripple structures on levee deposits indicating bedload 
transport on top of the levees, and therefore advective transport, while, on the other hand, 
they observed massive levee deposits without ripples that were strongly restricted in width, 
which they associated with turbulent diffusion processes.

Similarly, the flume studies of Bathurst [59] and Branß et  al. [61, 80] showed that 
both transport mechanisms can be observed in experimental flumes. The experiments of 
Bathurst et  al. [59] in a straight channel resulted in turbulent induced depositional pat-
terns, whereas their experiment in a meandering compound channel resulted in widespread 
sedimentation patterns on the floodplain, which were most distinct at the downstream end 
of the meander tongues. Although not directly proven by hydraulic data, this observation 
indicates that advective transport prevailed due to the influence of the meandering chan-
nel planform. Using sand as movable bed material, Branß et al. [61] managed to induce 
advective transport at the upstream end in a straight asymmetric compound channel by 
feeding the flow solely via the main channel. This resulted in the development of a lateral 
flow component towards the floodplain at the beginning of the flume and a depositional 
feature of sediments which is typical for advective transport (cf. Fig. 5a). Modifying the 
inlet section to feed the flow to the main-channel and the floodplain, longitudinal depo-
sitional patterns could be produced along the floodplain edge which are typical for turbu-
lence induced sediment transport (Fig. 5d). The comparison of Fig. 5a, d visualizes that 
the deposits caused by advective transport reached further into the floodplains compared to 
those caused by turbulence induced transport revealing the significance of local hydraulic 
conditions for the pattern of floodplain deposits at the floodplain edge. The experimental 
conclusions in regard to the sedimentation patterns can be further substantiated by photo-
graphs of sediment deposits at the Elbe River in Germany after a flood in 2011 (Fig. 5b, 
e), which show a remarkable similarity with the depositional patterns in the flume experi-
ments of Branß et al. [61]. Overall, this supports the hypothesis of Adams et al. [26] that 
advective transport results in wide and gently sloped levees due to the slowly decreasing 
transport capacity of the flow entering the floodplain, whereas turbulence induced trans-
port forms narrow and steep levees along the floodplain edge.

We note that the same depositional features could be achieved in experiments of Branß 
et al. [61] that were carried out with similar inlet conditions but using lightweight mate-
rial as movable bed material instead of sand (Fig. 5c, f). Lightweight materials have been 



569Environmental Fluid Mechanics (2022) 22:559–585	

1 3

Fi
g.

 5
  

D
ep

os
iti

on
 p

at
te

rn
s 

in
du

ce
d 

by
 a

dv
ec

tiv
e 

an
d 

tu
rb

ul
en

ce
 s

ed
im

en
t t

ra
ns

po
rt 

in
 th

e 
ex

pe
rim

en
ta

l fl
um

e 
of

 B
ra

nß
 e

t a
l. 

[6
1]

 c
on

du
ct

ed
 w

ith
 s

an
d 

(a
 a

nd
 d

) a
nd

 p
ol

ys
ty

-
re

ne
 (c

 a
nd

 f)
 a

s 
se

di
m

en
t o

ve
r a

 d
ur

at
io

n 
of

 9
6 

an
d 

19
.5

 h
, r

es
pe

ct
iv

el
y.

 S
im

ila
r s

ed
im

en
ta

tio
n 

pa
tte

rn
s 

ob
se

rv
ed

 a
t t

he
 E

lb
e 

R
iv

er
 a

fte
r a

 fl
oo

d 
ev

en
t i

n 
20

11
 (b

 a
nd

 e
) i

nd
i-

ca
te

 c
om

pa
ra

bl
e 

tra
ns

po
rt 

pr
oc

es
se

s i
n 

th
e 

la
bo

ra
to

ry
 a

nd
 fi

el
d 

si
tu

at
io

ns
 (b

 a
nd

 e
: c

ou
rte

sy
 o

f A
rtl

en
bu

rg
er

 D
ei

ch
ve

rb
an

d)



570	 Environmental Fluid Mechanics (2022) 22:559–585

1 3

successfully used in many experimental studies to investigate various morphodynamic pro-
cesses [81], and one of the main advantages of using lightweight material in flume experi-
ments is that the morphodynamic processes can be substantially accelerated [e.g. 82]. 
This becomes visible from the amount of deposited floodplain sediments when comparing 
Fig. 5a, c as well as Fig. 5d, f, given the fact that the duration of the lightweight experi-
ments was a fifth of the sand experiments. Although a strict hydraulic and morphological 
similarity cannot be achieved, as not all relevant scaling criteria can be adequately fulfilled 
in experiments with lightweight sediments [81, 82], the similarity in depositional features 
obtained in the sand and lightweight experiments of Branß et al. [61] reveal the possibility 
to use such an experimental approach to study the formation of fluvial levees. This in turn 
means that such a modelling approach can be classified as a so-called analogue-reach scale 
model, i.e. a process-focused physical model with an added degree of scaling relaxation 
[82]. In the following sections we will make use of results of further experiments by Branß 
et al. [61] that have been published in a report in German language to discuss the effect of 
bedforms in the main channel as well as vegetation along the floodplain edge on fluvial 
levee formation.

4 � Impact of bedform dynamics on levee formation

Most of the findings presented before regarding the relevant hydrodynamic processes for 
the formation of levees originate from theoretical considerations based on field observa-
tions and on flume studies that used compound channels with fixed beds. However, since 
the main channel bed material plays a key role for the formation of fluvial levees, it is also 
necessary to consider the impact of main channel morphodynamic processes on the inter-
face hydrodynamics and associated lateral sediment transport patterns. In particular, bed-
forms in the main channel of sand bed rivers are known to impact velocity and discharge 
distribution [e.g. 73, 83] and have the potential to alter the impact of floodplain roughness 
and vegetation along the floodplain edge on channel conveyance in straight [84] as well as 
meandering compound channels [85]. Consequently, bedforms may serve as an additional 
source of sediment supply for the formation of levees.

The impact of bedforms has only been addressed in a limited number of experimental 
studies focusing on the formation of fluvial levees [61, 73, 80, 86], and we are not aware 
of any field or numerical studies that have addressed the interplay between hydrodynam-
ics, migrating bedforms, and the evolution of fluvial levees. Moreover, due to the com-
plexity of the time dependent hydrodynamic and sediment transport processes associated 
with migrating bedforms, their impact on fluvial levee formation has only been studied in 
a qualitative way in the aforementioned studies, as detailed information on instantaneous 
hydrodynamics and sediment transport patterns were not available. Nonetheless, in their 
analogue-reach scale model experiments with lightweight sediment, Branß et al. [61, 86] 
observed that bedforms contributed to an increased amount of sediment that was trans-
ferred onto the floodplain edge compared to experiments with a similar sediment transport 
rate in the main channel but with a flat mobile-bed. Moreover, they were able to correlate 
the passage of single high bedforms with an increase in the deposited levee mass. These 
observations may be explained by considering the flow features associated with bedforms.

There exists ample evidence that the presence of lower-regime bedforms promotes 
entrainment of more sediment into suspension compared to flows over plane beds [e.g. 
87–89]. This is related to the high turbulence region downstream of dune crests which is 
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characterized by a separation and wake zone extending to the next downstream dune. The 
flow reattaches to the mobile bed surface at the lower stoss side of the next downstream 
dune resulting in the formation of so-called kolk-boil vortexes [90], which emerge intermit-
tently as boils at the surface [91] (cf. Fig. 6). These turbulent flow features, which are more 
pronounced over 3D-dunes than over 2D-dunes [92], have the potential to lift and transport 
large volumes of bed material in suspension [93–96]. Thus, bedforms induce an additional 
shear region above the channel bed in the shear dominated interface region between the 
main channel and floodplain [e.g. 97] and can cause an even higher sediment concentra-
tion close to the water surface in the interface region. Accordingly, we hypothesize that 
bedforms may enhance the growth of fluvial levees by increasing the amount of suspended 
sediment available to be transferred onto the floodplain by advective or turbulence induced 
transport (cf. Fig. 4).

This hypothesis can be supported by surface flow velocity measurements carried out in 
the experiments of Branß et al. [61]. Figure 7 shows the spatial distribution of the lateral 
flow velocity component (v; averaged over 20 s) for a 3 m long channel section without 
bedforms (Fig. 7a) and with asymmetric bedforms (Fig. 7b). It is worth mentioning that 
the corresponding experiments were carried out with similar sediment transport rates and 
water surface elevations, but a different discharge, and that the similarity in sediment trans-
port rates was achieved by regulating the sediment volume in the flume. The distribution 
of lateral flow velocities in Fig. 7b shows that the bedforms induced a surface flow pattern 
towards the floodplain over their stoss side (yellow regions) and towards the main channel 
in the crest region and over their lee sides (blue regions), respectively. A closer inspection 
of Fig. 7b indicates that the strength of the lateral flow component correlates with the size 
of the bedforms, and this was also observed visually in further experiments. Since Branß 
et al. [61, 86] reported a 6–7 times larger mass of the levee deposits when bedforms were 
present, it can be concluded that the turbulence induced lateral sediment transport, which 
was present in the flat bed case, was superposed by local advective transport associated 
with the lateral flow component caused by the bedforms. This indicates again that both 
advective and turbulent induced transport are relevant for fluvial levee dynamics and may 
occur simultaneously, especially in the presence of bedforms.

It needs to be mentioned that individual dunes in the flume experiments reported by 
Branß et al. [61, 86] were rather high as they reached up to approx. 80% of the main chan-
nel depth. In particular experiments it could also be seen that the bank-near high dune 
crests directly supplied particles to the floodplain. It is therefore possible that the impact 
of bedforms was overestimated in the analogue-reach scale model compared to prototype 
situations in real rivers, although the general hydraulic and depositional patterns in com-
pound channels could be reproduced. On the other hand, sand rivers can also feature large 
bedforms like bars that are superimposed with dunes [100]. Bars, and especially migrating 
alternate bars, are a common feature in trained lowland rivers [e.g. 101–103] such as the 
lower Elbe River, Germany (where they grow up to approx. 5 m in height) and the lower 
Rhine River in the Netherlands [104, 105], i.e. rivers reaches that are associated with levee 
formation [17, 48]. Since fluvial bars impact flow routing [106] and are also associated 
with river meandering [e.g. 107, 108], they may alter the interface hydraulics between the 
channel parts and hence be a missing link that helps to explain differences in levee geom-
etries that have been reported in the literature.

In this context, Adams et al. [26] found that levees at the Saskatchewan River in Canada 
are wider and less steep than levees at the Columbia River, even though both are anastomo-
sing rivers featuring similar sediment characteristics. They explained the observed differ-
ences with the two aforementioned distinct transport processes (advective and turbulence 
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related sediment transport, c.f. Sect. 3 and Fig. 4), induced by the different shape of the 
floodplains. In order to shed more light on the effect of main channel morphodynamics on 
levee formation, we inspected satellite images of the Saskatchewan and Columbia River 
in Canada. From this qualitative inspection, which is not shown here, we found that parts 
of the Saskatchewan River are covered by migrating alternate bars, while in the Columbia 
River such large scale bedforms are absent. Since the modification of the flow field by 
alternate bars may induce, to some extent, advective transport, this observation can further 
support our hypothesis of the importance of morphodynamic processes in the main channel 
on levee formation and characteristics.

5 � Impact of floodplain edge vegetation on levee formation

Adding another layer of complexity, the hydraulic interface region in compound channels 
is also influenced by the presence of riparian vegetation (i) distributed over the floodplain 
[e.g. 68, 76, 77], (ii) along the floodplain edge [75, 77] or (iii) at the banks [109–112]. Such 
vegetation can support the development of additional large horizontal coherent structures 
dominating the interface hydraulics between the channel parts. The size and strength of 
these additional coherent structures depend on many different factors which are associated 
with vegetation characteristics, channel geometry, channel morphology, and hydrological 
boundary conditions [e.g. 113]. As a consequence, these coherent structures enhance the 
transport of suspended particles towards the floodplain compared to the unvegetated case 
[28–30, 114–116]. It is therefore not surprising that riparian vegetation enhances the for-
mation of fluvial levees as has been confirmed by various field studies [17, 27–30] and few 
laboratory [61, 73] and numerical studies [14, 73, 117]. Since flow-vegetation-sediment 
interaction has been reviewed in various scientific publications [e.g. 76, 118–122], we will 
not review all processes in detail in the following.

We are not aware of studies that have specifically addressed the dependency of fluvial 
levee formation and geometry on the presence of vegetation except for the study of Branß 
et  al. [61]. Using again experimental data from the analogue-reach scale model tests of 
Branß et al. [61] that were carried out with floodplain-edge vegetation, we will discuss this 
issue in the following after providing some important experimental details. The experi-
ments with floodplain vegetation were carried out by simulating a continuous vegetation 
strip along the floodplain edge as well as three intermittent vegetation patterns. For the 
continuous vegetation pattern, 1.2 m long and 0.12 m wide patches, composed of staggered 
emergent rigid cylinders, were used. Intermittent vegetation patterns were formed by leav-
ing gaps of 0.5, 1 and 1.5 times the patch length, respectively. The cylinders had a diameter 
of 0.002  m and the patches had a porosity (φ = 0.988) comparable to the one of young 
willows [123]. Rigid cylinders were used to mimic the vegetation stems, which is a com-
mon strategy in hydraulic scale models, and the flexibility of the vegetation was intention-
ally neglected as it would have added a further level of complexity in the investigations. 
The experiments were carried out with the same discharges, comparable water stages (an 
increase of 0.4 mm due to the vegetation pattern was in the range of the measurement accu-
racy), flume slope, lightweight material, and main channel transport rates as in the experi-
ments carried out without vegetation.

Although the observed levee widths in the experiments with the continuous vegetation 
strip were similar to the unvegetated case, the deposited levee mass increased by approxi-
mately 30%. Moreover, the height of the deposits exceeded the height of the artificial grass 
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blades which formed the floodplain bed roughness (see [86] for details) and simulated 
understory grasses (similar to the approach chosen by [112]). The depositional patterns 
are exemplarily visualized in Fig. 8 by a combination of orthophotos with digital elevation 
models of the floodplain deposits. A closer inspection of the shown depositional features 
reveals a shift of the highest levee elevation towards the floodplain so that the classical 
levee shape (cf. Fig.  2) was nearly reversed as schematically shown in Fig.  9. Although 
detailed hydraulic data were not available, this change in pattern may be explained by 
changing hydrodynamic conditions. Experiments by Mulahasan et  al. [77] and Sun and 
Shiono [75] show that the presence of a continuous vegetation strip along the floodplain 
alters the spanwise velocity distribution compared to an unobstructed floodplain. Sun & 
Shiono performed experiments with a fixed bed compound channel geometry with and 
without one-line emergent vegetation with the same water depth and found that the span-
wise flow velocity distribution was characterized by a pronounced velocity dip in the veg-
etation zone. Such a dip could also be inferred from the experiments by [61], as the mean 
velocity within the vegetated area decreased by approximately 55% compared to the unveg-
etated case. This in turn means that, compared to the unobstructed case, the lower velocity 
in the vegetated area facilitates enhanced deposition which is reflected by the increased 
deposited mass. In fact, it is well known that emergent or submerged vegetation, as well as 
vegetation patches, alter the turbulent flow field and impose a higher flow resistance com-
pared to flat bed situations [e.g., 119–122, 124–126].

Moreover, assuming in accordance with Sun and Shiono [75] a significant decrease of 
the flow velocity in the vegetation strip, it can be hypothesized that the main channel-flood-
plain shear layer will be more pronounced compared to the non-vegetated case. This means 
that more sediment may be transferred onto the floodplain, and that the shear layer can 
penetrate deeper into the vegetation patch transferring the particles deeper into the flood-
plain. This in turn would reflect the observed difference in levee shape at the main channel 
margin. At the same time, an additional form-induced shear layer will form at the margin 
from the vegetation patch to the floodplain due to differences between velocities within the 
vegetation patch and over the floodplain. The influence of this shear layer may explain the 
shape of the levee at the floodplain margin. It is interesting to note that in such a case the 
formation and growth of the levee may be associated with both front loading and backload-
ing processes. The sediments are transported onto the floodplain by front loading and the 
levee shape seems to be reworked at the floodplain margin by backloading. This in turn 
would mean that the width of the vegetation strip is an important parameter governing the 
levee shape, as it separates the two mentioned shear layers. If this strip is getting smaller 
in width, the shear layers may interact and become dependent from each other, so that the 
shape of the sediment deposits, and hence of the levee, will be affected.

In this context it is interesting to note that the experiments with intermittently arranged 
vegetation patches resulted in a decrease of the levee width and total deposited levee mass 
with increasing patch-spacing. This decrease was accompanied by a varying levee geom-
etry between the gaps and within the vegetation patches. While the geometry in the middle 
of the patches resembled the levee geometry that was observed in the experiments with 
the continuous vegetation strips, it changed to the ’classical’ shape in the unvegetated gaps 
(c.f. Fig. 9), which further substantiates our above hypothesis.

Moreover, although the total amount of deposited sediments decreased with increasing 
gap length, Branß et al. [61] found that the distribution of the deposited sediments varied 
between the vegetated and unvegetated areas dependent on the gap length. In the experi-
ments with the smallest gap (0.5 times the patch length) the mean levee mass and width 
was about 15% higher inside the vegetated patches than in the unvegetated gap areas. On 
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the other hand, for the larger gap lengths of 1 and 1.5 times the patch length, the mean levee 
mass and width in the vegetated sections was about 20–25% lower than in the unvegetated 
gap areas. The reasons for the latter observation remain partly unclear due to the lack of 
hydraulic data and it can only be hypothesized that they are related to the approach velocity 
associated with each patch, which increased with increasing patch spacing. Visual observa-
tions during the experiments indicated that, for the smallest gap length, the wake formed 
by the upstream vegetation patch influenced the hydrodynamics and the shear region. This 
influence ceased with increasing gap length, as it could no longer be observed for the larger 
patch spacings and the higher approach velocity caused that most of the sediments depos-
ited in the wake zone of the patches. On the other hand, vegetation and vegetation patches 
may have a destabilising effect on the sediments due to high local turbulent intensities and 
vertical velocity components in their wake, which may result in redistribution of deposited 
sediment particles. This in turn could also be one reason for the observed different deposi-
tion patterns dependent on patch length.

Finally, it needs to be mentioned that the altered hydrodynamic patterns in the vegetated 
areas resulted in a more pronounced deposition of lightweight particles between the blades 
of the artificial grass mats which served as floodplain roughness (understory grasses). Once 
the deposits exceeded the blade heights, the surface particles could be more easily eroded 
at the floodplain edge from which they were transported onto the floodplain by lateral eddy-
induced currents. As the flow force reduced with increasing distance to the floodplain edge, 
the particles subsequently deposited in more sheltered areas. This aspect may be attributed 
to scale- and laboratory effects of the analogue-reach scale model [e.g. 82, 127]. Moreover, 
as the experiments were carried out with lightweight sediments, we acknowledge that a 
verification of our conclusion requires further investigations with different bed materials or 
by field surveys. Such investigations could also contribute to the verification of the findings 
of the numerical study by Boechat Albernaz et al. [14] who found that dense vegetation led 
to narrower levees compared to unvegetated cases in fluvial-tidal areas. Finally, we note 
that we also observed levee deposits in independent experiments carried out in the same 
flume with a similar setup but with sand as movable bed material [84]. The focus of this 
study was, however, not on levee formation but on the impact of bedforms and bank veg-
etation on conveyance capacity of compound channels, so that the levee formation was not 
investigated in detail.

6 � Summary and conclusions

This paper provided an overview over the characteristics and formation of fluvial levees in 
general and in straight trained river sections in particular. The key characteristics and for-
mation processes were related to different factors that have been identified in the literature 
to affect the formation and evolution of fluvial levees. Combining existing knowledge in 
regard to hydrodynamics and sediment transport over dunes and flow-vegetation-sediment 
interaction with results and observations of recent flume studies, we provided support for 
our hypotheses that main channel morphodynamic processes and riparian vegetation are 
important factors affecting levee formation and geometry. The main hypotheses from our 
study can be summarized as follows:
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	 (i)	 Lateral sediment transport processes associated with levee formation, advective and 
turbulent induced transport, as well as corresponding levee geometries can be suc-
cessfully simulated in an analogue-reach scale model,

	 (ii)	 Bedforms alter the interface hydraulics between the main channel and the floodplain, 
promote entrainment of sediment into suspension, and thus enhance levee formation,

	 (iii)	 Riparian vegetation stripes along the floodplain edge enhance levee formation by 
modifying the interface hydraulics. The changed structure of large horizontal coher-
ent structures, due to the vegetation and the formation of an additional shear layer at 
the vegetation-floodplain margin, indicated that vegetation alters the levee geometry 
by shifting the highest levee elevation towards the floodplain, so that both front- and 
backloading are important processes.

Our results and hypotheses may be of direct relevance for sustainable design of nature-
based solutions such as riparian buffers or so-called two-stage drainage channels for agri-
cultural areas. Nevertheless, there are still several questions that need to be addressed in 
further studies to allow for a holistical understanding of fluvial levee evolution, as it is the 
complex aftermath of various interlinked processes. For instance, little is known regarding 
the impact of specific river training measures on levee formation and characteristics, such 
as revetments, artificial cut-offs or groynes. The former measures impacted fluvial levees 
at the Maros River in Hungary [9], and the elongation of groynes in the Elbe River led to 
the formation of new levees which were shifted towards the main channel [128]. Another 
interesting future research question, which has not yet been addressed in depth, is related 
to the implications of fluvial levees on compound channel hydrodynamics, as most existing 
studies have focused on the formation and evolution processes but not on the true interac-
tion between compound channel flow and fluvial levees.
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