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Abstract
The scalar dynamics within a unit-aspect-ratio street canyon are studied using large-eddy 
simulation. The key processes of ventilation and mixing are analysed with the canyon-aver-
aged concentration, mean tracer age and variance. The results are sensitive to the source 
location and can be classified according to the streamline geometry. The canyon-averaged 
concentrations for the corner vortices, vortex sea and central vortex do not converge to the 
same value at large times, though the mean decay rates do. The variance measured with 
respect to the canyon average shows two distinct decay regimes: the early regime reflects 
large-scale straining and enhanced diffusion across streamlines, while the late regime is 
associated with escape from the canyon, i.e., ventilation. Analytical predictions for the 
variance-decay or mixing time scales are verified for the early regime. It is argued that the 
presence of an open boundary at the roof level suppresses rapid mixing of the scalar field 
and is responsible for differences with respect to scalar dynamics within closed domains.

Keywords  Effective diffusivity · Large-eddy simulation · Pollutant dispersion · Scalar 
decay · Ventilation

1  Introduction

The evolution of a passive scalar, c, is governed by the advection–diffusion equation

where �⃗u(�) is the velocity, � is the (turbulent) diffusivity, and S(�) is the source flux. Physi-
cally the scalar distribution is the product of transport or ventilation, the coherent move-
ment from one location to another, and mixing, the elimination of concentration gradients. 

(1)
𝜕c

𝜕t
+ �⃗u ⋅ ��⃗∇c = 𝜅∇2c + S,
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These processes may also depend on the initial conditions, or more concretely, the source 
locations.

Scalar dynamics are especially complicated in the urban context. First, the presence of 
buildings and other obstacles introduces strong spatial inhomogeneity. Many studies have 
shown that the urban geometry exerts a significant influence on both winds and pollutant 
fields [7]. On the one hand, urban geometry varies from one neighbourhood to another; 
on the other, the flow around a single building is inhomogeneous on account of boundary 
layers, wakes and vortices. Second, sources and boundary conditions are time-dependent 
and difficult to implement or define (see e.g. [16]). The complexity of urban flow and dis-
persion has led to simplifying assumptions, most notably steady flow and a ground-level 
source.

The assumption of steady flow has often been made in urban computational fluid 
dynamics (CFD). Traditionally it was invoked in models based on the Reynolds-averaged 
Navier–Stokes equations [5]. With the increasing popularity of large-eddy simulation, the 
restriction to steady flow has been made in the diagnostics rather than the dynamics. Diag-
nostics based on time-averaged concentrations, such as the local age of air  [24] and pol-
lutant exchange rate  [35], have proven valuable for forced ventilation problems, but they 
are less appropriate for initial-value problems or applications such as emergency response 
modelling and air-quality forecasting. Furthermore, time-averaged Eulerian statistics do 
not provide much insight into the underlying physical mechanism for flows that are strongly 
inhomogeneous.

The use of ground-level line [53] or area [12] sources with constant amplitude is also 
standard. Although ground-level sources are representative of vehicle exhaust, other 
sources exist as well: kitchen exhaust is emitted from walls or rooftops  [58]; secondary 
pollutant species are generated at different heights; biogenic volatile organic compounds 
are emitted by trees and vegetation [20], which may extend to the middle of a canyon or 
higher  [9]; regional pollutants originating, for example, from factories  [54] or fires  [29], 
may enter the urban canopy.

Ventilation and mixing in urban areas are characterised more accurately without invok-
ing these assumptions about the time dependence and initial conditions. This has been 
done for ventilation [36]. Objective ventilation diagnostics can be derived by adapting age 
diagnostics from atmospheric science  [62], in which fluid parcels are tracked within an 
Eulerian framework. A comparable analysis has not been performed for mixing. In fact, 
apart from the well-known review paper by Belcher [3], mixing has received little attention 
in the urban pollutant dispersion literature. This is somewhat surprising because mixing 
is an important subject in theoretical fluid dynamics  [60]. From a practical perspective, 
chemical reactions depend on the rate at which species are brought into contact with each 
other or mixed [18, 50], while atmospheric winds, humidity and chemical constituents are 
affected by the mixing of dynamical and passive scalars.

The analysis of ventilation and mixing is greatly simplified for idealised urban flows that 
avoid some of the complexities posed by the real urban environment. An urban street can-
yon is a simple yet non-trivial configuration that is often considered the basic unit of cit-
ies [48]. An infinite (two-dimensional) canyon represents a severe approximation because 
the spanwise flow is statistically homogeneous when the mean (streamwise) flow is per-
pendicular to the canyon axis. Nevertheless it still captures key aspects of scalar dispersion 
in more realistic flows, notably the influence of the spatial structure of the velocity field 
or streamlines. In the skimming flow regime, flow within a street canyon is dominated by 
the presence of a large central vortex and smaller corner vortices [33]. The phenomenon 
of topological dispersion at intersections [3], which is associated with the “branching” of 
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streamlines, cannot be captured, but the change in streamline topology from the primary or 
secondary vortices to the turbulent “vortex sea” between them is retained.

This paper analyses mixing within a street canyon. Following the analysis of streamline 
topology by Belcher [3], the influence of the streamline geometry is examined. In the fluid 
dynamics literature, essentially kinematic approaches have been developed. For large-scale 
spatially smooth velocity fields in which the integral or eddy turnaround time is independ-
ent of scale, the mixing or variance decay rate [55] is determined by the Lagrangian strain 
rate (or largest Lyapunov exponent) when the domain is periodic and of comparable size 
to the flow scale [25]. For vortical flows with closed streamlines, the mixing rate is deter-
mined by an effective diffusivity that depends on the Péclet number  [26]. The preceding 
kinematic theories are rather idealised and their applicability to urban turbulence is not 
guaranteed. Nonetheless, the strong spatial organisation of flow within a street canyon and 
the relatively weak turbulence away from the roof level [56] give reason to believe that kin-
ematic theories may be applicable. Indeed it is shown that the predicted mixing rates agree 
with the kinematic theories at early times (of the order of the mean canyon circulation time 
scale). However, the inhomogeneous nature of the flow and the presence of an open bound-
ary are responsible for significant departures from the behaviour of idealised kinematic 
flows. At late times (of the order of 10 canyon circulation times), mixing is largely sup-
pressed and the scalar dynamics are driven by ventilation.

The objectives of this study are to (1) quantify mixing; (2) relate mixing to the more 
intensively studied phenomenon of ventilation; and (3) test the applicability of idealised 
mixing theories. Sect. 2 reviews the methodology, viz., the numerical model, initial condi-
tions and diagnostics. Qualitative aspects of the time evolution and sensitivity to initial 
conditions are described in Sect. 3. Ventilation and mixing are quantified in Sects. 4 and 5. 
The extension to conventional ground-level sources is considered in Sect. 6. Implications 
of the results are discussed in Sect. 7.

2 � Methodology

2.1 � Numerical model

The flow and scalar transport are simulated using the parallelized large-eddy simulation 
model, PALM [40], which is based on the implicitly filtered non-hydrostatic, incompress-
ible Boussinesq equations and the Deardorff subgrid-scale (SGS) scheme [14]. PALM has 
been successfully applied to street canyons [31, 45], building arrays [51] and realistic urban 
areas [52]. Third-order Runge–Kutta time-stepping [66] is combined with spatial finite dif-
ferences and a fifth-order scheme for momentum and scalar advection [64]. The Poisson 
equation for the pressure is solved with the multigrid method. The SGS eddy viscosity and 
diffusivity are calculated from the SGS turbulent kinetic energy (SGS-TKE).

A street canyon of unit aspect ratio AR ≡ H∕W = 1 is located in the centre of the com-
putational domain; see Fig. 1 for a schematic illustration. The grid spacing is uniform in 
the streamwise, x, spanwise, y, and vertical, z, directions, i.e. �x = �y = �z = 1m , which 
meets the recommendation that the canyon walls be separated by at least 10 gridpoints [19]. 
The domain parameters are summarised in Table 1.

The model configuration is standard [31]. Identical boundary conditions are adopted for the 
velocity and scalar fields at the edges of the computational domain: periodic in the spanwise, 
Neumann at the top, Dirichlet at the inlet, and radiation at the outlet. The streamwise boundary 
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conditions ensure that the scalar cannot re-enter the domain after exiting at the outlet. At solid 
surfaces, there is no-slip for the velocity and Neumann for the scalar; in place of an explicit 
wall function, the near-wall boundary conditions are parameterised, following Monin–Obuk-
hov similarity theory, using a roughness length, z0 = 0.1m , and a constant-flux layer between 
the wall and the first gridpoint.

Turbulence at the inflow is maintained using the turbulence recycling technique [28, 39], 
wherein turbulence near the outlet of the main run is fed back to the inlet and superimposed 
on an inflow velocity profile generated from a precursor run that is allowed to reach statistical 
equilibrium. The precursor run has periodic boundary conditions and is forced by an external 
pressure gradient, dp∕dx = −6 × 10−4 Pam−1 . Thermal effects are neglected.

The passive scalar or nominal pollutant was released at time t = t0 , where t0 = 1000 s cor-
responds to the initial spin-up from the end of the precursor run. More precisely, an impulse 
source, viz.

with arbitrary amplitude, C0 , was applied over a source region,

This is an initial-value problem: the i represent initial conditions (see Sect. 2.3) and each 
i is associated with a separate realisation or simulation. Concentration statistics are col-
lected over a time tf − t0 = 5000 s using an output interval of �t = 10 s.

(2)S = C0�(t − t0)(�),

(3)(�) =

{
1, � ∈ i,

0, � ∉ i.

Fig. 1   Schematic diagram of the 
computational domain
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Table 1   Computational domain 
parameters corresponding to 
Fig. 1

Lx , Ly and Lz are the domain dimensions in the streamwise, spanwise 
and vertical directions with �x , �y and �z denoting the spatial resolu-
tion in each direction. H, W and L are the canyon height, width and 
length, respectively

Lx Ly Lz H W L �x = �y = �z

5.12H 1.28H 3.0H 50m 1.0H Ly 0.02H
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2.2 � Validation

Simulated velocity and scalar fields are validated against wind-tunnel measurements. 
Figure 2 shows that the LES velocity profiles, represented by the temporal and spanwise 
average ⟨⋅⟩ , are in good agreement with the wind-tunnel measurements. The shear close 
to the bottom boundary is slightly underestimated by the model for x∕W = −0.25 and 
x∕W = 0 . Similar behaviour was also noticed in previous validation studies  [12, 13]. 
This may be related to the treatment of the wall layer: the value of the roughness length, 
z0 = 0.1m , which has been used in previous street-canyon studies  [31], is representa-
tive of very rough walls  [32] and may not yield an optimal validation. Statistical per-
formance measures  [10] also indicate a successful validation  [16, 17]: the normalised 
mean square error NMSE ∼ 0.01−0.03 , fractional bias FB ∼ 0.01−0.13 , correlation coef-
ficient R ∼ 0.99 and hit rate q ∼ 68%.

Time-averaged concentration statistics are compared against wind-tunnel measure-
ments by introducing a continuous ground-level line source along the centreline of the 
canyon. Figure  3 shows vertical profiles of the normalised mean concentrations. The 
overall trend is well-captured, though the concentrations are slightly overpredicted. 
Similar behaviour was reported in LES validations  [34, 43, 44], albeit at lower reso-
lution, but the discrepancy is smaller in the present LES. The overprediction may be 
a consequence of the spanwise periodic boundary conditions, which function as a 
“pseudo-source” that enhances the effective source strength. Concentration fluctuations 
(not shown) also show better agreement with experimental data [42, 53] than do previ-
ous LES validations [43].

Fig. 2   Normalised mean streamwise velocity profiles, ⟨u⟩∕⟨Us⟩ , for the current LES (solid blue curve) 
and the wind-tunnel measurements of Brown et al.  [8] (black circles). a x∕W = −0.4 ; b x∕W = −0.25 ; c 
x∕W = 0 ; d x∕W = 0.25 ; e x∕W = 0.4 . ⟨Us⟩ denotes the shear-layer average, 1 ≤ z∕H ≤ 1.5 , of the stream-
wise velocity
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In addition to the validation, the sensitivity to the lid height was assessed by perform-
ing simulations with Lz = 3H, 4H, 5H and periodic boundary conditions in the horizontal. 
The mean streamlines almost coincide and the standard deviation of the TKE (among the 
three simulations) is around 1% . The scalar fields also show identical spatial structures (not 
shown).

2.3 � Initial conditions

The sensitivity of ventilation and mixing to the source location (or initial conditions) is 
analysed using different source regions, i . Since urban air quality depends on primary 
and secondary pollutants, as well as on emission from buildings or factories, the pollutant 
sources do not necessarily lie at ground level. Furthermore, they need not span the entire 
domain, as with the large-scale initial conditions favoured in idealised studies  [55]. The 
choice of the i is guided by the structure of the velocity field. The scalar dynamics are 
strongly influenced by the streamline geometry in 2-D  [50, 65] and flow within an infi-
nitely long street canyon (or one with periodic boundary conditions in the spanwise direc-
tion) is effectively two-dimensional. Mixing tends to occur more rapidly between vortices, 
where the strain is stronger, while dispersion is partially constrained by the vortices.

Streamlines are plotted in Fig.  4a. As in many other studies  [33], there are small 
corner vortices (at the bottom right, bottom left and top left) and a large central vortex 
composed of closed streamlines. Note that a corner vortex is absent from the top right, 
which is where the turbulence is strongest (cf.  Fig.  8;  [13]). The spanwise vorticity, 
�y ≡ uz − wx (Fig. 4b), confirms the existence of the vortices. Several distinct regions 
may be identified, namely the three corner vortices, the central canyon vortex and the 
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Fig. 3   Vertical profiles of the normalised mean concentration, ⟨C⟩U
2.5HHL∕Q , evaluated at a x∕W = −0.5 ; 

b x∕W = 0 ; c x∕W = 0.5 . Wind-tunnel data from Pavageau and Schatzmann [53] (filled triangles) and Mer-
oney et  al.  [42] (filled circles) are compared with LES data from the present validation (solid line) and 
Michioka et al. [43] (open circles). U

2.5H is the temporal and spatial average of the streamwise velocity at 
z∕H = 2.5 andQ is the source flux
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“vortex sea” lying between them. They are used to define the i (Fig. 5). Cubic “pol-
lutant blocks” with size l = 6.0m in the x − z plane and length Ly in the spanwise direc-
tion are adopted in the first instance; other choices are examined as well. The pollutant 
blocks are labelled as �� , where � ∈ {T,C,B} and � ∈ {L,C,R} stand for top, centre, 
bottom, left and right. Referring to the streamlines (Fig.  4a) and vorticity contours 
(Fig. 4b), BR, BL and TL coincide with the corner vortices; CC lies inside the central 
vortex; and the remaining blocks, BC, CL, CR, TC and TR, belong to the vortex sea.

2.4 � Scalar diagnostics

Ventilation and mixing diagnostics are calculated for each set of initial conditions. The 
initial concentrations are uniform within the source region, i ; the sensitivity to a non-
constant source is examined in Sect. 5.2.4.
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Fig. 4   Spatial structure of the (spanwise and temporally averaged) mean flow in the x − z plane. a Stream-
lines; b spanwise vorticity, ⟨�y⟩ . The locations of the source regions (Fig. 5) are superimposed on top of the 
streamlines

Fig. 5   Schematic illustration of 
the source regions, i , which 
represent effective initial condi-
tions. The pollutant blocks are 
identical in height and width, 
i.e. l = h = w = 6.0m , and are 
labelled as �� with � ∈ {T,C,B} 
and � ∈ {L, C, R} denoting the 
locations of the i , i.e. top, cen-
tre, bottom, left and right. The 
colours identify the sets defined 
in Eq. (19): Set A (yellow, corner 
vortices); Set B (green, vortex 
sea); Set C (purple, central 
vortex)
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2.4.1 � Ventilation

A standard ventilation diagnostic is the mean concentration. The spatial average within an 
open domain may decrease with time. The definition of the ventilation diagnostic depends on 
the choice of receptor. Taking the receptor to be identical to the source i,

where the volume Vi = ∫
i

d� . Assuming the receptor coincides with the canyon yields the 

canyon average,

where Vc = ∫
c

d� and c denotes the entire canyon (i.e. the space between the ground and 

the roof level).
A ventilation time scale can be estimated from the mean concentration, Ĉ ≡ ⟨C⟩c

 . Assum-
ing that the concentration decays exponentially in time, one may define an inverse ventilation 
rate or retention time, Tr , from the e-folding time scale [15], viz.

The existence of a well-defined Tr implies that ventilation is controlled by a single time 
scale. Although it has proven useful in applications [67], the retention time neglects statis-
tical variability and prioritises the behaviour at long times.

Alternatively one may calculate the tracer age [23, 27], which is the time elapsed from the 
release of a passive tracer at the source, �0 , to its arrival at the receptor, � . Following Lo and 
Ngan [36], the age spectrum is given by

where the Green’s function, G, is obtained by integrating a delta-function source, Eq. (2). 
Z(�) is a probability distribution of tracer ages, � , i.e. it characterises the statistical distribu-
tion of transit times between source and receptor. The age spectrum has an exponential tail 
for skimming flow within a single street canyon, in accord with the retention time and pure 
diffusion; more generally, however, ventilation cannot be characterised by a single time 
scale. A convenient diagnostic is the mean tracer age (MTA) or first moment of the age 
spectrum,

The canyon average is denoted by 𝜏a ≡ ⟨𝜏a⟩c
 . Unlike the retention time, �a explicitly 

measures transit times between source and receptor; nonetheless, 𝜏a and Tr are comparable 

(4)⟨C⟩i
=

1

Vi
�
i

C(�)d�,

(5)⟨C⟩c
=

1

Vc
�
c

C(�)d�,

(6)Ĉ(t)∕Ĉ(t = 0) ∼ exp(−t∕Tr).

(7)Z(�, �|S) =
∫

d�0G(�, �|�0)S(�0)

c(�, t)
,

(8)�a(�) =

tf

∫
t0

�Z(�, �|S)d�.
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for skimming flow within a street canyon, the deviation of ∼20% reflecting differences 
between the age and retention time [38]. The MTA does not necessarily equate low con-
centrations with improved ventilation, as is the case with diagnostics that assume spatial 
homogeneity.

2.4.2 � Mixing

A popular mixing diagnostic is the variance of the scalar field  [55]. The variance vanishes 
when the field has been homogenised or mixed completely, irrespective of the physical 
mechanism. The variance within a closed domain approaches zero after initial transients have 
subsided.

The appropriate definition of the variance depends on the domain. For a closed domain  , 
it can be assumed without loss of generality that the mean concentration vanishes, i.e., 
∫

Cd� = 0 . For an open, inhomogeneous domain, a reference baseline should be retained. To 

measure mixing throughout the canyon, the canyon average, ⟨C⟩c
 , is used as the baseline, i.e 

 While both ⟨�2⟩i
 and ⟨�2⟩c

 quantify convergence towards the canyon average, the for-
mer describes variations within the source region only. Alternatively the variance may be 
defined using a local average, ⟨C⟩i

 , as the baseline:

which measures relaxation towards the local average. Roughly speaking, ⟨�2⟩i
 and ⟨�2⟩c

 
are associated with the canyon-scale variance, and ⟨�2

loc
⟩i

 with the local one. It is shown 
below that the definitions are not necessarily equivalent.

The variance decay rate, � , characterises the rapidity of the mixing. It can be calculated for 
any definition of the variance, ⟨�2⟩ . Assuming exponential decay

� may be determined from a least-squares fit, whence

The interpretation of � as a mixing time scale is discussed below. Subscripts (i.e., ‘ i ’, 
‘ c ’ and ‘ loc’), label the � for Eqs. (9a), (9b) and (10). The propagation of errors from � to 
the derived quantity � is calculated according to,

(9a)⟨�2⟩i
=

1

Vi
�
i

�
C(t, �) − ⟨C⟩c

�2
d�,

(9b)⟨�2⟩c
=

1

Vc
�
c

�
C(t, �) − ⟨C⟩c

�2
d�.

(10)⟨�2
loc
⟩i

=
1

Vi
�
i

�
C(t, �) − ⟨C⟩i

�2
d�,

(11)⟨�2⟩ ∼ e−�t,

(12)� ≡ 1

�
.

(13)SD[�] = SD

[
1

�

]
≈

1

E[�]2
× SD[�],
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where SD and E are the standard deviation and expectation.
Efficient mixing requires the rapid creation of small scales [18, 50]. To see this, imagine 

that the scalar field has a characteristic scale, � . Mixing by molecular diffusion will become 
important when 𝛬 ≲ Ld , where Ld is a diffusive length scale. Alternatively mixing in a coarse-
grained sense may occur, in the absence of diffusive processes, when 𝛬 ≲ 𝛬0 for some arbi-
trary scale �0 (e.g., a grid scale). There are various means by which small scales can be cre-
ated. First, strong 3-D turbulence is the most obvious, though it may not be present throughout 
the entire domain. Second, repeated stretching-and-folding within a closed domain leads to 
elongation and filamentation, with the separation between filaments decreasing with the num-
ber of filaments. This process, which is the essence of chaotic advection [50, 65], is associated 
with the large-scale strain field. Third, diffusion could be enhanced through the synergistic 
interaction with the shear. An important example of this is the effective diffusivity for so-
called cellular flows with closed streamlines [26].

The decay rate, � , can be predicted theoretically for the second case [25]. For a random 
velocity field with (i) mean velocity gradient independent of scale; (ii) characteristic scale 
comparable to the domain size; and (iii) periodic boundary conditions, � is given to leading 
order in the (inverse) Péclet number

where U and L are the characteristic velocity and length scales and � is the diffusivity, 
by the largest Lyapunov exponent, �1 , which measures the exponential divergence of par-
ticle trajectories in the infinite-time limit  [49]. The theory is summarised in Ngan and 
Vanneste [46]. Although mixing may have a macroscopic or microscopic origin [18], for 
the preceding class of flows it is driven by the large-scale strain (when the diffusivity is 
small). A velocity field with the required properties can be realised by a randomised area-
preserving sine map [55], a (statistically) homogeneous vortex, or a turbulent flow with a 
steep energy spectrum, i.e. E ∼ k−n with n ≥ 3 [4]. One-dimensional energy spectra inside 
a single street canyon suggest that n ≈ 5∕3 on scales large compared to the dissipation 
scale [37].

The Lyapunov exponents, � , are estimated in the Eulerian frame and spatially averaged 
over i (see Appendix 1 for details). The resulting “pseudo-Lyapunov exponents”, which 
do not require the use of a Lagrangian model [38, 63], assume that the Eulerian evolution 
does not differ significantly from the Lagrangian evolution. This approximation is accept-
able for the local variance decay since the blocks are relatively small; indeed an average 
over a larger area may be less appropriate. Henceforth the qualifier is omitted. The associ-
ated Lyapunov time scale is given by

3 � Scalar fields

Snapshots of the normalised spanwise-averaged concentrations, ⟨C⟩∕C0 are plotted at two 
different times, t = 250 s (Fig.  6) and t = 5000 s (Fig.  7). The former is associated with 
early times, the latter with late times. The time scale of the mean circulation may be 
defined as

(14)Pe = UL∕�,

(15)�L ≡ 1

�1
.



921Environmental Fluid Mechanics (2019) 19:911–939	

1 3

where the characteristic velocities, U1 and W1 , are L1 norms (absolute values) of the stream-
wise and vertical velocities. The preceding definition has a straightforward physical inter-
pretation and has been used for other problems [16].

The scalar fields reflect the streamline geometry. A central “vortex” is seen for all ini-
tial conditions. Furthermore, concentrations are largest for the CC initial conditions, 
though the structure of the scalar field near the roof level and upper half of the down-
wind wall follows the TKE rather than the streamlines (Fig.  8). The TKE is defined as 
TKE ≡ 1

2
(u�

2
+ v�

2
+ w�2) , where u′ , v′ and w′ denote departures from the time averages of 

the streamwise (u), spanwise (v) and vertical (w) velocity components. Strong turbulence 
within the shear layer enhances dispersion and weakens the influence of the streamline 
geometry.

The scalar fields also depend on the initial conditions. Each set of scalar initial conditions 
yields a qualitatively distinct scalar field at the early time, t = 250 s , as may be expected for a 
turbulent flow. More interestingly, the sensitivity is maintained at the late time, t = 5000 s . Rel-
ative differences persist despite the decay in mean concentration. Using the canyon-averaged 

(16)Tc ≡ 2

(
H

W1

+
W

U1

)
≈ 521 s,

−0.5 0.0 0.5
x/W

0.0

0.5

1.0

z/
H
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Fig. 6   Normalised, spanwise-averaged scalar fields, ⟨C⟩∕C
0
 , at t = 250 s . The panels are organised accord-

ing to the locations of the associated initial conditions (Fig.  5): the top-left panel corresponds to source 
location TL, the bottom right to BR, etc. The canyon-averaged concentrations are indicated above the asso-
ciated panels. The structure of the early-time scalar fields depends on the source location
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Fig. 7   As in Fig. 6, but for t = 5000 s . Large relative differences among the scalar fields are maintained at 
late times

Fig. 8   Time- and spanwise-aver-
aged turbulent kinetic energy, 
⟨TKE⟩ . U

2.5H is the temporal and 
spatial average of the streamwise 
velocity at z∕H = 2.5 , a level 
within the inertial layer

−1.0 −0.5 0.0 0.5 1.0
x/W

0.0

0.5

1.0

1.5

2.5

z/
H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
K
E

/U
2 2.
5H

×10−2



923Environmental Fluid Mechanics (2019) 19:911–939	

1 3

concentrations for the ensemble of initial conditions, the ratio of the standard deviation to the 
mean increases from 0.23 to 0.42 over the course of the simulation. Memory of the initial 
conditions is lost after the scalar field is completely mixed, but this does not happen here. A 
plausible explanation is that the open boundary precludes efficient dynamical mixing in the 
long-time limit. This is confirmed in Sect. 5. Lagrangian calculations also indicate that only 
∼ 25% of particle trajectories experience re-entrainment while the return coefficient defined 
from a normalised re-entrainment timescale is similar [38].

Despite the quantitative differences, the scalar fields appear to share a common spatial 
structure. The similarities are highlighted by plotting the normalised concentration,

at the late time. The spatial structure of the spanwise average, ⟨�⟩ , is rather similar for the 
different initial conditions (Fig. 9), albeit with some differences in the central vortex. This 
is notable because the CC scalar field looks rather different in Fig. 7. If the scalar dynam-
ics were controlled by the same physical mechanism, the scalar fields for the different ini-
tial conditions would converge towards the same spatial structure at large times. This is 
reminiscent of the “strange eigenmode”, a statistical structure that emerges from the scalar 
decay in a large-scale velocity field [55]. Nonetheless, quantitative differences in the mean 
concentration and standard deviation persist.

The mixing seen in Figs.  6 and 7 cannot be obviously related to strong 3-D turbulence 
throughout the canyon. The TKE decays rapidly away from the roof level (Fig. 8) and the 
scalar fields exhibit large-scale filamentary structures. Furthermore, the mixing cannot be 
explained solely by turbulent diffusion. Defining the diffusive time scale as

where �T is the turbulent diffusivity, td ∼ 105 s for Ld = H = 50m and �T ∼ 0.025m2 s−1 . 
Alternative mechanisms are examined in Sect. 5 for each set of initial conditions.

(17)� =
C − ⟨C⟩c

⟨�2⟩
1

2c

(18)td ≡ L2
d

�T
,
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Fig. 9   Spanwise-averaged normalised concentrations, ⟨�⟩ , at t = 5000 s for a BR (Set A); b CC (Set C). 
Similar results are obtained with the other initial conditions
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4 � Ventilation

4.1 � Mean concentration

The normalised canyon-averaged concentrations, ⟨C⟩c
∕C0 , are plotted in Fig. 10a. After 

an initial adjustment period, the slopes or ventilation rates are approximately independent 
of initial conditions. In all cases, the asymptotic slope is achieved for t ≳ Tc∕2 ≈ 260 s , the 
time scale required for fluid parcels to be transported from the ground to the open bound-
ary at the roof level  [16]. The ensemble average over the 9 initial conditions has mean 
ventilation time scale Tr = 910 s (with standard error less than 1 s ). An identical ventila-
tion rate causes mean concentrations to decrease in step, but does not eliminate differences 
among the i (that may be generated during the initial stage).

The picture changes somewhat when the spatial average is taken over the source regions 
rather than the canyon. The normalised local concentrations (Fig. 10b), ⟨C⟩i

∕C0 , decay 
faster at early times ( t ≲ 1000 s for CC, t ≲ 500 s for the other initial conditions), but dif-
ferences with respect to ⟨C⟩c

∕C0 are much smaller at later times. The slopes in Fig. 10a, 
b converge for large t: the Tr differ by less than 10 s (or 1% ) and ventilation is insensitive to 
the definition.

4.2 � Mean tracer age

The MTA is plotted in Fig. 11 for the different i . The lowest values (youngest air) are 
found near the source regions. Values increase away from the sources following the pre-
ferred ventilation pathways for the different initial conditions. For initial conditions within 
the central vortex (CC), the MTA increases away from the centre and is approximately 
axisymmetric. For the corner vortices (BL, BR and TL), the age increases between the 
corner and roof level, roughly following the mean circulation (Fig. 4a). For the vortex sea 
(BC, CL, CR, TC and TR), the structure of the age fields resembles that for the corner 
vortices, but there is less localisation within the source regions. It will be shown below that 
this has implications for mixing at early times.

The MTA and scalar fields are obviously similar, but the former provides additional 
information on the nature of ventilation because it is based on the Lagrangian evolution. In 
particular, the MTA highlights the effects of the vortices. For initial conditions outside the 
central vortex, penetration into it is delayed, while for initial conditions inside the central 
vortex, escape from it to the outside is also delayed. In both cases the MTA is extremal 
within the central vortex (i.e., it contains the youngest or oldest air). The effect of the cor-
ner vortices is much less noticeable. These results are likely related to the Prandtl–Batch-
elor theorem [1], which states that diffusion across closed streamlines controls the scalar 
dynamics for steady 2-D flow. Presumably the corner vortices are less persistent and do 
not trap (or block) scalars as effectively. The MTA also shows that ventilation of specific 
source regions is not determined solely by the (local) turbulence intensity. While the TKE 
is maximised near the roof level, the MTA may not be dramatically lower in this region.

The sensitivity to initial conditions can be characterised with the canyon-averaged MTA, 
𝜏a . Whereas the retention time, Tr , shows little sensitivity to the initial conditions, 𝜏a varies 
by almost 40% (Table 2). (i) 𝜏a = 960 ± 14 s inside the corner vortices; (ii) 𝜏a = 898 ± 3 s 
inside the vortex sea; (iii) 𝜏a = 1200 s inside the central vortex. The classification intro-
duced above is used to organise the mixing results (Sect. 5). Henceforth we refer to
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Table 2   Canyon-averaged 
statistics of the mean tracer 
age, 𝜏a , for the different initial 
conditions, i

�� (see Fig. 5) BL BC BR CL CC CR TL TC TR

𝜏a (s) 964 898 942 897 1236 898 975 893 901

Fig. 10   Decay of the mean concentrations. a ⟨C⟩c
 ; b ⟨C⟩i

 . The colours correspond to the sets summarised 
in Eq. (19) (green: Set A; red: set B; blue: set C). There is exponential decay for all initial conditions
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Fig. 11   Contour fields of the mean tracer age, 𝜏a ; the organisation of the subfigures follows Fig. 6. The ven-
tilation pathways reflect the source locations and mean circulation (cf. Eq. (19))
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Each set of initial conditions undergoes a qualitatively distinct time history.

5 � Mixing

For a single-scale (random) velocity field and large-scale initial conditions,1 the large-scale 
strain creates small scales and mixes scalar throughout the domain. This yields essentially 
uniform exponential decay  [55]. This behaviour does not carry over to the street-canyon 
configuration (Sect. 2), for which there is inhomogeneous, multiscale flow and localised 
source regions, i . The canyon-scale variance averaged over i , ⟨�2⟩i

 , decreases as pol-
lutant disperses from the source region (Fig.  12), but uniform exponential decay is not 
observed. Instead there is a clear distinction between early and late regimes. Similar behav-
iour is obtained for ⟨�2⟩c

 , the canyon-scale variance averaged over c , and ⟨�2
loc
⟩i

 , the 
local variance (not shown). All three definitions of the variance, Eqs. (9)–(10), show abrupt 
changes in the decay rates or slopes between 400s and 1000s ; for simplicity, t = 1000 s is 

(19)Set A ≡ {BR,BL,TL}, Set B ≡ {BC,CL,CR,TC,TR}, Set C ≡ {CC}.

(a) (b)

(c) (d)

Fig. 12   Time series of ⟨�2⟩i
∕C2

0
 , the canyon-scale variance normalised against the initial concentration, 

C
0
 . a Set A (corner vortices); b Set B (vortex sea); c Set C (central vortex); d combined plot (green: Set A; 

red: Set B; blue: Set C). For Set B, the early-time decay is highlighted in the inset of b. In all cases, there is 
a clear contrast between early and late regimes

1  The characteristic scale of the scalar field is assumed to be large compared to the dissipation scale.
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taken to define the onset of the late regime. The decay rates for either regime are broadly 
similar for the three sets, Eq. (19). At late times, the decay rates are nearly indistinguisha-
ble (Appendix 2, Table 3); however, there is greater variability at early times (Appendix 2, 
Table 4).

Non-uniform variance decay has been previously noted. Salman and Haynes  [57] 
observed four distinct stages for the scalar evolution driven by a large-scale, spatially 
smooth velocity field within a 2-D domain with no-slip boundaries. They found that expo-
nential decay is preceded by a strain-induced adjustment stage and that boundary effects 
are important only during the final two stages. This sequence does not apply to street-can-
yon flow, for which the boundary conditions differ. Nonetheless a comparable analysis, in 
which the late and early regimes are explained in terms of distinct physical processes, is 
performed below.

5.1 � Late stage

Ventilation of the subregions at late times is controlled by escape of scalar from the canyon 
(Sect. 4.1). It is plausible that the variance decay obeys a similar mechanism on these time 
scales, implying that the variance decay should follow the mean concentration. In fact, nor-
malising the canyon-scale variance, by the (square of the) time-dependent canyon-averaged 
concentration (Fig. 13), eliminates the variance decay for t ≳ 1000 s . This implies that the 
variance decay at late times is a byproduct of the simultaneous decay of ⟨C⟩i

 and ⟨C⟩c
 . 

Although the magnitude of scalar gradients decreases, we do not ascribe this to mixing 
because the normalised gradients are largely maintained. The scalar field is not homog-
enised in a meaningful way.

To confirm that the late-time variance decay is driven by ventilation rather than mixing, 
the variance-decay time scales are compared to the ventilation decay rates. Assuming mix-
ing is determined solely by ventilation, and equating the variance, ⟨�2⟩i

 , with 
⟨C⟩2c

∼ exp(−2t∕Tr) , it follows from Eq. (6) that

(20)�v ∼
Tr

2
= 455 s,

Fig. 13   As in Fig. 12, but for 
⟨�2⟩i

∕⟨C⟩2c
 , the canyon-scale 

variance normalised by the 
square of the canyon-averaged 
concentration, ⟨C⟩c

 . The nor-
malised variance is essentially 
constant for t ≳ 1000 s
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where �v is the time scale implied by ventilation. The actual time scales, �i
 , are around 

400 s for CC and 458 s for the remaining initial conditions (Appendix  2, Table  3). This 
suggests that ventilation and the open boundary, which are not relevant to scalar dynam-
ics within a closed domain, are responsible for differences from the evolution described 
by Salman and Haynes  [57]: there is no evidence that boundary-layer effects control the 
long-time evolution. Multiscale effects associated with the shallow energy spectrum are 
probably small. The agreement between �v and �i

 is not as good for CC, possibly because 
trapping within the central vortex delays the establishment of the late regime; from Fig. 13, 
it is not fully established until t ∼ 4000 s.

5.2 � Early stage

During the early stage, t ≲ 1000 s , the variance decay is not controlled by ventilation or 
escape from the canyon (cf. Fig. 13). Hence we associate it with mixing. The nature of the 
mixing depends on the initial conditions (Fig. 12). While there is a single regime for Sets A 
(corner vortices) and C (central vortex), there are multiple subregimes for Set B (vortex sea).

5.2.1 � Set A (corner vortices)

Scalar initially located inside the corner vortices escapes into the vortex sea and spreads 
throughout the canyon interior (Figs. 6, 7). This is a strongly inhomogeneous process. The 
influence of the vortices and the sensitivity to scale (or variance definition) are assessed 
below.

Time series of the canyon-scale variance ⟨�2⟩i
 (Fig.  12a) show essentially uniform 

exponential decay for t < 400 s . The errors are small, indicating that the assumption of a 
single decay time scale holds to a good approximation (Table 4). The mixing time scales, 
�i

 , �c
 and �loc , are not identical for the different initial conditions. Memory of the initial 

conditions persists during the early stage and the mixing is incomplete.
The decay of ⟨�2⟩i

 , Eq. (9a) can arise from (i) the simultaneous decay of C, the con-
centration within i , and ⟨C⟩c

 , the canyon mean, or (ii) a decrease in �C − ⟨C⟩c
� , the 

canyon-scale difference between C and ⟨C⟩c
 . The first process (ventilation) has already 

been discussed in connection with mixing during the late regime of Sect.  5.1. The rel-
evance of the second of these processes (mixing) is now discussed.

A single exponential decay stage is observed for all three definitions of the variance. 
The associated time scales, �i

 , �c
 and �loc , are not identical, but the differences are not 

statistically significant. This suggests that the early-stage mixing is largely independent of 
definition or scale, as in mixing by a large-scale strain field. To assess the importance of 
large-scale straining, the mixing time scales are compared to the Lyapunov time scales, �L 
(Appendix 2, Table 5). Analytical predictions of the variance-decay rate in terms of the 
Lyapunov exponents have been well-verified numerically in 2-D [25] and 3-D [46] for ide-
alised single-scale velocity fields. Although turbulent flow in a street canyon does not sat-
isfy the requirements of a homogeneous velocity or periodic boundary conditions,2 agree-
ment in an order-of-magnitude sense may be assessed by comparing �L to �L,lower, �L,upper , 
where �L,upper∕�L,lower = 10 , e.g.

2  The requirement of global control, i.e., a velocity scale comparable to the size of the (closed) domain, 
is not strictly satisfied either. For an open domain, however, restricting the analysis to the canyon interior, 
z < H , is analogous.
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Figure 14 confirms order-of-magnitude agreement between �i
 , �c

, �loc and �L.
We conclude that early-time mixing is strongly influenced by the large-scale strain. Evi-

dently the scale dependence of the velocity field, which cannot be captured by the Lya-
punov exponents, does not play an important role. This is difficult to predict a priori, but 
consistent with relatively weak turbulence inside the canyon (cf.  [38]). According to the 
analytical theory  [25], diffusive contributions to the variance-decay rate, which enter at 
higher order in 1 / Pe, vanish for Pe → ∞ ; in the present simulation, they may be taken to 
be relatively small away from the inner wall layers. Incorporating Lagrangian variations 
through a proper calculation of the Lyapunov exponents could improve agreement. The 
Eulerian approximation holds only for a small averaging area, though �loc , which is also 
defined over a small area, does not show significantly better agreement with �L . The effec-
tive strain would likely decrease with a Lagrangian calculation. Since the rotation of the 

(21)�L,lower = 1∕
√
10�L, �L,upper =

√
10�L.

(a) (b)

(c)

Fig. 14   Comparison of the mixing time scales against the Lyapunov time scales (in seconds) for Sets A 
and B. a �i

 ; b �c
 ; c �

loc
 . The dotted lines correspond to upper and lower bounds (Eq. (21)). There is good 

order-of-magnitude agreement for �c
 and �

loc
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local strain axes, which partially suppresses stretching [30, 47], would be included with a 
Lagrangian trajectory, �L should increase.

The sensitivity to the size of the i is examined for a single source location, BL. Over 
a wide range of source sizes, l ∈ [4m, 16m] , �i

 varies from 30 s to 46 s ; the variation of 
�L is smaller, from 25 s to 29 s , but still consistent with order-of-magnitude agreement. The 
results do not depend qualitatively on the size of the source region.

5.2.2 � Set B (vortex sea)

Set B evolves similarly to Set A. For initial locations inside the vortex sea and the corner 
vortices, the scalar is stretched and folded by the canyon circulation (Fig. 6). Indeed the 
prediction of �loc and �c

 from �L shows comparable errors for both sets (Fig. 14), suggest-
ing that mixing is driven by the same physical mechanism outside the central vortex. Nev-
ertheless, the MTA indicates that the Lagrangian evolution is not identical for the two sets. 
Differences in the early-time mixing are analysed below.

The evolution for source locations inside the vortex sea is distinguished by the existence 
of three distinct subregimes (see the inset in Fig. 12b), a steep drop, plateau and roughly 
exponential decay. These subregimes may be interpreted, following the MTA field (Fig. 11) 
and the analysis of Sect.  5.2.1, as (i) rapid advection of scalar out of the source region 
(cf. Fig. 10); (ii) an intermediate stage in which neither C nor ⟨C⟩c

 decreases significantly; 
(iii) the onset of mixing. As these processes occur sequentially, they are associated with 
distinct time scales. A single decay stage is obtained for the canyon-scale variance aver-
aged over the entire canyon, ⟨�2⟩c

 (not shown).
Mixing is relevant only to the final stage of the initial evolution. The associated mixing 

time scales are listed in Appendix 2, Table 4. The ensemble averages depend on the vari-
ance definition: �i

= 127 ± 92 s , �loc = 41 ± 8 s and �c
= 50 ± 3 s.3 The average for �i

 
is biased by the very large value for TR, �i

|TR = 307 ± 47 s ; omitting this value yields 
�i

= 82 ± 23 s . Nonetheless there is some evidence that the mixing is approximately inde-
pendent of scale: �loc and �c

 agree well, as with Set A. These time scales show order-of-
magnitude agreement with �L ; the agreement between �i

 and �L is poorer (Fig. 14).
The anomalous behaviour identified above is related to the source location and averag-

ing region. The agreement among the ensemble-averaged mixing time scales is improved 
when TR is omitted from the ensemble. This location is special because strong turbulence 
near the leading edge of the windward wall, where the TKE is maximised, increases disper-
sion (Fig. 6) and �i

|TR . The other definitions, �loc and �c
 , are less susceptible to transient 

behaviour related to the choice of localised initial conditions. It is plausible that agreement 
worsens for �i

 since it represents an average of the canyon-scale variance over the source 
region (Eq. (9a)).

The subregimes disappear with a spatially distributed “ring source”, in which the scalar 
is initially confined to the region, Ri ≤ r ≤ Ro , with r(x, z) defined with respect to the ori-
gin, (x∕W = 0, z∕H = 0.5) . The thickness of the ring dR ≡ Ro − Ri = l , the spatial dimen-
sion of the block sources in Fig. 5. The cases (i) Ri = 16m,Ro = 22m (which excludes the 
corner vortices) and (ii) Ri = 19m,Ro = 25m (which includes the largest R that can be 
inscribed within the canyon) have been tested. In agreement with �c

 and �loc for the vortex 

3  Since the members of the set are not identical, errors are estimated from the standard deviation of the 
entire set.
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sea (Set B), there is uniform exponential decay for t ≲ 200 s with �i
|ring,i = 34 ± 1 s and 

�i
|ring,ii = 38 ± 1 s.

5.2.3 � Set C (central vortex)

The evolution of scalar initially located inside the canyon vortex differs qualitatively from 
Sets A and B. The scalar fields have an axisymmetric appearance and show less evidence 
of large-scale straining (Fig. 6). Indeed the variance-decay time scales are about 5–6 times 
longer than �L : averaging over the three definitions, �avg(i ,c ,loc)

= 149 ± 15 s . Further-
more, mixing is slow compared to Sets A and B.

A likely explanation is that mixing inside the central vortex obeys a different physical 
mechanism. Since turbulence is weaker near the canyon midplane [13, 56], the central vor-
tex is more persistent than the corner vortices. It is tempting to estimate the mixing time 
scale as the diffusive time scale across a vortex of prescribed radius. However, Eq.  (18) 
gives td ∼ 104 s ≫ 𝜏avg for a radius Ld = 17m , which is the largest radius that excludes the 
corner vortices within the present configuration [16]. This estimate is inconsistent with the 
observed variance decay.

The motion along streamlines increases the effective diffusion across streamlines [59]. 
Analytical estimates of the effective diffusivity, �eff , come from the theory of cellular flow 
for closed, spatially periodic flows [26]. A well-known estimate gives

where � is the molecular or turbulent diffusivity. The Péclet number, Pe = RV∕� , depends 
on the tangential velocity V at radius R (see Appendix 3). The average turbulent diffusivity, 
⟨�T⟩ , taken over the region bounded by R, is substituted for � . The associated diffusive or 
mixing time scale is then given by

The choice of R is somewhat arbitrary because the vortex does not have a distinct bound-
ary. A reasonable choice is R = 9m , within which approximately 74% of the vorticity is 
concentrated  [16]: this yields �eff = 222 ± 6 s , where the errors reflect the variability in 
mean tangential speed, and �i

|R=9m = 167 ± 2 s . The prediction shows rough agreement 
with the actual variance decay. For R ∈ [4m, 17m] , �i

 ranges between 93 s and 561 s 
while the variation in �eff is much smaller (not shown). Exact agreement between the ana-
lytical estimate (Eq. (22)) and the numerical results is unlikely even if the “true” value of R 
could be determined: the canyon vortex is not steady and the theory assumes spatially peri-
odic flow with a separatrix dividing each cell [59]. Nonetheless there is agreement within 
an order of magnitude.

5.2.4 � Non‑constant initial concentrations

The preceding results were obtained with constant initial concentration, C0 . Following 
Pierrehumbert [55], non-constant initial conditions have been tested:

(22)�eff = �Pe1∕2,

(23)�eff =
R2

�eff
.
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where l is the spatial dimension of the source block (see Fig. 5) and (x0, y0, z0) are the coor-
dinates of the lower-left corner. Without loss of generality, one i is selected from each of 
the three sets: BL from Set A; CL from Set B; CC from Set C.

The variance decay of the three non-constant C′
0
 ’s is plotted in Fig. 15. There is minimal 

sensitivity to C′
0
 : �i

|BL = 32 ± 1 s , �i
|CL = 61 ± 5 s and �i

|CC = 143 ± 2 s compared to 
32 ± 1, 62 ± 5, 147 ± 2 respectively (Appendix 2, Table 4).

(24)C�
0
(�, 0) = C0

|||||
sin

[
2�(x − x0)

l

]
sin

[
2�(y − y0)

Ly

]
sin

[
2�(z − z0)

l

]|||||
,

Fig. 15   As in Fig. 12 but for BL, 
CL and CC and non-constant 
initial conditions, Eq. (24). The 
early and late regimes persist
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source follows Gromke and Ruck [22]
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6 � Ground‑level sources

Ground-level sources are of particular relevance to urban air quality. Since qualitatively 
similar behaviour is obtained for initial conditions outside the central vortex (Sects. 5.2.1 
and 5.2.2), ground-level area and line sources should be well-approximated by Sets A and 
B. This is tested using results from ground-level area and line sources (Fig. 16)

Snapshots of the scalar fields are shown at t = 250 s for the line and area sources 
(Fig. 17). In both cases, the effects of large-scale straining by the canyon circulation are 
obvious. The similarity between them probably arises from their symmetric arrangement 
about x∕W = 0 : the results resemble a composite of those for the ground-level pollutant 
blocks, BL, BC and BR (Fig. 6).

More generally, line and area sources show good quantitative agreement with the ear-
lier results. The mean concentration decays almost exponentially from the outset with 
Tr|line and area = 909 ± 1 s versus Tr = 910 s for the nine i . The MTA’s, 𝜏a|line = 924 s 
and 𝜏a|area = 921 s , lie within the range spanned by BL, BC and BR (Table 2). The vari-
ance decay is divided into an early and late regime and the time scales are consistent with 
the values for Set B (Table  4). For the late regime, �i

|area and line = 457 ± 2 s , while for 
the early regime, �i

|area = 58 ± 2 s and �i
|line = 52 ± 2 s . As with the ring source (see 

Sect. 5.2.2), there is minimal sensitivity to the variance definition.

7 � Conclusions

This paper has shown that the scalar dynamics within a street canyon depend sensitively on 
initial conditions. It was found that differences in the scalar fields persist even after ∼ 10 
large-scale circulation times. Analyses of ventilation and mixing confirmed the importance 
of the open boundary. The canyon-averaged concentrations for initial conditions defined 
by cubic “pollutant blocks” arranged in a 3 × 3 grid within the canyon do not converge to 
the same value, though the decay rates are essentially identical at large times. The canyon-
averaged variance decayed in two distinct regimes: the early regime reflects large-scale 
straining and diffusion across streamlines but the late regime is associated with escape 
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from the canyon, i.e., ventilation. The variance decay rates may be classified into three sets 
defined by the location of the pollutant blocks relative to the central or corner vortices.

Given the idealised setting of this study, e.g. the restriction to a 2-D street canyon with 
unit aspect ratio and perpendicular incident flow, the main findings are somewhat theoreti-
cal in nature. First, it is demonstrated that the open roof-level boundary of a street canyon 
leads to profound differences compared to mixing within closed domains. Since fluid par-
cels that leave the domain by crossing the roof level do not necessarily return, significant 
mixing occurs only at early times, i.e. on the time scale of the canyon circulation. Mem-
ory of the initial conditions is maintained because the scalar fields are not homogenised 
over the entire canyon. In the language of dynamical systems theory, the dynamics reflect 
transient chaos or scattering  [49] rather than the stationary chaotic dynamics of chaotic 
advection  [50]. Second, it is shown that analytical predictions for chaotic advection  [25] 
and effective diffusion across closed streamlines  [59] apply to the variance decay rates. 
Although the agreement is quite rough, it is still notable insofar as the theories invoke 
many assumptions (e.g. spatial homogeneity or exactly 2-D flow) that are not satisfied by 
turbulent flow inside a street canyon; indeed there is no guarantee that the theories should 
apply at all.

Despite the inherent limitations of this study, there are several ways in which this 
work could be applied more generally. With respect to practical urban design, the pre-
sent street-canyon results indicate that a ground-level source located at the centre of the 
canyon yields improved air quality compared to sources at the upwind and downwind 
corners (e.g. the canyon-averaged concentration is approximately 20–30% lower, with 
a similar effect for the pedestrian level). The level of improvement would obviously 
depend on the details of the flow, but there is reason to believe that the phenomenon 
may be more general. Neither escape of fluid parcels from the urban canopy nor a spa-
tially inhomogeneous circulation, which are the key ingredients responsible for the sen-
sitivity to initial conditions, is exclusive to street-canyon flow. With respect to implica-
tions for modelling, parameterisations of mixing based on the variance decay rate could 
be developed for more realistic flows. This would be a natural extension of network 
models of urban pollutant dispersion  [2, 61], which assume uniform concentration or 
perfect mixing within a box (e.g., a street canyon). Application to pollutant dispersion 
aside, quantification of the (inhomogeneous) mixing rate could prove useful for urban 
canopy parameterisations (UCPs), which seek to represent the effects of the urban envi-
ronment on larger scales [11, 41]. Mixing on urban scales would still need to be related 
to mixing on larger scales, e.g., the mesoscale; one possibility would be to “embed” a 
highly reduced urban model, based on the mixing and ventilation rates, inside each mes-
oscale grid box. Such an approach is similar in spirit to UCPs and existing atmospheric 
parameterisations, e.g., multiscale cloud parameterisation schemes [21]. The relevance 
of the analytical predictions to more realistic settings is unclear and would need to be 
investigated on a case-by-case basis.
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Appendix 1: Lyapunov exponents

The stretching of fluid trajectories or the divergence of particles trajectories is governed by 
the velocity-gradient tensor. It has elements Jij = �ui∕�xj . After discretising in time, (vec-
tor) perturbations evolve according to the map

For simplicity, dX0 = I . The Lyapunov exponents are calculated following the algorithm of 
von Bremen et al. [6]. Applying QR-factorization to the matrix product JnJn−1 ⋯ J1 yields 
R = {R0, R1, … , Rn−1, Rn} where n ∈ [0, n] and Ri denotes the upper triangular matrix 
from the ith QR-factorization. The Lyapunov exponents follow from

where � denotes the diagonal elements of Ri and � is a row vector, i.e. � = �(�0, �1, �2) 
with �0 representing the maximum Lyapunov exponent. The associated time scale is just 
the reciprocal of �0 . For initial conditions within i (cf. Fig. 5),

where ⟨⋅⟩i
 denotes the spatial average over i.

Appendix 2: Variance‑decay and Lyapunov time scales

Variance-decay time scales for the early and late regimes are listed in Tables  3 and 4, 
respectively. The corresponding Lyapunov time scales are shown in Table 5.

(25)dXn+1 = (J(�)�t)ndXn.

(26)� =
1

n�t

n∑

i=0

log (�Ri),

(27)�L = 1∕⟨�0⟩i
,

Table 3   Variance-decay time scales (s) for the late regime, t ∈ [1000 s, 5000 s]

Results are largely insensitive to the definition of the variance: for a given i , �c
 and �

loc
 deviate from �i

 
by up to 4% for Sets A and B and 7% for Set C. There is minimal sensitivity to the initial conditions. The 
variance-decay time scales differ by up to 10% for initial conditions inside the vortices (Sets A and B); difer-
ences are smaller within the vortex sea (Set C). There is a strong correlation between the least-square fits 
and the original data ( 0.98 ≤ R2 ≤ 1.00)

Categories CC BL BR TL BC CL CR TC TR

�i
± �� 398 ± 2 455 ± 4 454 ± 4 459 ± 2 458 ± 4 468 ± 5 455 ± 3 461 ± 4 453 ± 2

�
loc

± �� 413 ± 4 462 ± 4 438 ± 4 454 ± 1 461 ± 4 468 ± 4 452 ± 3 460 ± 4 453 ± 2

�c
± �� 425 ± 1 458 ± 2 476 ± 1 462 ± 2 459 ± 2 460 ± 2 457 ± 2 460 ± 2 456 ± 2
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Appendix 3: Tangential velocity of the central vortex

The tangential velocity, V(x, z) =
√
u(x, z)2 + w(x, z)2 , is calculated by assuming that the 

vortex is circular and centred at the centre of the canyon O(0, H / 2) (see Fig. 5 of Duan 
and Ngan [16]). The coordinates of a particle are defined by

where R is the radius of the nominal vortex. Averaging in space and time

where Ly is the canyon length in the spanwise direction and A
�
= 2.0�RLy is the surface 

area of the cylindrical vortex. For brevity, ⟨⋅⟩ , is omitted from the text.
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