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Abstract
The present study aims to develop a two-dimensional model for stream-wise mean velocity 
distribution in a steady, uniform, sediment-laden open-channel turbulent flow considering 
all the flow velocity components. The derivation starts from the Reynolds-averaged Navier-
Stokes (RANS) equation and unlike most of the researchers incorporates the effect of sedi-
ment presence in suspension through modified density and viscosity of the sediment-mixed 
fluid. The resulting partial differential equation is solved numerically using the finite differ-
ence method. The model is valid for wide or narrow open channels, and it includes the dip-
phenomenon, which is the reason for maximum velocity below the free surface in the case of 
a narrow open channel. Results show that the cross-sectional velocity contours shift towards 
the boundary wall with an increase in sediment concentration in the flow and for the case of 
transverse velocity distribution, the effect of sediment concentration is mainly observed in 
the main flow region. It is also observed that for smaller aspect ratio, only one circular vor-
tex exists in the secondary circulation and as the aspect ratio increases, the number of circu-
lar vortexes also increases. The distribution of velocity along the transverse direction shows 
a periodic variation due to periodic assumptions in vertical and transverse velocity compo-
nents, which are appropriate for realistic flow conditions. The model has been validated for 
centreline velocity distribution along vertical direction by comparing it with relevant data 
sets for both sediment-mixed fluid and clear fluid. Due to the lack of cross-sectional and 
transverse velocity distribution data for sediment-mixed fluid in the literature, the model has 
been verified with clear water laboratory data and also with existing models for clear water 
flow. Good agreement in all the cases shows the efficiency of the proposed model.

Article highlights 

•	 A model is formed to study the 2D distribution of stream-wise velocity in an open-
channel sediment-laden turbulent flow.

•	 The effect of concentration on the transverse and cross-sectional velocity profiles is 
shown.

•	 Velocity profiles are validated with experimental data, which shows good agreement.
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1  Introduction

Turbulent velocity distribution in a sediment-laden flow is an important topic of research in the 
field of sediment transport. Different theoretical analyses proved that the behaviour of velocity 
profile in sediment-laden flow is similar to that of clear water but not the same. Several factors 
like density, viscosity are changed due to the presence of particles in the flow, and these become 
functions of concentration. Regarding the study of turbulent velocity profiles, von Karman [49] 
and Prandtl [39] were the pathfinders whose law of wall is till now used in the study of turbu-
lence. After that, a number of researchers examined the law of wall, including various factors of 
turbulence and many of these studies also include the effect of sediment presence. For example, 
Vanoni and Nomicos [48], Elata and Ippen [14] also showed the validity of log-law in sediment-
mixed fluid, with a decrement in the value of the von-Karman constant. Einstein and Chien [13] 
proved that the main effect of sediment occurs near the bottom boundary. Coleman [7, 8] showed 
that only log-law is not sufficient to describe the velocity throughout the channel depth and near 
the free surface, the velocity profile deviates from log-law, which is to be corrected using a wake 
parameter. He claimed that von Karman constant of clear water flow does not change in sedi-
ment-laden flow, but the wake parameter changes. Muste and Patel [35] experimentally studied 
the log-law in the presence of sediments and showed that low concentration hardly affects the 
log-law near the bed. Umeyama and Gerritsen [46] studied the vertical distribution of velocity in a 
sediment-laden flow from the mixing length point of view. A number of studies (Coles [10], Cole-
man [7], Sarma et al. [43], Coleman [8], Guo [16], Sarma et al. [44], Absi [1], Kundu and Ghoshal 
[25]) can be found in the literature that studied velocity distribution in turbulent flow for clear and 
sediment-laden flows. Mohan et al. [32] studied the simultaneous distribution of fluid velocity and 
concentration by considering the effect of sediment presence through the stratification concept. 
However, all these studies mainly focused on the one-dimensional distribution of longitudinal 
velocity. Study of two-dimensional distribution of stream-wise mean velocity in the presence of 
sediments has not been paid equal attention.

One crucial aspect in open-channel flow is secondary current which is always present and inde-
pendent of the channel geometry (Yang [53]). Study of secondary current has been a very impor-
tant topic of research to the science community as it not only helps to understand the flow geom-
etry but also explains the variation in sediment bed texture and bed topography (Yang et al. [55]). 
Several researchers (Nezu and Rodi [37], Nezu and Nakagawa [36], Wang and Cheng [50], Yang 
et al. [55]) studied the causes of the generation of secondary current. Many researchers included 
the effect of secondary current while modelling stream-wise mean velocity distribution along a 
vertical in an open-channel flow. Lassabatere et al. [28] studied velocity distribution for the outer 
region and the central part of the open channel focusing on an analytical approach. Their model 
is capable of explaining different kinds of flows, including dip-phenomenon, which arises due to 
the presence of secondary current in narrow channels where the maximum velocity occurs below 
the free surface. Focusing on the dip-position and the centreline wake strength coefficient, quite a 
number of works have been done by Guo and Julien [18–21]. Kundu and Ghoshal [25] developed 
a complete analytical model for stream-wise mean velocity distribution along a vertical, known 
as total-dip-modified-log-wake law. Apart from these works, several works (Yang et al. [54], Guo 
[17], Kundu et al. [27]) can be found in the literature that worked on dip-phenomenon to study 
velocity distribution. Nevertheless, these works are also mainly based on the one-dimensional 
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distribution of stream-wise mean velocity that too mostly for clear water flow only, leaving a scope 
to explore the case of two-dimensional.

Out of the very few works on two-dimensional velocity, Sarma et al. [43] studied velocity 
distribution in a smooth rectangular channel by dividing the channel into four regions though 
dip-phenomenon was not addressed there. Coleman and Alonso [9] introduced Cole’s wake 
function to the velocity distribution formula for narrow-deep open channels; but the verifica-
tion was conducted only for the perpendicular bisectors of cross sections. Tominaga et al. [45] 
experimentally measured the three-dimensional turbulent structure in straight open-channel 
flows and showed that the secondary current affects the primary mean flow. They classified 
their experiments into three groups—(i) smooth rectangular open channel, (ii) trapezoidal 
open channel and (iii) rectangular rough open channel. Though in the last group, they consid-
ered roughness in the bed, the roughness was not due to erodible sediment bed and the rough-
ness elements were glass beads that were densely attached to the wall. Lu [31] studied steady 
uniform flow through open channels deriving a two-dimensional velocity expression though it 
needed modification for application in rivers with narrow-deep cross section. Yang et al. [54], 
Bonakdari et al. [3], Absi [1] studied the effect of secondary current on the centreline verti-
cal shear stress distribution. Guo and Julien [18] started from the Navier–Stokes equation in 
order to study the turbulent velocity profile for sediment-laden flow but ultimately reduced 
the equation to a one-dimensional form only. Pu [41] proposed a velocity profile represent-
ing steady, uniform and fully developed turbulent open-channel flow. The model contains the 
effect of secondary current and is valid for both smooth and rough bed flows. Guo [17] studied 
the modified log-wake law for cross-sectional and centreline velocity distribution for smooth 
rectangular open-channel flow by including dip-phenomenon, ignoring the transverse and ver-
tical velocity components. A recent study of Lu et al. [30] started from the Reynolds equa-
tion for turbulent flow and analytically solved the two-dimensional velocity distribution along 
vertical and transverse directions. Though their model showed dip effects, they neither kept 
all the important terms of the Reynolds equation nor included the effect of sediment pres-
ence. Recently, Mohan et al. [33] developed a model for the two-dimensional distribution of 
stream-wise mean velocity starting from the RANS equation and taking into account the terms 
neglected by Lu et  al. [30]. Secondary flows along the vertically upward direction and the 
lateral direction were considered in the model, which were taken as functions of lateral and 
vertical co-ordinates. Their model is capable of predicting dip phenomenon that occurs in a 
narrow open-channel flow and can also explain the periodic nature of transverse velocity for 
wide open-channel flow. But they did not take into account the effect of sediment presence in 
the flow and they themselves mentioned it as a possible future extension of their model.

From the aforementioned literature review, it can be noted that existing studies on veloc-
ity distribution were mostly on the vertical distribution of stream-wise mean velocity, i.e. a 
one-dimensional study. Our motivation for the present study comes from the fact that the dis-
tribution of stream-wise mean velocity along vertical and lateral directions in an open-channel 
turbulent flow incorporating the effects of sediment concentration, secondary current and dip-
phenomenon has not been studied yet. For limited two-dimensional studies available in the 
literature, either dip-phenomenon is not included in the model or the transverse/vertical com-
ponent of velocity is not taken into account or relevant terms are neglected from the governing 
equation or sediment suspension effect is not incorporated. The present study aims to develop 
a model starting from the RANS equation for stream-wise mean velocity distribution, which 
considers the transverse and vertical velocity components for a steady and uniform flow along 
the main flow direction. The model includes the dip effect and most importantly, unlike the 
existing researches, includes the effect of sediment suspension. This work can be considered 
as an extension of Mohan et al.’s [33] work who developed a similar model for clear water 
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flow. So the main objectives of the present study are (i) starting from the RANS equation, to 
develop a two-dimensional distribution model of longitudinal mean velocity for a steady, uni-
form turbulent flow; (ii) to include the effect of secondary current and dip-phenomenon; (iii) 
to consider the effect of sediment presence in suspension through modified density and viscos-
ity; (iv) to solve the developed partial differential equation by numerical method; and (v) to 
validate the model under limited conditions by comparing it with available experimental data.

2 � Mathematical modelling

We consider a steady, uniform (along stream-wise direction), sediment-laden turbulent flow 
through a rectangular open channel of width 2B and height H. Let u be the mean velocity of 
the flow along the longitudinal (stream-wise) direction x, v be the mean velocity of the flow 
along the transverse direction y and w be the mean velocity of the flow along the vertical 
direction z in the cartesian co-ordinate system, i.e. u, v and w are the stream-wise, transverse 
and vertical components of mean velocity, respectively (Fig. 1). Since the flow is uniform in 
the longitudinal direction, the velocity components u, v and w are independent of x. Let u′ , v′ 
and w′ be the fluctuation components of u, v, w, respectively. For steady, uniform, sediment-
laden turbulent flow in an open channel, the continuity equation and the Reynolds-averaged 
Navier–Stokes (RANS) equation in the x-direction can be expressed as (Guo and Julien [18])

where � is the angle between the channel bed and the horizontal line; g is gravitational 
acceleration; �m(=

�m

�
) is the kinematic viscosity of sediment–fluid mixture; �m is the 

dynamic viscosity of sediment–fluid mixture; �m is the density of sediment–fluid mixture; 
� is the domain averaged density of sediment–fluid mixture which can be expressed as

considering �m does not change along the stream-wise direction. Here A = 2B × H be the 
cross-sectional area of the channel and dA = dydz . Let S = sin � be the bed slope of the 
channel.

Rearranging the terms and substituting S = sin � into Eq. (2), one gets

where �ty and �tz are the total shear stresses given by 
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 The first terms of the right hand sides of Eqs. (5a) and (5b) are the shear stresses due to vis-
cosity, and the second terms of the right hand sides of Eqs. (5a) and (5b) are the shear stresses 
due to turbulence or Reynolds shear stresses. According to the Boussinesq hypothesis, 

 where �ty and �tz are the coefficients of turbulent diffusivity or eddy viscosity along trans-
verse and vertical directions, respectively. Then, from Eqs. (5a) and (5b) with the help of 
Eqs. (6a) and (6b), we get 

 Inserting the values of �ty and �tz in Eq. (4), the RANS equation can be expressed as:

An approximate formulation of the eddy viscosity �ty of Eq. (8) is obtained by Ikeda [22] 
from the logarithmic law as

in which � is the von Karman constant and ū∗ is the spatially averaged shear velocity. ū∗ 
varies sinusoidally in the transverse direction in a wide channel due to the secondary cur-
rents. A parabolic distribution of the eddy viscosity �tz is often modelled by using the lin-
ear law of fluid shear stress and the logarithmic law of stream-wise mean velocity as (Graf 
[15], Yang [52])

in which u∗b is the local bed shear velocity. Wang and Cheng [50] developed a relation 
between the spatially averaged shear velocity ū∗ and the local bed shear velocity u∗b in nar-
row open channels as follows:
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where Ar = 2B∕H is the aspect ratio of the channel. Using Eq. (11), the eddy viscosity �tz 
can be expressed as

where � = Ar∕[2 ∫ Ar∕2

0
[1 + 0.18 cos(�t)]−1∕2 dt] is a constant.

The density �m of fluid–sediment mixture depends on the volumetric concentration, densi-
ties of fluid and sediment particles and can be expressed as [12]

where �s is the density of sediment; �f  is the density of fluid; C is the volumetric concentra-
tion of sediment; (1 − C) is the volumetric concentration of fluid. When the accelerating 
or decelerating sediment particles transport through the fluid, the surrounding fluid also 
moves. As the sediment particles and fluid cannot occupy the same physical space simulta-
neously, we need to include the added fluid mass in the density of sediment particles. The 
modified density of sediment particle �s becomes (Montes [34])

where K is the coefficient of added fluid mass. Substituting the modified value of �s in Eq. 
(13), the modified density of fluid–sediment mixture becomes

where R =
�s

�f
− 1 is the submerged specific gravity of sediment particles.

Pal and Ghoshal [38] studied the effect of suspension concentration on the kinematic vis-
cosity of the fluid–sediment mixture and suggested that the kinematic viscosity of fluid–sedi-
ment mixture �m can be expressed as

where �f  is the kinematic viscosity of the fluid, �r is the relative viscosity of the sedi-
ment–fluid mixture, R is the submerged specific gravity of sediment particle, C is the volu-
metric concentration of sediment particle. Many expressions of �r are available in the lit-
erature. Here, one of the most widely cited expressions of �r suggested by Barnes et al. [2] 
has been considered which is given by

where [ � ] is the intrinsic viscosity which can be taken as 3 following Leighton and Acrivos 
[29] and Cmax is the maximum volumetric concentration of suspended sediment particles, 
taken as 2/3 following Cheng [5]. Then, the expression of �r can be written as

Combining Eqs. (16), (17) and (18), �m can be written as
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In order to compute the stream-wise mean velocity distribution, a two-dimensional expres-
sion of concentration distribution, i.e. an expression of concentration in the yz plane, needs 
to be considered. To the best of the authors’ knowledge, no significant expression of con-
centration in the yz plane is available in the literature. So to find C(y, z), we apply the con-
cept of secondary circulation in yz plane with a simple liberalization of the flow field [11]. 
According to Coleman [6] and Kundu and Ghoshal [26], for upward secondary current, 
concentration increases and downward secondary current, it decreases and the concentra-
tion varies periodically along the lateral direction with periodicity 2H of the span of coun-
ter rotating secondary cells. Generally, for the vertical distribution of sediment concentra-
tion, the Rouse equation is considered [42]. Therefore, the final expression of concentration 
can be taken as the superposition of the Rouse model and the periodic sine function as

where Ca is the reference concentration; R∗ =
�s

��u∗
 is the Rouse no. in which �

s
 is the set-

tling velocity of a sediment particle in clear fluid, � is the ratio of sediment diffusion coef-
ficient to momentum diffusion coefficient and u∗ is the shear velocity of the flow; za is the 
reference vertical height of the channel; Ar = 2B∕H is the aspect ratio of the channel.

In three-dimensional flow, the flow is comprised of primary flow, which is paral-
lel to the main flow and secondary flows or currents that are transverse to the main 
flow. The secondary currents are minor flow compared to the main flow. Secondary cur-
rents of Prandtl’s second kind are induced by the turbulence and occur due to the flow 
non-uniformities near the walls by anisotropic turbulence [40]. The maximum veloc-
ity of these kinds of secondary currents is less than 5% of the maximum velocity of 
the mean longitudinal velocity. The structures of secondary current in wide and nar-
row open channels are different, which is shown in Fig.  2. In open-channel flow, the 
sidewalls strongly influence velocity profile in narrow channels, whereas there is less 
influence in wide channels. Due to the sidewall effect, the maximum velocity in narrow 
open channels occurs below the free surface, known as dip-phenomenon [17]. It can be 
seen from Fig. 2 that due to the presence of the free surface vortex in narrow open chan-
nels, secondary current w(y, z) at the central section acts along the vertically downward 
direction. In the case of wide open channels with alternate rough and smooth fixed beds 
(attached to the channel bottom), w(y, z) acts along the vertically downward direction 
over the rough bed surface at the central section of the channel. Under such assump-
tions, the vertical secondary current component w(y,  z) can be modelled according to 
Wang and Cheng [51] as

where wmax is the maximum velocity of w. Putting this value of w(y, z) in Eq. (1) and then 
integrating, we get
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To non-dimensionalize Eq. (8), we use the following variables

and then the governing equation becomes

Here, ũ(̃y, z̃) is the primary mean velocity along the cross-sectional yz direction. The sec-
ondary currents ṽ(̃y, z̃) and w̃(̃y, z̃) are given in Eqs. (22) and (21), respectively.

To solve the governing Eq. (23), boundary conditions along vertical and boundary con-
ditions along transverse direction both are needed. Boundary conditions along the vertical 
direction are given as follows:

z̃ =
z

H
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, ṽ =

v

u∗
,

w̃ =
w

u∗
, �̃ty =

�ty

u∗H
, �̃tz =

�tz

u∗H
, �̃m =

�m

u∗H

(23)

(�̃m + �̃ty)
�2ũ
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�z̃2
+

[
�

�ỹ
(�̃m + �̃ty) − ṽ
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(24)ũ(̃y, z̃)
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Fig. 2   Schematic pattern of secondary current- a in narrow open channel ([37]) and b in wide open channel 
for both smooth and rough non-erodible bed surface ([23, 51])



142	 Environmental Fluid Mechanics (2022) 22:133–158

1 3

where ũa(= ua∕u∗) is the primary mean velocity at the bottom of the channel. Its value 
is very small and dependent on the bed roughness (in plane bed, its value is zero). Here, 
ũb(= ub∕u∗) is the primary mean velocity at the free surface and z̃d = zd∕H is the dimen-
sionless distance from channel bed to velocity dip position.

Boundary conditions along the transverse direction are given as follows:

where ũw(= uw∕u∗) is the sidewall velocity of the flow. In the next section, the governing 
Eq. (23) is solved numerically with the help of boundary conditions Eqs. (24) to (28) using 
the finite difference method.

3 � Numerical Solution

The governing equation given by Eq. (23) can be written as follows:

where

Here, the explicit expressions of P and Q are given as
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= ũw

(29)M
�2ũ
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and

in which

In the present study, the finite difference method has been adopted to solve the governing 
equation. Considering Ly and Lz as the lengths of the domain in ỹ and z̃  direction, respec-
tively, the whole domain can be divided into s − 1 number of equal parts of length �ỹ = Ly

s−1
 

at ỹ direction and t − 1 number of equal parts of length �z̃ = Lz

t−1
 at z̃  direction. The coordi-

nates of the grid points are defined as ỹi = ỹ1 + (i − 1)�ỹ for i = 1, 2, ..., s and 
z̃j = z̃1 + (j − 1)�z̃  for j = 1, 2, ..., t in ỹ and z̃  direction, respectively. Here, ỹ1 = 0 and 
z̃1 = z̃a are the reference heights in ỹ and z̃  direction, respectively. Assuming ũi,j be the 
numerical value of ũ(̃y, z̃) at the (i, j)-th grid point, second-order finite difference approxi-
mations of �
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�z̃2
 , �ũ
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�
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(31)
�2ũ

�ỹ2

|||||i,j
=

ũi+1,j − 2ũi,j + ũi−1,j

(�ỹ)2

(32)
�2ũ

�z̃2

|||||i,j
=

ũi,j+1 − 2ũi,j + ũi,j−1

(�z̃)2

(33)
�ũ

�ỹ

|||||i,j
=

ũi+1,j − ũi−1,j

2�ỹ

(34)
�ũ

�z̃

|||||i,j
=

ũi,j+1 − ũi,j−1

2�z̃
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Discretizing Eq. (29) with the help of second-order difference approximations given by 
Eqs. (31–34) and rearranging the terms, discretized equation at the grid point (i, j) can be 
written as follows:

for i = 2, 3, 4, ...., s − 1 and j = 2, 3, 4, ...., t − 1.
The boundary conditions given by Eqs. (24–28) can be discretized as

where l is the grid point in z̃  direction where z̃ = z̃d i.e. z̃l = z̃d.

and

respectively. The above defined equations have double index notations. However, it will be 
easier to understand and solve these equations if one converts them into single index nota-
tions. So using the transformation given by n = i + (j − 1)s , the governing equation and the 
boundary conditions in single index notation can be written as follows:

for n = s + 2, s + 3, .., 2s − 1, 2s + 2, ..., 3s − 1, ....., (t − 2)s + 2, ..., (t − 1)s − 1.

(35)

[
Ni,j

(�z̃)2
−

Qi,j

2�z̃

]
ũi,j−1 +

[
Mi,j

(�ỹ)2
−

Pi,j

2�ỹ

]
ũi−1,j −

[
2Ni,j

(�z̃)2
+

2Mi,j

(�ỹ)2

]
ũi,j

+

[
Mi,j

(�ỹ)2
+

Pi,j

2�ỹ

]
ũi+1,j +

[
Ni,j

(�z̃)2
+

Qi,j

2�z̃

]
ũi,j+1 + Ri,j = 0,

(36)ũi,1 = ũa, for i = 1, 2, ..., s

(37)ũi,t = ũb, for i = 1, 2, ..., s

(38)
ũi,l+1 − ũi,l−1

2�z̃
= 0, for i = 1, 2, ..., s

(39)
−3ũ1,j + 4ũ2,j − ũ3,j

2�ỹ
= 0, for j = 1, 2, ..., t

(40)ũs,j = ũw, for j = 1, 2, ..., t

(41)

[
Nn

(�z̃)2
−

Qn

2�z̃

]
ũn−s +

[
Mn

(�ỹ)2
−

Pn

2�ỹ

]
ũn−1 −

[
2Nn

(�z̃)2
+

2Mn

(�ỹ)2

]
ũn

+

[
Mn

(�ỹ)2
+

Pn

2�ỹ

]
ũn+1 +

[
Nn

(�z̃)2
+

Qn

2�z̃

]
ũn+s + Rn = 0,

(42)ũn = ũa, for n = 1, 2, ..., s

(43)ũn = ũb, for n = (t − 1)s + 1, (t − 1)s + 2, ..., st

(44)ũn+s − ũn−s = 0, for n = i + (l − 1)s where i = 1, 2, ..., s

(45)− 3ũn + 4ũn+1 − ũn+2 = 0, for n = 1, 1 + s, 1 + 2s, ..., 1 + (t − 1)s
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Finally, one has an algebraic system of equations with st number of variables as 
(ũ1, ũ2, ..., ũst) to be solved and to that purpose, a MATLAB code has been written. In the 
next section, the solution of the problem has been validated with existing experimental 
data under different conditions.

4 � Result and discussion

This section discusses the distribution of the stream-wise mean velocity along the direc-
tions of vertical, transverse and yz plane of the flow. The centreline velocity distribution 
indicates the distribution of the stream-wise mean velocity along the vertical direction, 
which is measured at y = 0 , i.e. at the middle point of the width of the channel. Cross-
sectional velocity distribution indicates the distribution of the stream-wise mean velocity 
along the yz plane of the flow and transverse velocity distribution is along the y direction, 
measured at different heights of the open channel.

Determination of the centreline velocity, cross-sectional velocity and transverse velocity 
from the above described numerical scheme has been done in the following way. From Eqs. 
(41–46), one can understand that these equations represent st numbers of an algebraic sys-
tem of equations with st number of variables. Solving this system of equations, one can get 
un , for all values of n, n = 1, 2, .., st . Then, using the transformation n = i + (j − 1)s , one 
gets u for all the grid points of ỹ and z̃  . This whole distribution of the stream-wise mean 
velocity, i.e. u(i, j) for all values of i and j represents the cross-sectional velocity distribu-
tion in yz cross-sectional plane. Centreline velocity distribution is the velocity distribution 
along the vertical direction corresponding to the grid point i = 1 , i.e. u(1, j), for all values 
of j. Here, transverse velocity distribution is the distribution of stream-wise mean velocity 
along the transverse direction at a particular vertical grid point j, i.e. u(i, j = p) for all val-
ues of i and considering j = p grid point corresponds to that required vertical height where 
our interest lies in finding transverse distribution.

In the following subsections, validation of the proposed model is discussed by compar-
ing it with existing experimental data for both wide and narrow open channels. As the pro-
posed model considers the effect of secondary current, the experimental data are chosen so 
that it contains this effect. Here, the maximum value of secondary current ( wmax ) is taken 
as 1.5% of the stream-wise mean velocity (umax) (Tominaga et al. [45]).

4.1 � Considered experimental data

To validate the model, experimental data of Coleman [7], Vanoni [47], Tominaga et  al. 
[45] and Sarma et al. [43] are considered, a short description of which follows.

Coleman [7] did experiments in a smooth flume which was 356 mm wide and 15 m 
long. In this experiment, flow depth was nearly constant and about 1.71 m. The experiment 
contained 40 test cases where energy slope S was kept 0.002 for 1 − 37 tests (runs) and 
0.0022 for the rest. All tests were performed for sediment-mixed flow except tests 1, 21 and 
32, which were performed for clear water flow.

Vanoni [47] performed experiments in two series in a 33.25-inches-wide and 60-feet-
long flume which had adjustable bed slope. In series I, test cases 1, 2 and 3 were performed 
for clear water and the rest of the test cases (1 − 13) for sediment-mixed flow in which S 

(46)ũn = ũw, for n = s, 2s, ..., st
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was kept to be 0.0025. In series II, test cases 14a, 14b and 21 were performed for clear 
water flow and the rest of the test cases (14 − 22) for sediment-mixed flow. In all these test 
cases, maximum velocity occurs at the free surface and the aspect ratio varies from 5 to 
11.90.

Tominaga et al. [45] measured the three-dimensional turbulent structure with hot-film 
anemometers in three straight open channels, including a smooth rectangular flume which 
was 12.5-m-long and 40 cm × 40 cm cross section. The bed wall was a painted iron plate, 
and the sidewalls were made with glass. Filters were set up in the settling tank to exclude 
any suspended impurities. At the entrance of the channel, honeycomb and mesh screens 
were set up to regulate the flow. A tripping wire was set up at the channel entrance to 
enhance the turbulent flow. A fully developed, uniform flow was established at the test sec-
tion 7.5 m downstream from the channel entrance by adjusting the bed slope and the mov-
able weir at the channel end. In these experiments, width was kept fixed and flow depth H 
was changed.

Sarma et al. [43] studied the velocity distribution in a smooth rectangular channel by 
dividing the channel into four regions. The experiments were conducted in a smooth, 
straight, horizontal rectangular flume of smooth walls of length 15.25 m, width 61 cm and 
height 30 cm, in which the channel bed was kept very nearly horizontal. The experiments 
were conducted in two stages. The first stage was carried out in a 61-cm -wide flume, and 
the second stage was in a 30.5-cm-wide flume. The experiments covered specific aspect 
ratios and Froude numbers in each stage where Ar varied from 1 to 8. A parabolic law was 
considered to determine the velocity distribution in region 1, i.e. in the inner region of the 
bed and the outer region of the sidewall, which is of the following form:

in which Kw is the coefficient in the law for the outer region of the sidewall very close to 
the bed, whose value was found as 2.4.

4.2 � Variation of velocity profile with concentration

4.2.1 � Cross‑sectional velocity distribution

Figure 3 shows the variation of the velocity contour in the cross-sectional yz plane due 
to the presence of sediment particles. The figure considers three channels with aspect 
ratios 2.01, 3.94 and 8, as mentioned in Tominaga et al. [45]. Here, we assume that the 
sediment particles are mixed over the whole domain and transported with the flow with-
out forming any beds. The values of other parameters are taken from the experiments 
of [45]. Three different reference concentrations, 0.001, 0.05 and 0.1, are considered 
to show the difference among the contour lines clearly. It can be observed from the fig-
ure that contour lines are open for wide channels with an aspect ratio 8. As the aspect 
ratio decreases, contour lines gradually close. This occurs due to the effects of side-
walls in narrow channels. Throughout the cross section of the narrow channel, maxi-
mum velocity appears below the free surface and as a result, contour lines around the 
dip-position shift vertically towards the mid-depth of the channel. Apart from this, it 
is also found that with the increase in the sediment concentration in the flow, contour 
lines shift towards the boundary wall, showing the importance of including the effects 
of concentration in the velocity model. It is also to be noted that the effect of presence 

(47)
umax − u

u∗
= Kw

(
1 −

y

B

)2
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of sediment particles towards bottom and sidewall boundaries gradually decreases as 
no significant difference in contour lines is observed. This can be explained as follows: 
Yang [52] analyzed the data of [4] and found that the Reynolds shear stress increases in 
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Fig. 3   Effect of concentration on cross-sectional velocity distribution in three different cases—a Ar = 8 , b 
Ar = 3.94 and c Ar = 2.01
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the presence of sediment particles. According to a similar analogy with viscous shear 
stress, it is known that the Reynolds shear is proportional to the velocity gradient, i.e. 
u�w� ∼ du∕dz . As a result, the velocity gradient increases in the presence of sediment 
particles, increasing the velocity in the main flow domain that shifts the contour lines 
towards boundary regions. Also, near the boundaries, Reynolds shear stress does not 
show any significant change due to sediment particles [52]; consequently, no significant 
change in the velocity contour lines occurs.

4.2.2 � Transverse velocity distribution

The effect of concentration on the transverse velocity profile is shown in Fig. 4. This 
figure presents three transverse velocity profiles, one without the sediment, i.e. for clear 
water flow and the other two for sediment-mixed flow. The transverse velocity profiles 
are evaluated at z

H
= 0.1 and for Ar = 2 [43]. As already mentioned, the sediment-mixed 

flow is considered the flow where sediment particles are mixed throughout the whole 
flow domain and moving with the flow without deposition at the channel bottom. The 
required parameters are given inside the figure. In the figure, the red dashed line rep-
resents the velocity profile in the absence of sediment concentration in the flow, i.e., 
when Ca = 0 . The green dotted line and the blue line represent the velocity profiles 
with the presence of concentration in the flow, where Ca has been taken as 0.1 and 0.5, 
respectively. It can be observed from the figure that the difference is prominent in the 
main flow region and as the curves reach the sidewall, the difference fades away. This 
behaviour can be explained as follows—near the sidewall, the sediment concentration 
is low compared to the main flow region; as a result, the effect of the presence of sedi-
ments on velocity near the sidewall is almost negligible. Also, at the centreline, the 
velocity slightly increases with the increase in sediment particles. This occurs due to the 
increase in the Reynolds shear stress in the presence of sediment particles.

Fig. 4   Effect of concentration on 
transverse velocity profile
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4.3 � Application to laboratory data

4.3.1 � Centreline velocity distribution

In this section, validation of the proposed model at the centreline along the vertical direc-
tion is discussed by considering experimental data for wide and narrow open channels for 
both sediment-mixed and clear water flow. To that purpose, the experimental data of Cole-
man [7] are considered for narrow open channels and the experimental data of Vanoni [47] 
are considered for wide open channels.

To validate the proposed model, six different test cases of Coleman [7] have been con-
sidered; test cases 10, 17 and 31 are chosen for sediment-mixed flow, and test cases 1, 21 
and 32 are chosen for clear water flow. In all the test cases, aspect ratio Ar ranges from 
2.07 to 2.11. Experimental data of Coleman [7] and computed velocity from the proposed 
model are plotted in Figs. 5 and 6. Values of the different flow parameters for these cases 
are given inside the figures. Good agreement in all six cases shows that the proposed model 
can predict the distribution of stream-wise mean velocity along the vertical direction in 
narrow open channels for both sediment-mixed and clear water flow.

Out of all the test cases of Vanoni [47], test cases 5, 10 and 19 are selected for sediment-
mixed flow and test cases 1, 2 and 14a are selected for clear water flow to validate the 

Fig. 5   Comparing experimental data of Coleman [8] for centreline velocity with test result for sediment-
mixed fluid
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proposed model. Computed velocity from the proposed model and experimental data of 
Vanoni [47] are plotted in Figs.  7 and  8. Related flow parameters are shown inside the 
figure. Both figures show that the proposed model can also predict stream-wise velocity 
distribution in the vertical direction for wide channels.

4.3.2 � Cross‑sectional velocity distribution

The experimental data of Tominaga et  al. [45] have been used to validate the cross-sec-
tional velocity of this proposed model for clear water flow. Though the proposed model 
is for sediment-mixed flow, due to the unavailability of relevant data in the literature, the 
model has been validated for clear water flow by removing the concentration related terms. 
Comparison of the cross-sectional velocity distribution of experimental data of Tominaga 
et al. [45] with the present model converted for clear fluid is shown in Fig. 9 for three dif-
ferent aspect ratios ( Ar = 2.01 , 3.94, and 8). Flow parameters are shown in Table 1. The 
left column of Fig. 9 shows the left-half of the cross-sectional velocity data of Tominaga 
et al. [45], and the right column of the figure shows the right half of the cross-sectional 
velocity data of the proposed model. An appropriate calculation is needed to accurately 
predict the velocity dip position in the computed solution for narrow open channels. The 
model of Kundu [24] has been chosen for the prediction of velocity dip position as his 
model accurately predicts the velocity dip position with the least error compared to other 

Fig. 6   Comparing experimental data of Coleman [8] for centreline velocity with test result for clear fluid
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models available in the literature. The formula of Kundu [24] for the prediction of velocity 
dip-position is given as follows-

where L = 0.724 . From Fig. 9, it can be observed that the proposed model characterizes 
the dip-phenomenon and cross-sectional velocity qualitatively well for clear water flow.

4.3.3 � Transverse velocity distribution

The distribution of velocity along the transverse direction at different heights and for dif-
ferent aspect ratios has been validated with the experimental data of Sarma et al. [43] for 
clear water flow by removing the concentration related terms in the model as there are no 
relevant data available for sediment-mixed flow. For Ar = 2, 4 and 8, the experimental data 
and the computed transverse velocity from the proposed model are plotted in Fig. 10 at 
heights z̃ = 0.1 and 0.04, respectively. The distribution of stream-wise velocity along the 
transverse direction from Sarma et al. [43], which is of parabolic pattern, is also plotted in 
Fig 8. Here also, the model of Kundu [24] has been used for predicting an accurate velocity 
dip position which is essential for the determination of the transverse velocity distribution. 

(48)z̃d = 0.5 +
1

2L
ln[1 + (eL − 1)(1 − e−0.07Ar

1.88

)],

Fig. 7   Comparing experimental data of Vanoni [47] for centreline velocity with test results for sediment-
mixed fluid
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Values of different flow parameters are shown in Table 2. Figure 10 shows that the pro-
posed model can predict the transverse velocity distributions in clear fluid for both narrow 
and wide open channels. Also, one can observe from the figures that for a higher aspect 
ratio, the proposed model slightly deviates from the parabolic profile of Sarma et al. [43], 
and as the aspect ratio increases, the deviation also increases. The existence and the struc-
tures of the secondary currents play a significant role in the transverse velocity distribu-
tion. Generally, the second kind of cellular secondary current occurs periodically along the 
transverse direction with the periodicity 2H, which can be seen from Eq. (21). Only one 
pair of counter rotating circular cells exist for case (a) in Fig. 10, where Ar = 2 or B = H . 
As a result, the periodicity does not occur and the numerical solution of the proposed 
model matches exactly with the parabolic profile of velocity distribution of Sarma et  al. 
[43]. For cases (b) and (c) in Fig. 10 where Ar = 4 and 8, two and four pairs of secondary 
current cells exist, respectively, and the transverse velocity distribution becomes periodic. 
Therefore, we notice slight deviations for cases (b) and (c) in Fig. 10.

To show the variation of the primary mean velocity along the transverse direction 
together with the secondary circulation for different aspect ratios for clear water flow, 
Fig.  11 is plotted. The transverse velocity distributions are plotted in the left column 
of the figure where non-dimensionalization of y has been done by half of the width of 
the channel (B) and in the right column, the cross-sectional velocity vectors are plot-
ted from Eqs. (21) and (22) for four different aspect ratios, Ar = 2 , 4, 6 and 8. Here 

Fig. 8   Comparing experimental data of Vanoni [47] for centreline velocity with test results for clear fluid



153Environmental Fluid Mechanics (2022) 22:133–158	

1 3

z∕H = 0.1 and ũa = 16 and all other parameters are from the experimental data of Sarma 
et al. [43]. From the figure, it can be seen that when Ar = 2 , only one circular vortex 
exists in the secondary circulation and as the aspect ratio increases, the number of the 

(a)

(b)

(c)

Fig. 9   Comparing computed cross-sectional velocity distribution from numerical solution for clear fluid (in 
right column) with experimental data of Tominaga et al. [45] (in left column) as u∕u

max
 for a Ar = 2.01 , b 

Ar = 3.94 and c Ar = 8

Table 1   Values of the parameters 
for experiment of Tominaga et al. 
[45]

Cases H(cm) Ar ũ
a

u
max

(cm∕s) ũ
w

S(×10−3)

a 19.90 2.01 9.46 24.36 10.20 0.138
b 10.15 3.94 13.50 23.50 11.80 0.138
c 5.00 8.00 13.96 46.31 14.16 0.937
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circular vortex also increases due to alternate smooth and rough bed surface and the 
corresponding transverse velocity distribution becomes periodic [51].

5 � Conclusion

Based on RANS equation, a model for the two-dimensional distribution of stream-wise 
mean velocity in the presence of sediments has been derived. This model includes the 
transverse and vertical components of secondary velocity, and the effects of sediment 

Fig. 10   Comparison of computed transverse velocity distribution of the proposed model with the experi-
mental data and model of Sarma et al. [43] for a Ar = 2 ; b Ar = 4 ; and c Ar = 8

Table 2   Values of parameters for 
transverse velocity distribution

Cases 2B(cm) Ar z̃
d

ũ
a

ũ
max

ũ
w

a 30.5 2 0.65 17.00 20.90 18.45
b 30.5 4 0.85 16.50 21.64 19.10
c 61.0 8 1.00 16.00 22.96 20.40
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(a)

(b)

(c)

(d)

Fig. 11   Variation of transverse velocity with secondary circulations for different aspect ratios for clear 
water flows. Left column represents the transverse velocity distribution, and right column represents the 
circular secondary currents in half cross-sectional plane for different aspect ratios
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particles have been incorporated through the density and viscosity of the sediment–fluid 
mixture. As the secondary current has been taken into consideration, the model is capa-
ble of addressing dip-phenomenon, which is commonly observed in narrow open channels. 
The model is validated at the centreline with existing experimental data for both wide and 
narrow channels, and satisfactory results are obtained. Due to the lack of two-dimensional 
experimental data of stream-wise mean velocity with sediments, the model has been vali-
dated with existing clear water data. It has been found that the presence of sediment par-
ticles increases the velocity in the main flow zone and as a result, velocity contour lines 
shift towards the boundary regions. Also that, for higher aspect ratios, contour lines are 
open and for smaller aspect ratio, contour lines are closed which shows a similar pattern 
like clear water flow. Apart from these, the validity of the model has also been tested for 
transverse velocity distributions in clear water flow and in this case also satisfactory results 
are obtained. From the variation of transverse velocity with sediment concentration, it is 
found that the velocity follows a similar pattern as of clear water flow and the effects of 
concentration are prominent in the main flow region that gradually diminishes towards the 
sidewall region. The periodic secondary current, which was lacking in previous studies, has 
been included in this study as the periodic variation of the secondary current is often found 
in natural rivers. In a broad sense, this study gives an idea about the pattern and variation 
of stream-wise mean velocity as a two-dimensional distribution in the presence of sedi-
ments through an open-channel turbulent flow.
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