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Abstract
Two improved displacement shallow water equation (DSWE) are constructed by applying 
the Hamilton variational principle under the shallow water approximation. The first one is 
the extended DSWE (EDSWE), which contains a higher order nonlinear term omitted in 
the original DSWE; and the second one is the fully nonlinear DSWE (FNDSWE) which 
contains all the nonlinear terms. By using the exp-function method, the EDSWE is ana-
lyzed and different types of waves, including the regular solitary wave, the loop solitary 
wave, the solitary wave with a sharp peak, and the periodic wave, are obtained. The exact 
solitary wave solution of the FNDSWE is also obtained. It is proved that under the shallow 
water approximation, the particle trajectory of the solitary wave is a parabolic curve.

Keywords  Solitary wave solution · Displacement shallow water equation · Hamilton 
variational principle · Particle trajectory · Exp-function method

1  Introduction

Since Russell observed the solitary wave in 1834, it has attracted the attention of researchers 
from many different areas, such as fluid mechanics, coastal engineering, applied mathemat-
ics, quantum mechanics, solid mechanics and the study of sand dunes [1–8]. Because of the 
importance of the solitary wave, there have been many mathematical models developed for it, 
such as the Boussinesq equation, the KdV equation and the Green Naghdi equation [3, 9–13]. 
However, most existing mathematical models developed for the shallow water solitary wave 
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are based on the Eulerian method. Solving the Eulerian equation can usually yield the flow 
field. But it is very difficult to calculate the particle motion in terms of the flow field, because 
the relation between these two variables is quite complex. Even for the line periodic gravity 
water wave with a line periodic flow field, there are no closed particle orbits [14, 15]. It has 
also been proved that there are no closed particle paths in Stokes waves with moderate and 
large amplitude [16, 17]. Hence, it is inconvenient for the Eulerian equation to copy with the 
problems with moving boundaries, such as the free surface and moving coastline.

It is known that an alternative approach for the fluid is the Lagrangian method, which 
describe the fluid motion by tracing particle trajectories. Compared with the Eulerian method, 
the Lagrangian method is more appropriate for the problems with moving boundaries [18, 19]. 
From the Lagrangian perspective, the water is seen as a dynamical system with infinite mov-
ing particles. The kinetic and potential energies of this system can be formulated easily. If the 
water is inviscid, it is quite natural using the Hamilton variational principle in the analytical 
mechanics to derive the Lagrangian water equation [20]. Actually, the Hamilton variational 
principle can provide a unifying framework for formulating the governing equations [21–24] 
or numerical schemes [25–29] of different water problems. In Ref. [21], Zhong and Yao firstly 
applied the Lagrangian method to address the shallow water solitary wave. They used the 
horizontal displacement to describe the evolution of water wave and assumed that the hori-
zontal displacement is independent of the vertical coordinate, which is a displacement version 
of shallow water approximation. By using the Hamilton variational principle, they derived the 
follow displacement shallow water equation (DSWE)

where u(x, t) is the horizontal displacement of the water particle, g is the gravity accelera-
tion, and h is the water depth. Subsequently, Liu and Lou extended Zhong’s DSWE to the 
two-dimensional solitary wave problem in Ref. [22], where a (2 + 1)-dimensional displace-
ment shallow water wave equation (2DDSWWE) was developed. In Refs. [30, 31], the 
2DDSWWE was modified by adding the effect of the fluid viscidity. The two-dimensional 
displacement solitary wave solutions were discussed in Refs. [22, 23]. Some numerical 
algorithms for the DSWE were proposed in Refs. [25–27], and it is found that the DSWE 
performs excellent with respect to the simulation for shallow water with the sloping water 
bottom and wet–dry interface.

It should be noted that in all the motioned works about the DSWE, the vertical displace-
ment is expressed as a Taylor series, and only the first three terms are retained. If more higher 
nonlinear terms are considered in the DSWE, more accurate solutions will be obtained. Hence 
it is worth improving the DSWE by keeping more higher nonlinear terms, which will be 
addressed in Sect. 2. Two improved displacement shallow water equations are developed. In 
Sect. 3, the solitary wave solutions of the proposed equations are given by using the gauge 
transformation and the exp-function method. Finally, some conclusions are presented.

2 � Displacement shallow water equation

In this section, we formulate the governing equations for the shallow water gravity waves. 
The water is assumed to be an incompressible and inviscid fluid of constant density which 
is boxed in a rectangular box, shown by Fig. 1 and posses a free surfaces. The bottom plane 
is defined by z = −h . The surface-energy effects are negligible.

(1)ü −
h2

3
üxx − gh

(
uxx − 3uxuxx

)
= 0,
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Let (x, z) represents the location of certain particle in water at initial time t0 , and (X, Z) the 
location of this particle at time t . Let u ≡ u(x, z, t) and w ≡ w(x, z, t) represent water displace-
ments in x and z directions, respectively. Obviously, we have

Based on the continuum mechanics [32], the continuity equation for the incompressible 
water is

The kinetic energy of the water system, denoted by T , reads

where � is the mass density, ut and wt are the horizontal and vertical velocities, respectively.
The potential energy of the water system, denoted by U , reads

According to the displacement shallow water approximation [21], i.e., the horizontal dis-
placements is assumed to be independent of the vertical coordinate z , we have uz = 0 . So 
Eq. (3) can be rewritten as

which shows that the vertical displacement distributes linearly along the vertical coordinate 
z . Integrating Eq. (6) with respect to z and noting that the vertical displacement at the water 
bottom z = −h is zero, i.e., w(x,−h, t) = 0 , we obtain

In terms of Eq. (7), the vertical velocity is

The free water surface profile can be expressed by using the positions of the particles on 
the water surface, i.e., (x + u(x, 0, t), �(x, t)) , where

(2)
X(x, z, t) = x + u(x, z, t),

Z(x, z, t) = z + w(x, z, t).

(3)J =

|||
|||

�X

�x

�X

�z

�Z

�x

�Z

�z

|||
|||

=
(
1 + ux

)(
1 + wz

)
− uzwx = 1.

(4)T = ∫
L

−L ∫
0

−h

1

2
�u2

t
dxdz + ∫

L

−L ∫
0

−h

1

2
�w2

t
dxdz,

(5)U = ∫
L

−L ∫
0

−h

�g(z + w)dzdx.

(6)wz =
−ux

1 + ux
,

(7)w(x, z, t) = −
ux(z + h)

1 + ux
.

(8)wt = −(z + h)
uxt

(
1 + ux

)2 ,

Fig. 1   Shallow water system
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Combing Eqs. (7) with (9) yields

Substituting Eqs. (8) and (10) into Eqs. (4) and (5), respectively, yields

and

The action integral of the water system reads

where s is a variable of integration in the inteval 
[
t0, t

]
 . Substituting Eqs. (11) and (12) into 

the action integral (13) and using the Hamilton variational principle, we have

Equation  (14) is called the fully nonlinear DSWE (FNDSWE), because there is no 
approximation for it, except the shallow water approximation. Once the horizontal dis-
placement u is obtained by solving Eq. (14), the vertical displacement can be obtained with 
the aid of Eq. (7).

It is clear that the FNDSWE (14) is much more complex than the DSWE (1). Noting 
that the vertical velocity is much smaller than the horizontal velocity for the shallow water 
wave problem [21, 25, 33], the vertical velocity can be approximated as

Substituting Eq. (15) into Eq. (4) yields the following approximated kinetic energy

The vertical displacement (7) can be represented as a Taylor series in ux . Keeping only 
the first three terms, Eq. (9) is approximated as

(9)�(x, t) = w(x, 0, t) = −
uxh

1 + ux
.

(10)w(x, z, t) = �(x, t)
(
z + h

h

)
.

(11)T = ∫
L

−L

1

2
�hu2

t
dx + ∫

L

−L

h3

6
�

[
uxt

(
1 + ux

)2

]2

dx

(12)U = ∫
L

−L

h

2
�g�dx + C, C = ∫

L

−L ∫
0

−h

�gzdzdx.

(13)S = ∫
t

t0

(T − U)ds.

(14)ü −
h2

3

(
uxxtt

(
1 + ux

)4 −
4uxxuxtt + 4uxtuxxt

(
1 + ux

)5 +
10uxxu

2
xt

(
1 + ux

)6

)

− gh
uxx

(
1 + ux

)3 = 0.

(15)wt = −(z + h)uxt.

(16)T ≈ TZhong = ∫
L

−L

1

2
�hu2

t
dx + ∫

L

−L

h3

6
�u2

xt
dx.

(17)�(x, t) ≈ �Zhong = −uxh
(
1 − ux + u2

x

)
.
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Substituting Eq. (17) into Eq. (12), the potential energy is approximated as

in which the boundary condition u(−L, t) = u(L, t) = 0 is used. Expressions (16) and (18) 
were firstly presented by Zhong, et al. [21]. Substituting Eqs. (16) and (18) into the action 
integral Eq. (13) and using the Hamilton variational principle yields the DSWE (1). It is 
obvious that DSWE (1) is based on the approximation (17), which keeps only the first three 
terms. If we keep the first four terms, i.e.,

the potential energy can be approximated as

Substituting Eq. (16) and (20) into the action integral Eq. (13) and using the Hamilton 
variational principle yields

which contains a higher nonlinear term, 6u2
x
uxx , compared with the DSWE (1), and is called 

the extended DSWE (EDSWE).
In the next section, the exact solitary wave solutions of the EDSWE and FNDSWE are 

derived by using different methods.

3 � The solitary wave solutions

3.1 � The solitary wave solution of EDSWE

We firstly look for the solitary wave solution of the EDSWE (21) by using the gauge 
transformation:

where c is the velocity of the solitary wave. Substituting Eq.  (22) into Eq.  (21) yields a 
nonlinear ordinary differential equation

(18)

U ≈ UZhong = ∫
L

−L

h

2
�g�Zhongdx + C

= −∫
L

−L

h2

2
�guxdx + ∫

L

−L

h2

2
�g

(
u2
x
− u3

x

)
dx + C

= ∫
L

−L

h2

2
�g

(
u2
x
− u3

x

)
dx + C,

(19)�(x, t) ≈ �e = −uxh
(
1 − ux + u2

x
− u3

x

)
,

(20)U ≈ Ue = ∫
L

−L

h2

2
�g

(
u2
x
− u3

x
+ u4

x

)
dx + C.

(21)ü −
h2

3
üxx − ghuxx

(
1 − 3ux + 6u2

x

)
= 0,

(22)u(x, t) = u(�), � = x − ct,

(23)c2u�� − c2
h2

3
u���� − gh

[
u�� − 3u�u�� + 6

(
u�
)2
u��

]
= 0,
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where

Integrating Eq. (23) once over � and letting the integration constant to be zero, we can 
obtain

Setting

Equation (25) can be rewritten as

Next, we use the exp-function method [34] to solve Eq. (27). The exp-function method 
is based on the assumption that the solution can be expressed in the following form:

where e , d , p and q are positive integers which are unknown to be further determined, an 
and k are unknown constants.

By simple calculation, we have

and

where bi and di are unknown constants. By balancing the highest order term in Eq.  (29) 
with the highest order term in Eq. (30), we have 2e + p = e + 2p , i.e., p = e . Balancing the 
lowest order term in Eq. (29) with the lowest order term in Eq. (30) yields d = q.

For simplicity, we set p = e = 1 and q = d = 1 , so Eq. (28) reduces to

Substituting Eq. (31) into Eq. (27) and equating the coefficients of exp(nk�) to be zeros, 
we have

(24)u� =
du(�)

d�
, u�� =

d2u(�)

d�2
, u���� =

d4u(�)

d�4
.

(25)c2u� − c2
h2

3
u��� − gh

[
u� −

3

2

(
u�
)2

+ 2
(
u�
)3]

= 0.

(26)f =
du(�)

d�
,

(27)c2f − c2
h2

3
f �� − gh

[
f −

3

2
f 2 +

6

3
f 3
]
= 0.

(28)f =
acexp(ek�) +⋯ + a−dexp(−dk�)

apexp(pk�) +⋯ + a−qexp(−qk�)
,

(29)f 3 =
b3exp(3ek�) +⋯ + b4exp(−3dk�)

b1exp(3pk�) +⋯ + b2exp(−3qk�)

(30)f �� =
d3exp((e + 2p)k�) +⋯ + d4exp(−(d + 2q)k�)

d1exp(3pk�) +⋯ + d2exp(−3qk�)
,

(31)f =
a0exp(k�) + a1 + a2exp(−k�)

b0exp(k�) + b1 + b2exp(−k�)
.

(32)a0 = a2 = 0, k2 =
3(� − 1)

�h2
, a1 = −2b1(� − 1), b1 = ±

2
√
b0b2 (4� − 3)

3 − 4 �
,
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where � = c2
/
gh . Combining Eqs. (19) with (31) yields

Once � is obtained, the vertical displacement can be given by substituting Eq. (33) into 
Eq. (10). According to Eq. (26), the horizontal displacement u(�) can be written as

where u0 = u(0).
The free water surface profile can be expressed by using the positions of the particles on 

the water surface, i.e., (X(x, 0, t), Z(x, 0, t)) , in which

It can be seen from Eqs. (33)–(35) that the wave profile is dependent on the unknown 
constants bi and � . The wave shape is not changed in the case that b0 = b2 ≥ 0 , which 
means f �(0) = 0 and ��(0) = 0 . Hence, b1 and � are the key parameters which affect the 
wave shape. We will discuss different types of waves by using different values of b1 and 
� as follow.

Case 1  We firstly set � ≥ 1 and b1 > 0 , which means

Substituting Eq. (36) into Eqs. (31) and (34) yields

and

which shows that the horizontal displacement is a kink solitary wave. Substituting Eq. (37) 
into Eq. (33) will give � . In terms of Eqs. (10) and (33), the vertical displacement can be 
written as

Letting �(0) = �0 be the amplitude of the solitary wave, we have

and

(33)�(x, t) = −fh
(
1 − f + f 2 − f 3

)
.

(34)
u(�) = u0 + ∫

�

0

f (x)dx = u0 +

2a1atan

�
b1+2b0e

k�

√
4b0b2−b

2
1

�

k

�
4b0b2 − b2

1

−

2a1atan

�
b1+2b0√
4b0b2−b

2
1

�

k

�
4b0b2 − b2

1

,

(35)X(x, 0, t) = x + u(�), Z(x, 0, t) = �(�, z).

(36)a1 =
−4b0(� − 1)
√

4� − 3
, b1 =

2b0
√

4� − 3
, k =

�
3(� − 1)

�h2
.

(37)f =
−2(� − 1)

√
4� − 3 cosh (k�) + 1

(38)u(�) = u0 +

�
4�h2

3

�

atan

�
1 +

√
4� − 3

2
√
� − 1

�

− atan

�
1 + ek�

√
4� − 3

2
√
� − 1

��

,

(39)w = −f
(
1 − f + f 2 − f 3

)
(z + h).

(40)e = −f0
(
1 − f0 + f 2

0
− f 3

0

)
, e = �0

/
h,



12	 Environmental Fluid Mechanics (2020) 20:5–18

1 3

Solving Eq. (40) gives � . Once � is obtained, the velocity of the solitary wave can be 
determined in terms of c =

√
gh� . It can be seen from Eq.  (37) that f < 0 . Noting that 

−f = −du∕d� = ut
/
c represents the ratio of the particle horizontal velocity to the solitary 

wave velocity, f < 0 means all the particles move in the direction of wave propagation at 
a positive speed. This deduction is same as that provided by Constantin et al. in Ref. [35].

Moreover, it is worth noting in terms of Eqs. (36)–(41) that for case 1, the water wave 
have the following three different shapes, which is dependent on the parameter �.

Case 1.1  When 𝛼 < 3 , −f < 1 , which means the horizontal velocity of each particle is 
smaller than the solitary wave velocity. For this case, the water surface is a common soli-
tary wave with peak form, as shown in Fig. 2a.

Case 1.2  When � = 3 , −f (0) = 1 . For this case, the gradient of the water surface at � = 0 
is infinite, and there is a sharp peak on the solitary wave crest, as shown in Fig. 2b.

Case 1.3  When 𝛼 > 3 , there exist some particles with horizontal velocities larger than the 
solitary wave velocity. For this case, the water surface is a loop solitary wave, as shown in 
Fig. 2c.

Case 2  We next set � ≥ 1 and b1 < 0 , which yields

and

In this case, substituting Eq. (43) into Eq. (33) could yield a type of solitary wave with 
more loops, as shown in Fig. 2d, e.

Case 3  At last, we set 3
4
< 𝛼 < 1 , which means that k = iK is an imaginary number and

(41)f0 = f (0) =
−2(� − 1)

√
4� − 3 + 1

.

(42)a1 =
4b0(� − 1)
√

4� − 3
, b1 = −

2b0
√

4� − 3
,

(43)f =
2(� − 1)

√
4� − 3 cosh (k�) − 1

,

(44)u(�) = u0 +

�
4�h2

3

�

atan

�
ek�

√
4� − 3 − 1

2
√
� − 1

�

− atan

�√
4� − 3 − 1

2
√
� − 1

��

.

(45)K =

�
3(1 − �)

�h2
, a1 = −

4b0(1 − �)
√
4� − 3

, b1 = −
2b0

√
4� − 3

.
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Substituting Eq. (36) into Eq. (31) yields a periodic solution as follow

(46)f =
−2(1 − �)

√
4� − 3 cos (K�) − 1

.
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Fig. 2   The profiles of the different solitary waves, h = 0.1 m , g = 10 m
/
s
2
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Integrating Eq. (46) once over � yields the horizontal displacement as follow

Figure 2f displays the periodic wave in the case of � = 0.8.

3.2 � The solitary wave solution of FNDSWE

Similar on the previous section, we substitute the gauge transformation (22) into the FND-
SWE (14) to obtain the following nonlinear ordinary differential equation

Integrating Eq. (48) with respect to � yields

where C1 is unknown constant. Letting f = du∕d� , Eq. (49) can be rewritten as

For the solitary wave solution, lim
�→∞

f (�) = 0 , hence we have C1 = gh∕2 . Multiplying 
Eq. (50) by f � = df∕d� yields

Integrating Eq.  (51) with respect to � and letting the integration constant be zero, we 
have

Substituting f = −�

h+�
 into Eq. (52), we have

(47)u =

2atan
�
tan

�
K�

2

�√
C+2
√
C

�
− 2atan

�
tan

�
K�

2

��
+ K�

√
CK

√
C + 2

, C =
1

√
4� − 3

− 1.

(48)c2u�� −
h2

3
c2

[
d2

d�2
u��

(1 + u�)4
+

d

d�

2
(
u��

)2

(1 + u�)5

]

+
gh

2

d

d�

1

(1 + u�)2
= 0.

(49)c2u� −
h2

3
c2

[
d

d�

u��

(1 + u�)4
+

2
(
u��

)2

(1 + u�)5

]

+
gh

2

1

(1 + u�)2
= C1,

(50)c2f −
h2

3
c2

[
f ��

(1 + f )4
−

2
(
f �
)2

(1 + f )5

]

+
gh

2

1

(1 + f )2
= C1.

(51)c2
1

2

df 2

d�
−

h2

6
c2

d

d�

(
f �
)2

(1 + f )4
+

gh

2

d

d�

f

(1 + f )
=

gh

2

df

d�
.

(52)c2f 2 −
h2

3
c2

(
f �
)2

(1 + f )4
+ gh

f

(1 + f )
= ghf .

(53)
(
��
)2

=
3�2

(
c2 − gh − g�

)

c2(h + �)2
.
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Letting � = 0 and noting that �(0) = �0 and ��(0) = 0 , the velocity of the solitary wave 
can be written as

In case of � ≥ 0 , Eq. (53) can be rewritten as

It is easily observed from Eq. (55) that

For the case 𝜉 < 0 , we have

Equation (57) describes the relation between � and � . The horizontal displacement u(�) can 
be obtained by using

in which � ≥ 0 and u0 = u(0) . Using � =
−fh

f+1
 , Eq. (56) can be rewritten as

For � = 0 , f (0) = −a−1 . Substituting Eq. (59) into Eq. (58) yields

(54)c2 = g
(
h + �0

)
.

(55)�� = −

√
3�2

(
c2 − gh − g�

)

c2(h + �)2
.

(56)

� = ∫
�0

�

c(h + x)

x

�
3
�
c2 − gh − gx

�dx

= ∫
�0

�

ch

x

�
3
�
c2 − gh − gx

�dx + ∫
�0

�

c
�

3
�
c2 − gh − gx

�dx

=
c

√
3g

�

2
√
�0 − � −

h
√
�0

ln

�√
�0 −

√
�0 − �

√
�0 +

√
�0 − �

��

.

(57)� =
c

√
3g

�
h

√
�0

ln

�√
�0 −

√
�0 − �

√
�0 +

√
�0 − �

�

− 2
√
�0 − �

�

.

(58)u(�) − u0 = ∫
�

0

f (x)dx = f (�)� − ∫
�

0

xdf (x),

(59)� =
c

√
3g

�

2
√
�0

�
fa + 1

f + 1
−

h
√
�0

ln

�√
f + 1 −

√
fa + 1

√
f + 1 +

√
fa + 1

��

, a =
�0 + h

�0
.

(60)

u(�) − u0 = f (�)� − ∫
f (�)

f (0)

c
√
3g

�

2
√
�0

�
fa + 1

f + 1
−

h
√
�0

ln

�√
f + 1 −

√
fa + 1

√
f + 1 +

√
fa + 1

��

df .
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With the aid of Maple, we obtain

and

Combining Eqs. (56), (61) and (62) with Eq. (60) yields

which gives the relation between the horizontal and vertical displacements.
It can be seen from Eqs. (56) and (63) that

which can also be rewritten as

Substituting Eq. (65) into Eq. (10) yields

Corollary  Under the assumption that the horizontal displacement is independent of the 
vertical coordinate z, the particle trajectory is a parabolic curve.

Proof  For a particle localized initially at (0, z) , the position of the particle at time t is 
(X(0, z, t), Z(0, z, t)) , in which

(61)

∫
f (�)

f (0)

ln

�√
f + 1 −

√
fa + 1

√
f + 1 +

√
fa + 1

�

df

= f ln

�√
f + 1 −

√
fa + 1

√
f + 1 +

√
fa + 1

�

−
ln
�
2af + 2

√
a
√
f + 1

√
af + 1 + a + 1

�

√
a

+
ln (a − 1)

√
a

,

(62)
∫

f (�)

f (0)

�
fa + 1

f + 1
df =

√
a
√
f + 1

√
af + 1 − (a − 1) ln

�
a
√
f + 1 +

√
a
√
af + 1

�

√
a

+
(a − 1) ln

�√
a

√
a − 1

�

√
a

.

(63)u(�) = u0 −
2
√
�0c

√
3g

�
af + 1

f + 1
= u0 −

2
√
�0c

√
3g

�
�0 − �

�0
= u0 −

2c
√
3g

√
�0 − �,

(64)� = −u(�) + u0 −
c

√
3g

h
√
�0

ln

�√
�0 −

√
�0 − �

√
�0 +

√
�0 − �

�

,

(65)�(�) = �0sech
2

�√
3g�0

2ch

�
� + u − u0

�
�

.

(66)w = �0sech
2

�√
3g�0

2ch

�
� + u − u0

�
�
�
z + h

h

�
.
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In terms of Eqs. (10) and (63), we have

which defines the particle trajectory. Equation (68) shows that the particle trajectory is a 
parabolic curve, under the assumption that the horizontal displacement is independent of 
the vertical coordinate z . � □

4 � Conclusions

In this paper, the displacement are used to describe the shallow water system. Two shallow 
water equations are derived based on the Hamilton variational principle. The first equa-
tion is the extended displacement shallow water equation (EDSWE). The EDSWE con-
tains a higher order nonlinear term which is omitted in the original displacement shallow 
water equation developed by Zhong et al. By using the exp-function method, we analyti-
cally solve the EDSWE and obtain different types of waves, including the regular solitary 
wave, the loop solitary wave, the solitary wave with a sharp peak, and a periodic wave. The 
second equation is the fully nonlinear displacement shallow water equation (FNDSWE). 
In FNDSWE, all the nonlinear terms are considered, and the only assumption is the hori-
zontal displacement is independent of the vertical coordinate z . The solitary wave solution 
of the FNDSWE is obtained. It is found that under the shallow water approximation, the 
particle trajectory of the solitary wave is a parabolic curve.
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