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Abstract
In this note, Richards’ equation for two layered soils is considered in a two-dimensional spa-
tial domain. It is endowed by pressure gradient and pressure condition at the top of domain, 
and no condition is posed at the bottom of domain. An existence and uniqueness result of 
strong solutions is obtained for such a problem assuming constant pressure gradient.

Keywords  Richards’ equation · Initial value problem · Strong solution · Layered soils · 
Unsaturated flow modeling

1  Introduction

The study of water movement into the vadose zone is a challenging problem, having many 
different applications, and needs to be faced by proper analytical and numerical methods, 
according to the target set and to the available measured data. Such a problem has sig-
nificant importance in a environmental engineering context, for example for assessing the 
impact of vegetation on water balance variability (see for example [34]), or for design-
ing infiltration trenches [29], or, classically, in an agronomic framework for modeling root 
uptake and growth (see for example [13, 40]), albeit the upscaling of such modeling at the 
field scale is still a though problem (see for example [25]).

Richards’ equation is a well-established way for modeling such a movement into unsatu-
rated soils and rocks: it underlies the hypothesis that domain is a porous medium, in which 
water movement is modeled in the void pores. This model arises from Darcy’s equation for 
saturated soils, combined with a mass conservation law, assuming the air pressure constant 
(see for instance [33]). Infiltration dynamics is strongly dependent on the hydraulic proper-
ties of the soil in which the phenomenon occurs (see, for example, the highly heterogene-
ous behavior of Richards’ equation solution in layered soils [8, 41]). It is worth stressing 
that an analytical solution of Richards’ equation is very hard to obtain, and depends on the 
peculiar choice of hydraulic functions and boundary conditions (see for example [19]).
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Accordingly, such a flow equation is generally solved by numerical algorithms, based 
on finite difference and finite element methods or virtual elements methods [2, 3, 27, 
35, 39]. An interesting and comprehensive survey about Richards’ equation numerical 
issues can be found in [21]. In particular, as highlighted in [21], the highly nonlinear 
shape of empirical hydraulic functions requires tailored numerical schemes for solving 
the resulting nonlinear discrete problem: for instance, in [15] the mass balance prop-
erty of Richards’ equation in mixed form is demonstrated by using a modified Picard 
method; in [32] several comparisons are accomplished between Picard and Newton 
schemes, suggesting strategies for enhancing the performances of both schemes; finally, 
in [24], such linearization techniques are compared, together with L-scheme: the latter 
is analyzed by a theoretical point of view and its robustness is proved.

A separate chapter, albeit related to this, would be devoted by acknowledging data 
assimilation methods for incorporating dynamical observations into the model (see for 
example [9, 10, 12, 14]).

As for the state variable, Richards’ equation can be solved with respect to the pres-
sure head � or to the water content � , assuming a given empirical relationship between 
the two (see for example [7] for a more extensive treatise).

A crucial issue when modeling such a process is setting the boundary conditions; in 
particular, if the water table is not known, or if it is below the spatial domain, then set-
ting a realistic bottom boundary condition could be delicate. A motivation of our work 
comes from this difficulty: here just the knowledge of hydraulic features (state and verti-
cal pressure gradient) at the ground surface is required. This paper arises from the need 
of providing a theoretical basis for the approach underlying the numerical papers [6–8].

The physical problem addressed in this paper concerns the infiltration phenomenon 
in layered soils: it is worth stressing that this is still an open problem in a modeling and 
numerical framework, see [6, 8, 19, 22, 37, 41].

Following [6], here we are going to consider the pressure form of Richards’ equation 
in a bounded temporal domain [0, T], for some T > 0 , and in a two-dimensional spatial 
domain [0,X] × [0, Z] , for some X, Z > 0 , in which the z-direction is the vertical one, 
possibly unbounded: 

 being z ∈ (0, Z) the depth value where soil trespass occurs, where K(�) and K̂(𝜓) are the 
hydraulic conductivity functions and C(�) , Ĉ(𝜓) are the specific moisture capacities of first 
and second soil, respectively: for sake of simplicity, we will assume the hydraulic conduc-
tivity equal in both the spatial directions; conversely, functions C and Ĉ represent a storage 
term and are defined as

The functions � , 𝜃̂ represent the volumetric water content defined by water retention curves, 
described by empirical functions of the relative head pressure, and which are constitutive 
characteristics of the media under consideration.
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In (1) the hydraulic conductivity functions K, K̂ are multiplied by a different factor 
because the diffusion in the vertical direction z takes into account also the gravity force.

Richards’ equation needs to be associated with an initial condition, that is the pres-
sure profile at time t = 0 , i.e.

The knowledge of pressure state, or alternatively pressure flux at boundaries is generally 
needed; for example, within a Dirichlet framework, the following functions are assumed to 
be known:

and, for the top and bottom conditions at the boundaries, respectively, one considers 

 with �0 , �0 , �X , �0 , �Z smooth enough in their domain. Otherwise, as considered in [6], 
one could keep (3), (4) and (5a), while replacing (5b) by assigning the following vertical 
pressure gradient condition at the top of domain:

where �0(x, t) is a smooth function on [0,X] × [0, T] . In [7] the choice of replacing con-
dition (5b) by (6) is motivated by a practical point of view: typically the knowledge of 
hydraulic states at the bottom of the domain can be only supposed, since it can be difficult 
to have available realistic field measurements.

Existence and uniqueness of strong solutions, in the sense of [28], for Richards’ 
equation with Dirichlet boundary conditions (3), (4), (5) is a well known problem, 
addressed and solved in [28].

When endowed with initial pressure gradient condition at the top of domain (6), 
together with (3), (4) and (5a), the existence and uniqueness problem of a solution to 
Richards’ equation is extensively treated in literature, and researchers have tackled it 
from several points of view. In particular, in [16] authors prove that entropy solutions 
exist under general hypotheses; in [17] the problem of semi-classical solutions is ana-
lyzed; local classical solutions with �0(x, t) = 0 is treated in [36]: in this context and in 
presence of capillary forces, local classical solutions are proven to exist as well (see 
for example [23]); finally, in [1, 30, 31] the proof of existence and uniqueness of weak 
solutions in a more general context have been considered, and in [4] (see also [5]) more 
general results of weak solutions defined on an arbitrary time interval are given.

In this note, we will consider the question of existence and uniqueness of strong 
solutions in the sense of [28], with Cauchy conditions (3), (4), (5a) and (6), under sim-
plified hypothesis and in the case of layered soils; the general case is still open and will 
be addressed in another work.

However, despite the lacking of such general regularity results, a numerical technique 
based on a mixed MoL-TMoL has been proposed in [6] for handling such a problem in 
a 2D spatial domain with no restriction on constant flux, and numerical simulations are 
therein accomplished.

(3)�(x, z, 0) = �0(x, z), (x, z) ∈ [0,X] × [0,Z].

(4)�(0, z, t) = �0(z, t), �(X, z, t) = �X(z, t), (z, t) ∈ [0, Z] × [0, T],

(5a)�(x, 0, t) = �0(x, t), (x, t) ∈ [0,X] × [0, T],

(5b)�(x, Z, t) = �Z(x, t), (x, t) ∈ [0,X] × [0, T],

(6)
��(x, z, t)

�z

|||||z=0
= �0(x, t)
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2 � Existence and uniqueness results

The existence and uniqueness of strong solutions of (1) together with Cauchy initial condi-
tions seems to be a difficult problem. Here we approach this question in a simpler situation 
and leave the proof of the discontinuous general case to a more theoretical work. The proof 
will be done into two main steps: first we prove the existence and uniqueness for (1a) when 
K is smooth with respect to z ∈ (0,∞) ; then we consider the discontinuous case for K, reg-
ularize around z̄ and apply previous result to (1b). In particular, here we consider Richards’ 
equation (1) with the initial and boundary conditions in (3), (4), (5a), and (6) with constant 
flux at the top of our domain. Let us define the spatial domain as

and, letting F0∶ = {0} × (0,+∞) × (0,T) , FX∶ = {X} × (0,+∞) × (0,T) , 
G0∶ = (0,X) × {0} × (0, T) and H0∶ = � × {0} , the boundary is given by the union of the 
following sets:

Let also QT∶ = � × (0, T) . Further, let us recall that, for k ≥ 1 , Sobolev spaces Wk,1

2
(QT ) 

are defined as

where D� denotes the spatial derivatives of order � . In particular, for k = 2 , the space 
W
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2
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with � = (x, z) ∈ � and � ∈ W
2,1

2
(QT ) . Further, we set

Finally, the space of Richards’ equation strong solutions we will investigate is set as

where (see [20])

and it is a Banach space when endowed with the norm
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where ∇∶ =

[
�

�x

�

�z

]
 , and leveraging (2), we observe that (1a), up to letting z go to +∞ , can 

be equivalently rewritten as

which is the so-called mixed form of Richards’ equation, and will suit better for the follow-
ing result. An analogous result holds, straightforwardly, for (1b).

Theorem 1  Let us consider (8) with Cauchy initial conditions given by

where �D ∈ W
2,1

2
(QT ) ∩ L∞(QT ) . Then (8)–(9) admits a unique strong solution in 

� ∩ L∞(QT ) . Moreover, it holds that

Proof  On the account of (9), let � ∈ H1(QT ) be an arbitrary test function with vanishing 
trace on F0 ∪ FX , and let us seek for the weak formulation of (8). Thus, after integrating 
over (0, T) and � , we get

from which, letting S be a suitable parameterization of ST and � be the outer normal to ST,

Now, on the account of selected test function set, we get that

and, since from (9) we have ��
�z

= 1 on G0 , we obtain that

concluding that

(8)
��

�t
(�) − div(K(�)∇(� − z)) = 0, (x, z, t) ∈ QT ,

(9)
{

� = �D, on F0 ∪ FX ∪ H0,
��

�z
= 1, on G0,

(10)‖�‖L∞(QT )
≤ ‖�D‖L∞(QT )

.

∫
T

0
∫
�

��

�t
(�)� d� dt − ∫

T

0
∫
�

div(K(�)∇(� − z))� d� dt = 0,

∫
T

0
∫
�

��

�t
(�)� d� dt − ∫ST

K(�)∇(� − z) ⋅ �� dS

+∫
T

0
∫
�

(K(�)∇(� − z)) ⋅ ∇� d� dt = 0.

∫F0

K(�)∇(� − z) ⋅ �F0
� dSF0

= ∫FX

K(�)∇(� − z) ⋅ �FX
� dSFX

= 0,

∫G0

K(�)∇(� − z) ⋅ �G0
� dSG0

= ∫G0

K(�)

[
��

�x
��

�z
− 1

]
⋅

[
0

−1

]
� dSG0

= 0,



170	 Environmental Fluid Mechanics (2020) 20:165–174

1 3

Therefore, weak formulation of (8) comes out to be

with � having vanishing trace on F0 ∪ FX.
Now, we point out that the above weak formulation is the same as the one analyzed in 

[28], with the only difference that now spatial domain is unbounded: it is just an observa-
tion that results in [28] hold true in this case as well. Therefore, we infer existence and 
uniqueness of a strong solution for (8) with Cauchy conditions given by (9), and from 
Lemma 3.1 in [28] it follows that ‖�‖L∞(QT )

≤ ‖�D‖L∞(QT )
 . 	�  ◻

Corollary 1  Let c ≠ 0 . Let us consider the partial differential equation

with Cauchy initial boundary conditions given by

where �D ∈ W
2,1

2
(QT ) ∩ L∞(QT ).

Then, (11) admits a unique strong solution in � ∩ L∞(QT ) with initial conditions (12) 
and satisfying (10).

Proof  Let �(x, z, t) be the solution to (8) with Cauchy boundary conditions (9). Let then

Easy computations show that 𝜓̃ solves (11) with Cauchy boundary conditions (12).
Now, if there exists 𝜙̃ , different from 𝜓̃ , solving the same problem, then 

𝜙(x, z, t)∶ = 𝜙̃

(
x,

z

c
, t
)
 would solve (8) with Cauchy boundary conditions (9), and so 

�(x, z, t) = �(x, z, t) . Therefore �(x, cz, t) = �(x, cz, t) , that is 𝜙̃ = 𝜓̃ , which is a contradic-
tion. 	�  ◻

Next, we address the problem of two layered soils and prove, in this case, that exist-
ence and uniqueness of a strong solution, in the sense of Theorem 1, is still guaranteed.

We first need a technical result.

Lemma 1  The space � ∩ L∞(QT ) endowed with the norm

 is a Banach space.

∫ST

K(�)∇(� − z) ⋅ �� dS = 0.
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Proof  See, for example [38]. 	�  ◻

Theorem 2  Let us consider the following partial differential equation

with Cauchy initial boundary conditions given by

where �D ∈ W
2,1

2
(QT ) ∩ L∞(QT ).

Then (13) admits a unique strong solution in � ∩ L∞(QT ) with initial conditions (14) 
and satisfying (10).

Proof  Let 𝜀 > 0 such that z − 𝜀 > 0 and let � ∈ (0, �) ; let further K� be a sufficiently 
smooth function such that

and K�(�) smoothly interpolates K(�) , K̂(𝜓) for z ∈ [z̄ − 𝜀, z̄ + 𝜀].
Thus, considering the partial differential equation

by Theorem 1 we deduce that there exists a unique strong solution �� ∈ � ∩ L∞(QT ) , and 
satisfies (10).

Let now �1, �2 ∈ (0, �) , with 𝜀2 < 𝜀1 . Let us define, for any � ∈ (0, �),

In particular, then, both R�1
 and R�2

 are finite measure and R𝜀2
⊆ R𝜀1

 . Also, on the account 
of Theorem 1, we have that

Since H1(QT ) ⊆ L6(QT ) , with compact embedding, and W2

2
(�) is continuously embedded 

in the set of 1
2
-Hölder continuous functions, we now observe that
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)
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(14)
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��

�t
(�) − div
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)
= 0, (x, z, t) ∈ QT ,

R�∶ = (0,X) × (z − �, z + �) × (0, T).
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�����
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where c
�
X, T , ‖𝜓D‖L∞(QT )

�
> 0 is a constant depending on X, T and ‖�D‖L∞(QT )

 . Last ine-
quality implies that the sequence {��}�∈(0,�) is Cauchy in � . Thus, from Lemma 1, there 
exists � ∈ � such that

strongly with respect to ‖ ⋅ ‖� . It is straightforward to see that � solves (13) with Cauchy 
conditions (14). Finally, let us note that ‖‖��

‖‖L∞(QT )
≤ ‖‖�D‖‖L∞(QT )

 for all � ∈ (0, �) implies, 
by uniqueness of limit, that ��

∗

⇀� in L∞ as � → 0 . Resorting to weakly-∗ lower semi-con-
tinuity of ‖ ⋅ ‖L∞(QT )

 provides (10).
Uniqueness easily comes from observing that any other solution � of (13) would pro-

vide a solution �� of (15) such that, for z ∉ [z̄ − 𝜀, z̄ + 𝜀] , � = �� . By uniqueness of solu-
tion to (15), we deduce that �� = �� , and therefore, with respect to above norm,

which proves the claim. 	�  ◻

3 � Conclusions and future works

In this note we have proved that Richards’ equation for two layered soils, with given initial 
head pressure and constant initial pressure gradient at the top of domain, is a well posed 
problem providing a unique strong solution in the sense of [28]: this work represents a 
theoretical basis for the approach underlying our numerical papers [6, 8]. We have used a 
regularization technique and well known results originally proposed for Richards’ equation 
with Dirichlet boundary conditions; for arbitrary Cauchy initial conditions, the problem 
needs to be faced differently, and will be studied in a forthcoming work.

Furthermore, we think that the approach of treating a conservation law as an initial 
value problem could be of interest also for applications different from the infiltration into 
the unsaturated zone: for example, for modeling the non-equilibrium solute transport in 
porous media by a mobile-immobile model (see for instance [26]), or in a broad class of 
problems modeled by transport equations, e.g. [11], or [18], for cases in which the location 
of boundary between two distinct geomaterials is uncertain.
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