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Abstract Hydraulic jumps have complex flow structures, characterised by strong turbu-

lence and large air contents. It is difficult to numerically predict the flows. It is necessary to

bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and

avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims

to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow

above the free surface and air mass entrained across it. We use the Reynolds-averaged

Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the

interface, and the k–e model for turbulence closure. A shear layer is shown to form

between the bottom jet flow and the upper recirculation flow. The key to success in

predicting the jet flow lies in formulating appropriate bottom boundary conditions. The

majority of entrained air bubbles are advected downstream through the shear layer. Pre-

dictions of the recirculation region’s length and air volume fraction within the layer are

validated by available measurements. The predictions show a linear growth of the shear

layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic

energy is advected to the recirculation region via the shear layer. The predicted bottom-

shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying

trend downstream, is realistic. This paper reveals a significant transient bottom shear stress

associated with temporal fluctuations of mainly flow velocity in the jump. The prediction

method discussed is useful for modelling hydraulic jumps and advancing the understanding

of the complex flow phenomenon.
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1 Introduction

The hydraulic jump is a sudden transition from supercritical to subcritical flow, with an

abrupt discontinuity in the air–water interface (Fig. 1). There are important engineering

applications of the hydraulic jump phenomenon. For example, it is used to dissipate energy

in turbulent flow over dams, weirs, and spillways for prevention of channel scour down-

stream from the structures, to recover downstream head in irrigation networks, and to

aerate water for city water supplies. As stated in Chanson [1], knowledge about turbulent

hydraulic jumps is insufficient. This is in spite of great efforts made by earlier researchers.

Most of the existing prediction methods have considered the phenomenon as a single-phase

water flow, unable to realistically allow for the effects of commonly observed air

entrainment and bubble motions in hydraulic jumps. The purpose of this paper is to achieve

improved predictions of hydraulic jump as a bubbly two-phase turbulent flow.

A hydraulic jump will form when supercritical flow transitions to subcritical flow.

According to the classical theory of hydraulic jumps, in a horizontal or slightly inclined

channel, the approach flow Froude number, Fr1, the initial depth, d1, and a downstream

sequent depth, d2, satisfy the equation

d2

d1
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8Fr21

q

� 1

� �

ð1Þ

Classic analyses produced some useful results such as the classifications of the types of

jump, the characterisation of water surface profiles, estimates of the height and length of

jump, and the loss of energy in the jump [2]. Castro-Orgaz and Hager [3] gave more

detailed discussions about classic hydraulic jumps. The classical theory has assumed

hydrostatic pressure distribution, without consideration of a possible air content in the flow.

To what extent should hydrostatic pressure calculations be corrected because air bubbles

are present in the water?

Rajaratnam [4] as well as Murzyn and Chanson [5] reported hydraulic jump experi-

mental data, showing strong turbulence, highly non-uniform velocity profiles across the

depth. Importantly, the non-uniformity implies that hydraulic jump modelling should avoid

using the logarithmic law as the boundary condition at the channel bottom. Unfortunately,

this is often not the case in the literature. In addition, Valiani [6] and Chanson [7] observed
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Fig. 1 Hydraulic jump downstream of a sluice gate, created by a downstream tailgate. Point A is the origin
of the Cartesian coordinate system (x1, x2)
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non-zero momentum flux in the roller and a significant amount of air entrainment in

hydraulic jumps. There are rapid fluctuations of the free surface associated with rollers and

air volume fraction. Can we achieve improved predictions through taking these factors into

account? Producing a large number of flow field snapshots for given hydraulic conditions,

and further obtaining statistical mean and fluctuations is a key strategy.

Computer modelling is an efficient approach to revealing detailed structures of

hydraulic jumps. Murzyn and Chanson [8] mentioned the presence of the secondary phase

as the main challenge in the treatment of hydraulic jumps. This phase is airflow above the

free surface and air mass entrained across it. Previously, numerical techniques of different

levels of complexity were used to simulate hydraulic jumps. Gharangik and Chaudhry [9]

used Boussinesq equations for one-dimensional unsteady, rapidly varied flows. Castro-

Orgaz et al. [10], Khan and Steffler [11], and Zhou and Stansby [12] used depth-averaged

formulations. In Khan and Steffler [11], the depth-averaged model was based on the St.

Venant momentum equation, along with an algebraic scheme for turbulence closure. The

equation was modified to allow for velocity distribution effects. Recently, Castro-Orgaz

et al. [10] used depth-averaged equations, together with the k-e turbulence closure. On the

one hand, the depth-averaged modelling approach may be inadequate, because of signif-

icantly non-uniform distributions of pressure, velocity and turbulence across the depth in

hydraulic jumps, as seen in Rajaratnam [4] and Murzyn and Chanson [5]. On the other

hand, the secondary phase is important, but it is absent from the above-mentioned Eulerian

computer models. López et al. [13] and De Padova et al. [14] simulated hydraulic jumps

using Lagrangian Smoothed Particle Hydrodynamics models, which also excluded the

secondary phase. López et al. [13] faced difficulties in handling cases where Fr1[ 5, but

suggested that using the k-emodel improved the results. For turbulence closure, De Padova

et al. [14] used the concept of mixing length, which is difficult to accurately specify for

complex flows like hydraulic jumps.

Recently, a limited number of researchers, including Bayon et al. [15], Bayon-Bar-

rachina and López-Jiménez [16], and Witt et al. [17], reported computations of hydraulic

jumps using two-phase flow techniques. None of these models include all important

aspects of the open-channel hydraulic jump problem. Additionally, the bottom wall has

been treated with a logarithmic wall function, with the wall distance in the range of

30\ y?\ 300. This does not explicitly resolve the viscous sub-layer, and hence there are

uncertainties about predictions of turbulent shear and bottom shear stress in the jump. As

Chanson and Brattberg [18] pointed out, air–water flow properties in the shear region of a

hydraulic jump are poorly understood. There is a need for further studies.

The main objectives of the present research are to investigate air entrainment behaviour,

air bubble distributions, turbulence characteristics, and distributed bottom shear stress in

hydraulic jumps as two-phase flow. In the following, the modelling methodologies will be

described in Sect. 2. Next, computational results will be presented, along with discussions

in Sect. 3. Lastly, conclusions will be drawn in Sect. 4.

2 Methodologies

2.1 Reynolds-averaged momentum and continuity equations

The two-phase flow of an air–water mixture is considered incompressible. Let q1 and q2
denote the densities of air (gas phase) and water (liquid phase), and l1 and l2 denote their
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dynamic viscosities, respectively. The volume-averaged density, q, and viscosity, l, of the
fluid mixture are

q ¼ a2q2 þ ð1� a2Þq1; l ¼ a2l2 þ ð1� a2Þl1 ð2Þ

where a2 is the volume fraction of water. The volume fraction of air is given by

a1 = 1 - a2.
Using the Cartesian coordinate system (Fig. 1), the motion of the fluid mixture is

governed by the Reynolds-averaged Navier–Stokes equations

oui

ot
þ uj

oui

oxj
¼ � 1

q
op

oxi
þ o

oxj
m
oui

oxj

� �

þ osij
oxj

þ gi þ F
i

ð3Þ

where ui is the Reynolds averaged velocity component of the fluid mixture in the xi-

direction; t is the time; p is the Reynolds-averaged pressure; m is the kinematic viscosity of

the fluid mixture; sij is the specific Reynolds stress tensor; gi is the acceleration of gravity

in the xi-direction; Fi is the surface tension resulting in a body force in the xi-direction.

The phase volume fractions are tracked using the volume of fluid (VOF) method,

discussed in Hirt and Nichols [19]. The interfacial boundary is tracked by a piecewise

linear interpolation capturing scheme. The VOF equation for the volume fraction of the

liquid phase is given by

oa2
ot

þ
o a2uj
� �

oxj
¼ 0 ð4Þ

This equation has assumed a system comprising immiscible fluid phases (or zero mass

transfer between the phases) and without mass sources.

The volume force Fi (Eq. 3) allows for the effects of surface tension at the air–water

interface on mixture motion, when air and water are present in a cell. Fi is formulated

based on a continuum method. Details about this method have been described in Brackbill

et al. [20].

2.2 Turbulence closure scheme

Components of sij (Eq. 3) are unknown, resulting from the nonlinear interaction of unre-

solved velocity fluctuations. Their effects on the Reynolds-averaged flow field are

parameterised on the basis of the Boussinesq approximation: sij ¼ 2mtSij � 2
3
kdij. Here, mt is

the kinematic eddy viscosity; Sij is the mean strain-rate tensor, given by Sij = (qui/qxj
?quj/qxi)/2; k is the specific turbulence kinetic energy; and dij is the Kronecker delta, being
equal to one for i = j, and zero for i = j. The eddy viscosity is expressed as

mt ¼ Cl
k2

e
ð5Þ

where e is the rate of dissipation of turbulence kinetic energy; and Cl is a model constant.

The turbulence quantities are obtained from the standard k–e model. For a two-phase

mixture of air and water, the model equations can be written as

ok

ot
þ uj

ok

oxj
¼ 2mtSijSij � eþ o

oxj
ðmþ mt=rkÞ

ok

oxj

� �

ð6Þ

338 Environ Fluid Mech (2018) 18:335–356

123



oe
ot

þ uj
oe
oxj

¼ C1e
e
k
2mtSijSij � C2e

e2

k
þ o

oxj
ðmþ mt=reÞ

oe
oxj

� �

ð7Þ

where rk, re, C1e, C2e, and Cl are model constants, equal to 1.00, 1.30, 1.44, 1.92., and

0.09, respectively. For more details about the k–e model, refer to Wilcox [21].

2.3 Boundary condition

The model channel (Fig. 1) is bounded by four types of boundaries: inlet (HA), outlet (HG,

FE, EC, and BC), vertical wall (GJ, FJ, and DB), and horizontal wall (AB). At these

boundaries, the imposed conditions are as follows: At the inlet, the pressure distribution is

hydrostatic; the free surface elevation (Fig. 1, yo) and the longitudinal velocity component

(Fig. 1, uo) are prescribed. At the outlet, the pressure is set to the atmospheric pressure.

At the vertical smooth wall, the logarithmic law of the wall is applied

u2

us
¼ 1

j
ln

x1

m=us

� �

þ 5 ð8Þ

where us is the friction velocity; j is the von Karman constant (equal to 0.41); and m is the
kinematic viscosity (equal to l/q) of the fluid mixture. Importantly, we ensure the mesh

resolutions for the regions adjacent to the wall to be fine enough to resolve the logarithmic

layer. The first computing node off the adjacent wall is placed at the wall distance

(yþ ¼ x1
m=us

) ranging from 35 and 350. This justifies the use of the logarithmic law of the

wall [22], because the viscous effect of the vertical wall has negligible influence on the

hydrodynamics in the model channel.

At the horizontal smooth wall, the flow velocity obeys the no-slip condition. We ensure

that the wall distance of the first node off the wall is yþ ¼ x2
m=us

\1 or the Reynolds number

based on us is less than unity. Thus, it is valid to apply the zero velocity condition at the

wall. The viscous force is appropriately accounted for in the first layer of the computing

nodes off the wall, and the viscous sub-layer is resolved, through mesh refinement. At

y?\ 1, the linear relationship holds

u1

us
¼ x2

m=us
ð9Þ

For more details, refer to White [22].

2.4 Initial condition

The flow field (Fig. 1) was initialised in three different ways. The idea is to examine the

independence of flow predictions on the initial conditions used. The three conditions at

time t = 0 are illustrated, respectively, in panels (a–c) of Fig. 2.

In panel (a) of Fig. 2, in the reservoir upstream of the sluice gate (Fig. 1), the water

surface is horizontal, with a2 = 1 (or 100% water) for x2 B yo, and a2 = 0 (or 100% air)

for x2[ yo. Downstream of the gate, the water surface is a straight, sloping line through the

top of the gate opening (Fig. 1, point J) and the point above the crest (Fig. 1, point D) of

the weir, at a vertical distance (measured from point D) equal to the depth of critical flow.

The water volume fraction is a2 = 1 below the water surface, and a2 = 0 above. As shown

in Chow [2], the critical depth is calculated as yc ¼
ffiffiffiffiffiffiffiffiffiffi

q2=g3
p

, where q is the per unit width

discharge, and g is the gravity. The height of the weir is adjusted such that the water
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surface elevation over the weir provides the expected sequent depth (Eq. 1). At time t = 0,

the flow in the entire model channel is at a state of rest (or u1 = u2 = 0). The use of the

above-mentioned initial condition greatly reduces computing time needed to reach a state

of quasi-equilibrium.

In panel (b) of Fig. 2, the initial condition is generated by superimposing a small-

amplitude square wave to the water surface shown in panel (a) of the figure. This wave has

an amplitude of 0.28 cm, and a wavelength of 10 cm. The wave extends from

x1 = 93.01–102.99 cm, measured from point A (Fig. 1).

In panel (c) of Fig. 2, the initial condition is generated by superimposing several small-

amplitude square waves to the water surface shown in panel (a) of Fig. 2. The waves have

the same amplitude and wavelength as in panel (b) of Fig. 2. The waves extend from

x1 = 63.05–132.95 cm, measured from point A (Fig. 1).

If the predicted flows at equilibrium for individual simulations using different initial

conditions are virtually the same, we interpret that the initial conditions used have no

significant influences on model predictions.

2.5 Numerical techniques

We seek numerical solutions to the governing partial differential equations (Eqs. 3, 4, 6

and 7) using the finite volume methods. Details of the methods can be found in Chung [23].

The model domain (Fig. 1) is discretised into a large number of non-overlapping control

volumes. The governing equations are integrated over each control volume, surrounding by

two neighbouring grid points. The idea is to obtain a system of discrete, algebraic con-

servation equations for the discretised control volumes (or cells) and control surfaces. For

the pressure field, a pressure equation is obtained by manipulating equations [4, 5]. The

solution process uses a pressure-based solver. For more details, refer to Chung [23].

(a)

(b)

(c)

Fig. 2 Initial water surface profiles used in model runs
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Discrete values of scalar quantities are stored at the cell centre. Therefore, the evalu-

ation of a scalar quantity, u, at a downstream cell centre requires the value of u at the

upstream cell centre and at the interface between the cells. Using the Taylor series

expansion linear reconstruction approach of Barth and Jespersen [24], the interface value

uf is interpolated from the cell-centred values using the second-order upwind scheme as

/f ¼ /þr/ � r~, where r~ is the displacement vector from the upstream cell centroid to

face centroid. The spatial gradients for the face value as well as secondary diffusion terms

and velocity derivatives are evaluated using the least square cell-based method, given in

Chung [23]. A geometric coefficient matrix is obtained by formulating the change in cell

values between the neighbouring cells. The cell gradient is determined by solving the

minimisation problem for the system of coefficient matrix, using the least squared

approximation and Gram-Schmidt decomposition process.

The pressure field as well as mass flux are not known a priori. They are obtained as part

of the solution. Using a co-locate scheme, pressure and velocity are stored at the cell

centre. Following Rhie and Chow [25], the face velocities are evaluated by momentum-

weighted averaging, which prevents unrealistic checker-boarding of the pressure field. The

face value of the pressure is interpolated using the pressure staggering option (PRESTO!)

scheme, which is similar to the staggered-grid scheme in Patankar [26]. Note that a discrete

continuity balance for a staggered control volume is satisfied.

The temporal development of the flow is obtained by integrating the unsteady model

equations (Eqs. 3, 4, 6 and 7) over time. Let n denote the current time step, and Dt denote
the time step interval. At new time step n ? 1, the dependent variable in question is

evaluated using the first-order explicit time-marching scheme: un?1 = un ? f(un)Dt,
where f(u) represents collectively the spatial integration of every term in the model

equations. The value of u at the current time step is used to evaluate the function f. For

numerical stability, the maximum allowable time step interval is constrained by the

Courant number. In this paper, we used Dt = 5.0 9 10-4 s, set the convergence residual

criterion to 10-5, and carried out a maximum of 120 iterations at each time step.

3 Validation of mean parameters

3.1 Independence of flow predictions on initial conditions and mesh
configurations

The key geometric features of the computational model channel (Fig. 1) match those of the

laboratory channel described in Kucukali and Chanson [27] for hydraulic jump experi-

ments, one of which has approach flow Froude number equal to 5.8, as determined from the

depth-averaged velocity and initial depth of the approach flow. Details about the experi-

ment and results have been reported in Kucukali and Chanson [27]. Measurements of air

volume distribution from the experiment will be used for data comparison. In Fig. 1, the

model channel has a horizontal bed, a head tank of 0.1 m long, and a sluice gate with a

0.025 m opening to force supercritical flow. The gate is followed by a horizontal channel

of 1.75 m long. Further downstream, a 0.061-m high tailgate controls the downstream

water depth and maintains subcritical flow condition. The domain is discretised into

structured quadrilateral computational mesh, with resolutions of Dx1 = Dx2 = 2.5 mm.

The resolutions adjacent to the solid walls are refined to resolve the boundary layer, as
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explained in Sect. 2.3. A summary of the simulation conditions, control parameters and

their values are given in Table 1.

Three model runs (Runs 1, 2 and 3) were carried out using the different initial condi-

tions of water level (Fig. 2a–c). Each of the runs commenced from a state of rest at model

time t = 0, and produced developing water surface profile and flow velocity field. After

36 s of model time, the development of the water surface showed stable hydraulic jumps.

The runs continued for a model time period of T = 90 s (Table 1), each taking about 165 h

of computing time on 36 processors. In Fig. 3, the predicted velocity vectors for Run 1

(Fig. 2a) are plotted for cells where the water volume fraction a2 C 0.86 at time t = 90 s.

In the figure, x0 = (x1 - x0)/d1, measuring longitudinal distances from the toe of the

hydraulic jump, normalised by its initial depth d1. Along the length of the channel, the top

region above the vectors is mostly occupied by air. It is possible to connect cells to form a

curve above which the air volume fraction is a1 C 0.86. This curve is considered to

represent the water surface g at the particular model time. An examination of the pre-

dictions for Runs 1, 2 and 3 (Fig. 2) at other model times (not shown) reveals temporal

fluctuations in the flow field around a state of certain equilibrium. This is realistic, given

the turbulent nature of hydraulic jump.

The predicted air volume fraction a1 varies in space or is a function of (x1, x2). At a

given x1 location, the depth-averaged air volume fraction â1ðt; x1Þ between the water

surface and the channel bed can be obtained by evaluating the integral

Table 1 A summary of simulation conditions, control parameters and their values

Variable/parameter Value

Reservoir length HG (cm) 10

Height of pressure inlet HA (cm) 50

Length of pressure outlet FE (cm) 195

Height of pressure outlet EC (cm) 20

Sluice gate opening w (cm) 2.5

Channel length from the gate opening to the weir (cm) 175

Height of the weir (cm) 6.1

Gravity g (m/s2) 9.81

Density of water q2 at 20 �C (kg/m3) 998

Density of air q1 at 20 �C (kg/m3) 1

von Karman constant j 0.41

Time step interval Dt (s) 0.0005

Convergence criterion 10-5

Maximum number of iterations 120

Dynamic viscosity of water l2 at 20 �C (kg m-1 s-1) 1.002 9 10-3

Dynamic viscosity of air l1 at 20 �C (kg m-1 s-1) 1.002 9 10-2

Surface tension coefficient at 20 �C (N/m) 7.28 9 10-2

Maximum Courant number 0.48

Duration of model runs T (s) 90
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â1ðt; x1Þ ¼
1

g

Z g

0

a1ðt; x1; x2Þdx2 ð10Þ

â1ðt; x1Þ contains temporal fluctuations because of the turbulent nature of the jump. We

obtained large sets of â1 data from the model output for time tn = 36, 36 ? Dt,
36 ? 2Dt,…, 90 s where Dt = 0.0005 s, which correspond to a sampling rate of 2 kHz,

and a sample size of N = 108,000. We determined the average and maximum values of the

data sets’ corresponding entities: â1ðti; x1Þ, i = 1, 2, 3,…, N, and compared the results in

Fig. 4 between Runs 1, 2, and 3. The comparison demonstrates that the different initiali-

sations (Fig. 2a–c) have produced consistent results. This means that the independence of

equilibrium model results on initial conditions used was achieved. Time averaged results

presented henceforward mean averages of the N corresponding entities of data sets in

question, unless otherwise stated.

In addition to the demonstrated independence of model results on initialisations, further

sensitivity analyses show acceptable comparisons (Table 2) of model predictions, using

different mesh configurations and the k-x model, details of which can be found in Wilcox

[21]. These comparisons confirm the suitability of using 2.5-mm mesh resolutions. Murzyn
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et al. [28] observed bubbles with a diameter smaller than 2.5 mm in the turbulent shear

region of hydraulic jumps with 2.0 B Fr1 B 4.8. It is understood that the 2.5-mm mesh is

not adequate to represent the smallest bubbles in the flow, and is not intended to capture

bubble breakup or the transport of small bubbles.

In terms of the bottom shear stress (Table 2), the k-x model produced lower values than

the k–e model. The choice of the k–e model in this paper is supported by Shekari et al.’s

[29] recent assessment of various turbulence closure models for simulations of submerged

hydraulic jump, which concludes that the k–e model gives acceptable predictions of the

longitudinal velocity.

The results shown in Fig. 4 indicate that the pressure distribution in the hydraulic jump

is non-hydrostatic due to the presence of a significant percentage of air volume. In the

analysis of hydraulic jumps, hydrostatic calculations of pressure forces will give

overestimations.

3.2 The flow field

In Fig. 5a, the time-averaged position of the fluctuating water surface is plotted, along with

vertical profiles of time-averaged velocity component u1 at 13 selected longitudinal

locations. A jet of water is seen to enter the jump bottom at x0 = 0. There is a decrease in

flow velocity and an increase in flow depth in the direction of flow. As shown in Fig. 3, a

series of small rollers develop on the surface of the jump, whereas the downstream water

surface is relatively smooth. Below the rollers, there are pockets of entrained air of
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Fig. 5 Vertical cross sections showing: a the water surface and vertical profiles (solid curves) of the
longitudinal velocity component u1 at 13 selected locations along the roller length of the hydraulic jump;
b the delineation of distinct regions of the velocity field. The dashed line in a connects points of zero u1
values. The longitudinal distance measures from the toe of the jump
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relatively high concentration. Air entrained through hydraulic jumps can cause safety

problems for some hydraulic systems. Examples include an excessive air pressure drop in a

penstock during the course of intake-gate closure [30].

From the velocity field (Fig. 5a), three distinct flow regions (Fig. 5b) can be identified:

(1) a jet flow region, (2) an advective shear layer, and (3) a recirculation region. For

practical purposes, the thickness of the jet flow region may be considered to be equal to d1.

In this region, the incoming jet persists beyond the toe of the jump and maintains its

transverse flow thickness. This flow region is characterised by a dominating longitudinal

velocity component and velocity magnitude that is an order of magnitude greater than the

rest of the flow regions. The peak velocity, observed at the impingement, decays in

magnitude exponentially along the channel length. The turbulent advective shear layer is

located between the jet region and the recirculation region, which is characterised by a

large longitudinal velocity gradient, strong mixing and transfer of kinetic energy. The

velocity profiles indicate that the upper boundary of the turbulent shear layer grows lin-

early downstream of the impingement. The recirculation region exists in the upper portion

of the jump, above the stagnation line, featuring large-scale vortex generation and negative

x1-component velocity. In Fig. 5a, b, the approach flow is partially developed, the

approach flow Froude number is Fr1 = 5.9, and the initial depth of the jump is

d1 = 0.0171 m.

On the basis of experimental data, Hager et al. [31] expressed the length of the roller, Lr,

(Fig. 5b) as a hyperbolic function of the approach flow Froude number Fr1 based on the

vertically-averaged velocity

Lr

d1
¼ �12þ 160 tanh

Fr1

20

� �

ð11Þ

Recently, Wang and Chanson [32] made laboratory observations of hydraulic jumps in the

range of 1.5\Fr1\ 8.5, and related Lr to Fr1 as

Lr

d1
¼ 6 Fr1 � 1ð Þ ð12Þ

For the simulation condition of this paper, the expression of Hager et al. [31] gives Lr/

d1 = 33.88 and the expression of Wang and Chanson [32] gives Lr/d1 = 35.4; the cor-

responding lengths of the roller are Lr = 0.579 m and Lr = 0.606 m, respectively. The

numerical prediction from this paper gives Lr/d1 = 33, which is in close agreement with

the experimental results of 33.88 and 35.4.

The u1 velocity profiles (Fig. 5a) within the roller length of the hydraulic jump suggest

that the flow is rotational throughout the jump. The S-shaped velocity profiles in the jump

result from the shear stress arising from the interaction: (1) between the channel bottom

and the jet flow, and (2) between the jet flow and the recirculation flow. Here, the typical

boundary layer equations for a flat plate are not applicable due to the absence of irrota-

tional outer flow. This implies that the longitudinal pressure gradient dp/dx1 cannot be

computed by inviscid equations such as Bernoulli or the Euler equation. Consequently,

there is no discernible monotonic boundary layer that demarcates the viscous and inviscid

flow regions. Nevertheless, the line (Fig. 5a, the arrows and dotted curve) connecting the

vertical locations of local peak longitudinal velocity may give some ideas about the

behaviour of flow adjacent to the bottom boundary. The boundary layer thickness may be

estimated as the distance from the solid surface at which the viscous flow velocity is equal

to 99% of the local peak velocity (Fig. 5a, the arrows).
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The resulting bottom boundary layer (Fig. 6, the dashed curve) initiates just after the

gate opening, close to the vena contracta, grows linearly in the supercritical flow region,

and plateaus at the jump toe. Within the roller length (Fig. 5b), the boundary layer exhibits

minor vertical fluctuations, which suggests transverse advective transport (in the x2
direction) and diffusion of x1-momentum in the zone. Additionally, the constant boundary

layer thickness in the jump may suggest that the local Reynolds number, based on the

longitudinal coordinate, x1, and local peak velocity, u1max (Fig. 5a, the arrows), stay rel-

atively constant.

For the near-wall region of hydraulic jumps, let b denote the half width of the wall jet,

based on the height from the channel-bed where u1max/2 occurs. By fitting experimental

data of mean horizontal water velocity for the near-wall region, Lin et al. [33] constructed

a similarity function of the form: u1/u1max = 2.3(x2/b)
0.42[1– erf(0.866x2

2/b)]. Predicted

velocity profiles (Fig. 5a) from the present study are in close agreement with Lin et al.’s

[33] similarity solution, as shown in Table 3.

Hager [34] made laboratory measurements of mean horizontal water velocity from nine

longitudinal locations [(x1 - xo)/Lr = 0.2, 0.3,…, 1.0] in classic hydraulic jumps at two

different values for the Froude number (Fr1 = 5.5 and 6.85). For each of these locations,

Hager [34] reported normalised velocity U = (u1 - u1s)/(u1max - u1s) at a number of

normalised vertical distances above the point where u1 = u1max. Here, u1s is the maximum

backward velocity. From the model predictions of the present study, for each of the

longitudinal locations, values of U are obtained at the same vertical distances as the

measurements; the correlation between the predicted and measured U profiles is analysed.

The results of the coefficient of determination, R2, for the nine locations are presented in

Table 3. The coefficient is shown to be within an acceptable range of values.

3.3 Air entrainment

A snapshot (Fig. 7) of the air volume fraction a1 contours indicates that air entrainment

initiates at the flow impingement at the toe of the jump. Air bubbles break into smaller

bubbles at the entrance of the turbulent shear layer (Fig. 5b). The bubbles are then

advected downstream through the shear layer and form larger bubbles in the region of

lesser shear possibly through collision and coalescence. We caution that the 2.5-mm mesh

resolution used is inadequate to resolve the smallest bubbles as reported in Murzyn et al.

[28] and simulate bubble breakup. Simulations with the smallest bubbles and the breakup

process included are expected to improve bubble-size predictions. Sufficiently large air
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packets are driven to the free surface further downstream by buoyancy and advection.

Those bubbles that do not escape through the free surface are partially advected in the

swirling motions of surface rollers and reintroduced to the upstream shear layer. These

predicted behaviour of air bubbles matches the experimental observations made by

Chanson [35].

The model predicts that the bulk of air bubbles (Fig. 7) are present in the turbulent shear

layer (Fig. 5b). Note that this prediction is independent of the initial conditions used, as

demonstrated by the comparison in Fig. 4.

In Fig. 8, model predictions of air volume fraction a1 distributions (the thick solid

curves) are compared with available measurements (the open circle makers), made by

Kucukali and Chanson [27] with dual conductivity probes. The measurements of air

content show that the local a1 maxima decrease in the longitudinal direction, while the

upper boundary of the turbulent shear region tilts slightly upward, as shown by the local a1
minima (Fig. 8, the upper dashed dotted curve). Errors in the predictions of the local a1
maxima range from 0.01 to 9.4%. The predicted a1 values are slightly lower than the

measured a1 values for regions below the local a1 maxima. The predicted thickness of the

shear layer and the predicted linear growth of its upper boundary are in close agreement

with the measurements.

Table 3 Coefficient of determination R2 between the predictions of mean horizontal water velocity from
the present study and the similarity solution of Lin et al. [33] for the near-wall region of hydraulic jumps,
and between the predictions and the laboratory measurements of Hager [34]

Correlation with Lin et al. [33]

(x1 - xo)/d1 5 10 15 20 25 30 35 40

R2 0.88 0.92 0.89 0.90 0.95 0.97 0.94 0.94

Correlation with Hager [34] at Fr1 = 5.5

(x1 - xo)/Lr 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R2 0.37 0.61 0.70 0.80 0.87 0.91 0.97 0.86 0.93

Correlation with Hager [34] at Fr1 = 6.85

(x1 - xo)/Lr 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R2 0.93 0.97 0.98 0.97 0.98 0.97 0.98 0.99 0.99

10 050403020
0

5

10
x2/d1

0 0.5 1
Air volume fraction

x‘

Toe
Water

Air Water surface

Air pocket

Fig. 7 Vertical cross sections showing snapshots of distributed air bubbles below the free water surface at
model time of t = 36 s
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Chanson [36] suggested that the a1 distribution in the turbulent advective shear layer

follows a Gaussian distribution of the form

a1 ¼ a1max exp �2
ðx2=d1 � x2max=d1Þ2

Dx22

" #

ð13Þ

where a1max is the local a1 maximum value occurring at the location of x2 = x2max, Dx2 is
the dimensionless 50% bandwidth where a1 = 0.5a1max. The predicted a1 values (the solid
curves) within the shear layer appear to agree reasonably well with values of a1 calculated
using Eq. (13). Note that at any given x1 location, the non-hydrostatic bottom pressure, pb,

in the hydraulic jump can be determined as pb ¼
R g
0
qg 1� a1ð Þdx2. Due to the presence

(a1 = 0) of air bubbles, calculations using the hydrostatic approximation (ignoring the air

bubbles) will produce errors. Sample calculations of the bottom pressure show errors as

large as 16.2, 15.4, 16.8, and 16.2% at x0 = 5, 10, 15, and 20, respectively.

From experimental data, Hager [37] derived an equation for the free water surface of

hydraulic jump

x2 � d1

d2 � d1
¼ tanh 1:5

x1 � x0

Lr

� �

ð14Þ

With the model results of d1 = 0.0171 m, Lr = 0.565 m, d2 = 0.139 m, x0 = 0.4 m,

Eq. (14) produces the long-dashed curve shown in Fig. 8. This curve is plotted below the

predicted water surface (as interpreted in this paper). The reason is that the predicted water

surface is actually the dividing boundary line between the upper region with a1 C 0.86 and

the lower region below the threshold a1 value of 0.86. We used a volume fraction of 0.86

purely to avoid isolated droplets of air–water mixture to appear above the free surface

interface in the contour plot (Fig. 7). The curve given by Eq. (14) is plotted through points

for which the model predictions give a1\ 0.5, except near the toe of the jump. From the

model predictions we extracted data of the free surface (x2 coordinates) using a volume

fraction of 0.5 at eight x1 locations between x
0 = 4.2 and 35, and compared the predicted x2

Fig. 8 Predicted a1 profiles (the solid curves) at seven locations along the length of the jump, in comparison
to a1 measurements (the open circle and cross markers)

Environ Fluid Mech (2018) 18:335–356 349

123



values with the x2 values calculated from Eq. (14). The relative errors at the locations

range from 1.6 to 13.6%. The average of the errors is 4.4%. This confirms the quality of the

predictions.

3.4 Turbulence

The model predicts the Reynolds averaged flow velocity components u1 and u2 (Eq. 3),

along with the specific turbulence kinetic energy k (Eq. 6). This permits the determination

of turbulence intensity, defined as i ¼ 2
3
k

� �1=2
u21 þ u22
� ��1=2

. Let imax denote the maximum

value of i, and kmax denote the maximum value of k in the flow. Contours of time averaged

k/kmax and i/imax are shown in Fig. 9a, b, respectively. The turbulence intensity is high in a

region within 3d1 from the toe of the jump in the turbulent shear layer. It decreases in

magnitude further downstream. Its maximum value occurs at the onset of the turbulent

shear region, just downstream of the toe. A momentum exchange between the fluctuating

velocity components in the shear layer suppresses the velocity differential. Turbulence

penetrates into the bottom flow adjacent to the channel bed at x0 = 10. The maximum

turbulence intensity is imax = 0.685.

The turbulence kinetic energy is strong at the toe of the jump due to a large mean strain

rate at the point of impingement. It is advected downstream through the turbulent shear

layer by the mean flow. In the transverse direction, k is conveyed by turbulent transport,

which results from the interaction of fluctuating velocity components. Velocity fluctuations

arise due to velocity gradient. The turbulence kinetic energy penetrates into the region

adjacent to the bottom wall located between x0 = 10 and 22.5. Most of k is transported up

to the recirculation region, where it is ultimately dissipated via the energy cascade

0 5 10 15 20 25 30 35 40 45
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x2/d1 Normalised turbulence intensity i/ imax
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Fig. 9 Contours of time-averaged turbulence quantities: a normalised specific turbulence kinetic energy k/
kmax; b normalised turbulence intensity i/imax
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mechanism. At x0[ 40, k becomes insignificant at a small distance beyond the roller

length. The maximum value of k is kmax = 0.830 m2/s3.

3.5 Bottom shear stress

The bottom shear stress, sb, is related to the friction velocity (Eq. 9) as sb ¼ qu2s . From the

model output, large sets of sb data: sb(ti, x1), i = 1, 2, 3,…, N, were obtained. The sample

size N is the same as â1 (Eq. 9). For a given x1 location, the time-averaged value of sb(ti,
x1), i = 1, 2, 3,…, N, was determined. The distribution of the time-averaged sb along the

length of the channel was plotted a solid curve in Fig. 10. This curve shows variations in

the time-averaged sb along the channel. A peak value of sp = 39.9 Pa occurs just down-

stream of the sluice gate (Fig. 1), where the exiting supercritical flow is at its maximum

velocity. Downstream from the peak value location, the time-averaged sb decreases. It

decreases by approximately 34% just before the toe of the hydraulic jump, and further

decreases steadily in the longitudinal direction beyond the toe until the end of the roller

length (Fig. 5b). Beyond the roller length, it asymptotically approaches zero.

At a given x1 location, the root-mean-square deviation rs of sb(ti, x1), i = 1, 2, 3,…, N,

normalised by sp, was calculated. Its distribution along the length of the channel is shown

as a dashed curve in Fig. 10. rs represents transient fluctuations in the bottom shear stress.

The spatial distribution shows a peak value at the first quarter of the roller length and has a

slightly positive skew.

The prediction of the bottom shear stress, sb, appears to be logical; the peak value is

seen in the region of maximum velocity just after the gate opening and decreases there-

after. Downstream of the jump toe, sb decreases gradually and tends to approach zero

asymptotically. The decrease is presumably due to an increase in flow depth and hence a

decrease in flow strength. Interestingly the curve of decreasing sb (Fig. 10) in the longi-

tudinal direction is not smooth; rather the rate of change of the curve, q2sb/qx1
2, oscillates,

giving a smoothed-out, stepped appearance. The alternating signs of q2sb/qx1
2 suggest the

existence of additional mechanisms through which the shear force on the wall is intensi-

fied/suppressed. The above-discussed predictions of longitudinal variations in sb are

consistent with the Preston tube measurements of sb by Imai and Nakagawa [38]. Their
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measurements, made from experiments of steady hydraulic jumps [2] at the approach flow

Froude number of Fr1 = 6.5, show an asymptotically decreasing sb in the longitudinal

direction.

Imai and Nakagawa [38] and Chanson [39] obtained measurements of sb from exper-

iments of undular jumps [2] at lower Froude numbers (Fr1 = 1.6 and 1.48, respectively).

They both reported a more rapidly decreasing sb beyond the jump toe in undular jumps

than in steady jumps.

One possible explanation of the rate of change of the sb curve (Fig. 10) is the variation
in effective viscosity near the solid boundary due to turbulence. The effective viscosity

used to compute the wall shear stress is the combination of the physical fluid property, l,
and the virtual turbulent property, lt. Since the turbulent viscosity is modelled as a function

of the specific turbulence kinetic energy, k, and the specific turbulence energy dissipation

rate, e (Eq. 8), turbulent activities near the wall, as identified in the k contours at

10\x0\22:5 (Fig. 9a), would have an impact on the bottom shear stress. Note that k enters

the calculations of eddy viscosity (Eq. 5), which in turn is input to the calculations of the

specific Reynolds stress sij. This stress is a force term in Eq. (3) for the calculations of the

velocity component u1. The velocity component enters the calculations of the friction

velocity (Eq. 9).

Another possible explanation is the effect of pressure gradient in the flow near the solid

boundary. In the case of an adverse pressure gradient, fluid elements close to the boundary

experience a retarding force due to viscous wall stress and the pressure gradient. In

response to the adverse momentum influx, the flow is decelerated, thereby reducing the

velocity gradient qu1/qx2 at the boundary (x2 = 0). The consequent shear force is less than

the resulting shear force in the absence of pressure gradient. Conversely, a negative

pressure gradient works with the flow to magnify the advective component of acceleration,

effectively increasing the velocity gradient at the boundary. The interaction of turbulence,

dynamic pressure, and the inertial terms may further explain the existence of the variance

of sb in the first half of the roller length.

The transient bottom shear stress can be interpreted as an indicator for the region of

temporal variability. Physically, this represents regions of pulsing sb. The region where i

penetrates the bottom flow, 10\x0\22:5 (Fig. 9b), is within the region where bulk of

transient sb is seen, 0\x0\35 (Fig. 10). This agrees with the fact that k physically rep-

resents the root-mean-squared value of the fluctuating velocity components. The dominant

presence of temporally variable velocity components near the bottom may cause sb to

fluctuate in time. This has significant implication with respect to channel scour, erosion, or

fluvial morphodynamics. Fatigue is the weakening of materials caused by repeated,

cyclical stress loading. In a man-made channel, the nominal stress of such loading may,

over a long time period, undermine the bed material with stresses much less than the

strength of the materials. In a natural stream, fluctuating bottom shear stresses may interact

with a movable bed to affect local sediment transport, leading to erosion, formation of

ripples, dunes, and undesirable downstream alluviation. The transient bottom shear stress

may shed light on certain aspects of long term structural integrity and fluvial morphody-

namics not-so-obvious in the design of hydraulic structures.

It appears that the curve of normalised transient bottom shear stress (Fig. 10, the thin

solid curve) can be represented by a right-skewed Gumbel distribution of the form
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rs ¼
1

b
exp½x00=bþ expð�x00=bÞ� ð15Þ

where b ¼
ffiffiffiffiffiffi

3=2
p

p Dx1; x00 ¼ ðx1 � xpÞ=d1; xp is the location of the peak transient bottom

shear stress; Dx1 is the dimensionless 50% bandwidth where rs is equal to 50% of its peak

value. The aforementioned CFD approach to calculation of bottom shear stress would be

particularly useful given the difficulties of directly measuring the bottom shear stress. The

difficulties are due to instrument limitations as well as experimental constraints.

4 Discussions

The verification of the two-phase flow method discussed in this paper has been performed

to ensure the relevance of CFD predictions to the hydraulic jump phenomenon. Key

predictions have been shown to agree reasonably well with independent experimental

results. These includes the roller length reported in Hager et al. [31], bubble behaviour in

Chanson [35], air volume fraction (equivalently air concentration) distributions in Kucu-

kali and Chanson [27], and the free surface profile in Hager [37]. Lin et al. [33] obtained

non-intrusive measurements of flow velocity at Froude numbers up to Fr1 = 5.35. It would

be interesting to obtain more measurements of flow velocity and turbulence for data

comparison in future investigations.

This paper has been limited to the condition of a single Froude number, future inves-

tigations should explore the differences between jumps of different Froude numbers. In

addition, the paper is limited to two-dimensional representation of the phenomenon,

simulating a case where the width to approach depth ratio is sufficiently large. In addition,

Witt et al. [17] found that two-dimensional simulations of a hydraulic jump (Fr1 = 4.82)

produced quantity of entrained air that compared within 10% of experimental values of

Murzyn et al. [28]. Witt et al. [17] reported that the three-dimensional simulation of the

same jump provided additional information on bubble dynamics (bubble size distribution,

bubble transport) and flow physics (behaviour of vertical structures) albeit the improve-

ments came at a cost of two orders of magnitude increase in computing time. The increased

computational time of three-dimensional simulations was deemed unjustifiable for the

purpose of this paper. Moreover, simulating the jump of interest (Fr1 = 5.9) in three-

dimensions would have required finer mesh and therefore much longer computing time

than the three-dimensional jump simulated by Witt et al. [17] (Fr1 = 4.82).

5 Conclusion

This paper reports computer model predictions of the hydraulic jump as bubbly two-phase

flow. The predictions produce the flow velocity field of an air–water mixture, the air–water

interface, and air volume fraction below the interface, along with turbulence quantities.

The bubbly two-phase flow method uses the Reynolds-averaged Navier–Stokes equations

to describe fluid mixture motions, the volume of fluid method to track the interface, and the

k-e model to obtain turbulence closure. The following conclusions have been reached:

• The model predictions capture the essence of the internal flow structures, air

entrainment, turbulence properties, and bottom shear stress. The key to success in

predicting the jet flow structure immediately above the bottom lies in properly
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resolving the viscous sub-layer and hence eliminating uncertainties in the bottom

boundary condition (Eq. 9).

• A turbulent advective shear layer is shown to form between the bottom jet flow and the

upper recirculation flow. The prediction of the length of recirculation region (Figs. 5b,

10) agrees reasonably well with the experimental results of Hager et al. [31].

• The majority of entrained air bubbles are advected downstream through the shear layer,

either being degassed or being re-entrained towards the end of the roller length (Fig. 7).

The quality of the predicted linear growth of the layer and air volume fraction within

the layer is validated by Kucukali and Chanson’s [27] experimental data. Air bubbles in

the water below the free surface lead to non-hydrostatic pressure distribution. Under the

hydraulic condition considered in this paper, hydrostatic pressure calculations are

expected to give an overestimation of the actual pressure by up to 20%, even for the

downstream half of the roller length (Fig. 4).

• There are high levels of turbulence at the impingement (Fig. 9a). The bulk of the

turbulence kinetic energy is advected to the recirculation region via the shear layer,

where it is ultimately dissipated. A small portion of the turbulence kinetic energy

penetrates down into the jet region.

• The predicted distribution of bottom shear stress shows a peak value just after the gate

opening and a decaying trend along the length of a hydraulic jump toward downstream

(Fig. 10), which is realistic. For the first time, this paper reveals a significant transient

bottom shear stress associated with temporal fluctuations of the jump (Eq. 15). This has

important implications to bottom erosion.

• The hydraulic jump phenomenon is complicated. This paper shines light on aspects of

air entrainment, turbulent shear stress, and interaction between flow structures and the

bottom shear stress in the jump. The prediction method discussed in this paper is useful

for modelling hydraulic jumps and advancing the understanding of air–water flow

properties.

The novelty of resolving the viscous sublayer in two-phase hydraulic jump flow at the

laboratory scale has greatly enhanced the accuracy in computations of the bottom shear

stress. The Gumbel distribution for describing the transient bottom shear stress represents a

new contribution to the body of knowledge about two-phase hydraulic jumps.
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