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Abstract The primary purpose of this paper is to develop an efficient numerical

scheme for solving the shallow water wave problem with a sloping water bottom and wet-

dry interface. For this purpose, the Lagrange method and the constrained Hamilton vari-

ational principle are used to solve the shallow water wave problem. According to the

constrained Hamilton variational principle, a shallow water equation based on the dis-

placement and pressure (SWE-DP) is derived. Based on the discretized constrained

Hamilton variational principle, a numerical scheme is developed for solving the SWE-DP.

The proposed scheme combines the finite element method for spatial discretization and the

simplectic Zu-class method for time integration. The correctness of the SWE-DP and the

effectiveness of the proposed scheme are verified by three classical numerical examples.

Numerical examples show that the proposed method performs well in the simulation of the

shallow water problem with a sloping water bottom and wet-dry interface.

Keywords Shallow water equation � Constrained Hamilton variational

principle � Symplectic � Wet-dry interface � Sloping water bottom
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t Time
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S Action functional

g Acceleration of gravity

n; k Indexes

Greek symbols
g Vertical displacement at the surface

u Vertical displacement at the bottom

ðn; fÞ Location of the particle at time t

q Mass density

b Pressure at the bottom

d Variational operator

Dxn Length of the nth element

Dt Time step

1 Introduction

The theory of shallow water is widely applied in engineering such as in offshore engi-

neering, ship engineering and environmental engineering; because of its importance, it has

been studied extensively [1–3]. A great number of theoretical models have been proposed

for simulating shallow water problems, such as the KdV equation, Saint–Venant equation

(SVE) and Boussinesq equation [2, 4–7]. However, all these equations are based on the

Eulerian coordinate system. The shallow water equations constructed using the Eulerian

coordinate system consist of convective and source terms. The inclusion of the convective

term means that the numerical scheme should be designed carefully. The most widely used

numerical method for solving the Eulerian shallow water equations may be the finite

volume method [8], because its discrete scheme can preserve the mass and momentum

well. However, the source term often destroy the conservativeness of the finite volume

method [9]. Moreover, the source term produced by the sloping water bottom often results

in a numerical imbalance problem, i.e., the numerical still water cannot stay motionless

[6, 10]. Numerical methods, which can preserve the motionless steady states, are often

called well-balanced methods. The use of a numerical method that cannot preserve this

property may lead to the spurious numerical waves [11]. The need for an adequate dis-

cretization of the topographical source term to preserve the ‘‘well-balanced’’ property has

long been an important issue in computational shallow water dynamics [6, 10, 12]. Many

researchers have developed well-balanced methods for the shallow water problems, see, for

example, [10, 12–16]. Another difficult issue often encountered in the numerical

approximation of the shallow water problem is how to address the wetting/drying condi-

tion. This issue is essentially a moving boundary problem and often leads to some

numerical problems, such as mass loss and a negative water depth [17]. Because in the

Euler framework the unknown variable is the flow velocity, it is inconvenient to exactly

capture the transient position of the moving boundary, which involves the displacement of

the water particles at the moving boundary.

The motion of water can also be described by the trajectories of particles that are carried

along with the fluid flow. This description is commonly referred to as the Lagrange method

[18]. In the Lagrange method, the displacements of the individual water particles are

determined with respect to the time and the initial positions of the particles [19]. Using

these displacements, the sloping water bottom and the moving boundary can be described

exactly and easily [20, 21]. Motivated by this advantage, there have been many reports
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discussing the use of the Lagrange method in hydrodynamics. In [20], Tao applied the

Lagrangian coordinate system to discuss the sudden starting of a floating body in deep

water. In [21], Tao and Shi applied the Lagrangian coordinate system to discuss the

problem of the hydrodynamic pressure on a suddenly starting vessel. In [22], Shi employed

the Lagrangian coordinate system to discuss a nonlinear wave induced by the acceleration

of a cylindrical tank.

Using the Lagrange method, the nonlinear boundary condition on the free surface can be

exactly satisfied [20–22]. By using the theory of classical mechanics, it is easy to establish

the Hamilton variational principle for the hydrodynamics problem in the Lagrangian

description. Finding the Hamilton variational principle for the hydrodynamics problem is

undoubtedly important, and there have been many excellent works published on this topic

[23–27]. Based on the Hamilton variational principle, numerical methods that have been

successfully developed and widely applied in structural dynamics, such as the finite ele-

ment method [28] and the symplectic method [29, 30], can be applied to simulate the

shallow water problem. For a Hamilton system with the displacement q tð Þ and momentum

p tð Þ, the symplecticity means that dpðtÞ ^ dqðtÞ ¼ dpð0Þ ^ dqð0Þ holds for any time t. The

symplecticity is the intrinsic geometric symmetry of the Hamilton dynamic system. If the

algorithm can maintain the geometric symmetry of the symplecticity, it is called the

symplectic method. The symplectic method can avoid the flaw of artificial dissipation and,

hence, performs better than the traditional non-symplectic method, especially for problems

that require extensive numerical simulation [29].

Recently, Wu and Zhong [31] proposed a constrained Hamilton variational principle for

the shallow water problem. In the constrained Hamilton variational principle, the incom-

pressible condition is treated as the constraint, and the pressure is seen as the Lagrangian

multiplier. According to the constrained Hamilton variational principle, a shallow water

equation based on displacement and pressure (SWE-DP) is developed. To numerically

solve the SWE-DP, they developed a hybrid numerical method combining the finite ele-

ment method for spatial discretization and the symplectic Zu-class method for time inte-

gration. Their method is symplectic and can preserve the total energy and mass of the

shallow water system well. However, in Ref. [31], the authors only considered shallow

water with an even bottom; the wetting/drying condition and the sloping water bottom

were not discussed.

In this study, the theory proposed in Ref. [31] is extended to shallow water with a

sloping bottom and wet-dry interface. In Sect. 2, a SWE-DP for the shallow water system

with a sloping bottom and wet-dry interface is derived. In Sect. 3, a hybrid numerical

scheme combining the finite element method for spatial discretization and the symplectic

Zu-class method for time integration is established for the proposed SWE-DP. In Sect. 4,

three classical numerical examples are evaluated to verify the correction of the proposed

SWE-DP and the effectiveness of the proposed numerical scheme. In the last section, some

conclusions are presented.

2 Shallow water equation based on displacement and pressure

Consider the shallow water model shown by Fig. 1. The water bottom is defined by

zþ hðxÞ ¼ 0. The initial water surface is defined by z� g0ðxÞ ¼ 0, while uðx; z; tÞ and

wðx; z; tÞ represent the displacements of a certain particle in the water in the x- and
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z-directions at time t, respectively. The particle is localized at ðx; zÞ initially and at ðn; fÞ at
time t, where

n ¼ xþ uðx; z; tÞ; f ¼ zþ wðx; z; tÞ: ð1Þ

d x; tð Þ represents the water depth at time t, and d0 xð Þ the water depth at the initial time.

We assume that the water is inviscid and incompressible. Along the free surface, the

pressure is zero, and the surface-energy effects are negligible. The need is to predict the

evolution of water for 0� x� L. At x ¼ L is the wet-dry interface. The water depth at the

wet-dry interface is zero, i.e., d L; tð Þ ¼ 0. For x ¼ 0, we suppose that the horizontal dis-

placement u 0; tð Þ, or the water depth d 0; tð Þ, has been measured.

According to the theory of classical mechanics, the action of the water system in two

space dimensions can be written as

S ¼
Z t

0

T � U þ Rð Þds; ð2Þ

where T , U and R are the kinetic energy, potential energy and constrained term, i.e.,

T ¼
Z L

0

Z g0 xð Þ

�h xð Þ

1

2
q _u2 þ _w2
� �

dzdx; ð3Þ

U ¼
Z L

0

Z g0 xð Þ

�h xð Þ
qg zþ wð Þdzdx; ð4Þ

and

R ¼
Z L

0

Z g0 xð Þ

�h xð Þ
Phdzdx: ð5Þ

Here, P is the pressure, the dot represents the derivative with respect to time, and h is the

water volume strain, which can be written as

h ¼ ux þ wz þ uxwz � uzwx: ð6Þ

For the shallow water problem, it can be assumed that the horizontal displacement is

independent of the vertical coordinate z, i.e., u x; tð Þ ¼ u x; z; tð Þ, and hence the water vol-

ume strain can be simplified as

x

z

L

0initial surface, ( ) 0z xη− =

( , )d x t
surface at time t

bottom, ( ) 0z h x+ =

0 ( )d x

0
( )xη

( )h x−

u

sP

bP

( )h x u− +

Fig. 1 The considered model with variable bottom topography
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h ¼ ux þ wz þ uxwz: ð7Þ

According to the incompressible condition, the water volume strain should be rigorously

zero h ¼ 0, and hence we have

1þ wzð Þ 1þ uxð Þ ¼ 1; or wz x; zð Þ ¼ �ux xð Þ
1þ ux xð Þ : ð8Þ

Equation (8) shows that the vertical displacement distributes linearly along the vertical

coordinate z. As shown in Fig. 1, the initial horizontal positions of the particle Ps at the

surface and the particle Pb at the bottom are the same. Let the vertical displacements of

particles Pb and Ps be denoted by

w x;�h; tð Þ ¼ u x; tð Þ; w x; g0; tð Þ ¼ g x; tð Þ: ð9Þ

The vertical displacement can be written as

w x; z; tð Þ ¼ zþ h

d0
g x; tð Þ þ g0 � z

d0
/ x; tð Þ: ð10Þ

Taking the derivative of Eq. (10) with respect to z, and combining the result with

Eq. (8) gives

wz x; z; tð Þ ¼ �ux xð Þ
1þ ux xð Þ ¼

g x; tð Þ � /
d0

: ð11Þ

As shown in Fig. 1, the initial position of particle Pb at the bottom is x; �hðxÞð Þ, and its
position at time t is xþ u; �hðxþ uÞð Þ. Hence, the vertical displacement is

u x; tð Þ ¼ h xð Þ � h xþ uð Þ: ð12Þ

Substituting Eq. (12) into Eq. (10) yields

w x; z; tð Þ ¼ zþ h

d0
d � z� h xþ uð Þ ð13Þ

where d x; tð Þ is the water depth at time t. d x; tð Þ can be expressed as

d x; tð Þ ¼ g x; tð Þ þ h xþ uð Þ þ d0 xð Þ � h xð Þ: ð14Þ

Substituting Eq. (13) into Eq. (4), the potential energy is rewritten as

U ¼
Z L

0

Z g0 xð Þ

�h xð Þ
qg zþ wð Þdzdx ¼ 1

2

Z L

0

qgd0ddx�
Z L

0

qgd0h xþ uð Þdx: ð15Þ

In terms of Eq. (13), the vertical velocity is

_w x; z; tð Þ ¼ zþ h

d0
_d x; tð Þ � �hx _u; �hx ¼

oh að Þ
oa

����
a¼xþu

¼ hx xð Þ þ hxx xð Þuþ � � � : ð16Þ

For the shallow water problem, the nonlinear effect of the vertical velocity is negligible

[32–34], and hence we make the approximation �hx � hx xð Þ and obtain
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_w x; z; tð Þ ¼ zþ h

d0
_d x; tð Þ � hx xð Þ _u: ð17Þ

Then, substituting Eq. (17) into Eq. (3) yields

T ¼ 1

2

Z L

0

Z g0 xð Þ

�h xð Þ
q _u2 þ _w2
� �

dzdx ¼ T1 þ T2; ð18Þ

where

T1 ¼
1

2

Z L

0

qd0 _u
2

� �
dx; T2 ¼

1

2

Z L

0

q
d0

3
_d2 � d0hx _u _d þ d0h

2
x _u

2

� �
dx: ð19Þ

Here, T1 represents the kinetic energy produced by the horizontal velocity and T2 the

kinetic energy produced by the vertical velocity. In the shallow water long wave problem,

T2 is negligible relative to T1 [19, 35].

The pressure at the water surface is zero. Let the pressure at the bottom be denoted by

P x;�h xð Þ; tð Þ ¼ b x; tð Þ: ð20Þ

Making an assumption that the pressure distributes linearly along the vertical coordinate

z, we have

P x; z; tð Þ ¼ g0 � z

d0
b x; tð Þ: ð21Þ

Substituting Eq. (13) into the expression (7) of the water volume strain yields

h ¼ ux þ 1þ uxð Þ d

d0
� 1

� �
: ð22Þ

Substituting Eqs. (21) and (22) into Eq. (5) yields

R ¼ 1

2

Z L

0

b d 1þ uxð Þ � d0½ �dx: ð23Þ

In terms of Eqs. (15), (18) and (23), the action of the shallow water system can be

written as

S ¼ 1

2

Z t

0

Z L

0

q d0 _u
2 þ d0

3
_d2 � d0hx _u _d þ d0h

2
x _u

2

� �
dxds�

Z t

0

1

2

Z L

0

qgd0ddxds

þ
Z t

0

Z L

0

qgd0h xþ uð Þdxdsþ 1

2

Z t

0

Z L

0

b d 1þ uxð Þ � d0½ �dxds:
ð24Þ

The action S is a functional based on u, d and b. According to the Hamilton variational

principle, the true solution, i.e., u; d; bð Þ, is the stationary point of the action functional.

Taking the first variation of the action S with respect to u; d; bð Þ yields
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dS ¼ 1

2

Z t

0

Z L

0

q
d02 d _uð Þ _uþ d0

3
2 d _d
� �

_d � d0hx d _uð Þ _d

� d0hx _u d _d
� �

þ d0h
2
x2 d _uð Þ _u

2
64

3
75dxds

�
Z t

0

1

2

Z L

0

qgd0dd dxdsþ
Z t

0

Z L

0

qgd0�hx duð Þdxds

þ 1

2

Z t

0

Z L

0

b ddð Þ 1þ uxð Þ½ �dxdsþ 1

2

Z t

0

Z L

0

dbð Þ d 1þ uxð Þ � d0½ �dxds

þ 1

2

Z t

0

Z L

0

bd duxð Þdxds

ð25Þ

where d represents the variational operator. According to classical mechanics, du, dd and

db in Eq. (25) are arbitrary function, which can be called the virtual displacement, virtual

depth, and virtual pressure, respectively. Applying integration by parts to the first integral

term on right-hand side of Eq. (25), we have

1

2

Z t

0

Z L

0

q d02 d _uð Þ _u½ �dxds

¼
Z L

0

qd0

Z t

0

d _uð Þ _uds
� �

dx ¼
Z L

0

qd0

Z t

0

_ud duð Þ
� �

dx

¼
Z L

0

qd0 _u duð Þ½ �t0dx�
Z L

0

qd0

Z t

0

duð Þ€uds
� �

dx:

ð26Þ

If the horizontal displacement at times 0 and t are given, that is, du x; 0ð Þ ¼ du x; tð Þ ¼ 0

which causes the first term on the right-hand side of Eq. (26) to vanish, we have

1

2

Z t

0

Z L

0

q d02 d _uð Þ _u½ � dxds ¼ �
Z L

0

qd0

Z t

0

duð Þ€uds
� �

dx: ð27Þ

Analogously, if the water depth d at times 0 and t are given, we have

1

2

Z t

0

Z L

0

q
d02 d _uð Þ _uþ d0

3
2 d _d
� �

_d � d0hx d _uð Þ _d

�d0hx _u d _d
� �

þ d0h
2
x2 d _uð Þ _u

2
64

3
75dxds

¼ 1

2

Z t

0

Z L

0

q �2 duð Þd0€u� 2 ddð Þ d0
3
€d þ d0hx duð Þ€d þ d0hx€u ddð Þ � 2 duð Þd0h2x €u

� �
dxds

ð28Þ

Applying integration by parts to the last integral term on right-hand side of Eq. (25), we

have

1

2

Z t

0

Z L

0

bd duxð Þdxds ¼ 1

2

Z t

0

Z L

0

bdd duð Þ
� �

ds

¼ 1

2

Z t

0

bd duð Þ½ �x¼L
x¼0�

Z L

0

duð Þ o bdð Þ
ox

dx

� �
ds

¼ � 1

2

Z t

0

Z L

0

o bdð Þ
ox

dudxdsþ 1

2

Z t

0

bddu½ �x¼L
x¼0ds:

ð29Þ
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Substituting Eqs. (28) and (29) into Eq. (25) yields

dS ¼ 1

2

Z t

0

Z L

0

q �2dud0€u� 2dd
d0

3
€d þ d0hxdu€d þ d0hx€udd � 2dud0h

2
x €u

� �
dxds

�
Z t

0

1

2

Z L

0

qgd0dddxdsþ
Z t

0

Z L

0

qgd0�hxdudx ds

þ 1

2

Z t

0

Z L

0

bdd 1þ uxð Þdx dsþ 1

2

Z t

0

Z L

0

db d 1þ uxð Þ � d0½ �dx ds

� 1

2

Z t

0

Z L

0

o bdð Þ
ox

dudx dsþ 1

2

Z t

0

bddu½ �x¼L
x¼0ds

ð30Þ

Noting that the water depth at the wet-dry interface is rigorously zero, that is

d L; sð Þ ¼ 0, if the horizontal displacement at x ¼ 0 is given, we have

du 0; sð Þ ¼ 0; 0� s� t: ð31Þ

Hence the last term on the right-hand side of Eq. (30) equals to zero. The right-hand

side of Eq. (30) can thus be rewritten as

dS ¼
Z t

0

Z L

0

�duð Þ qd0€u�
1

2
qd0hx €d þ qd0h

2
x €u� qgd0�hx þ

1

2

o bdð Þ
ox

� �
dxds

þ
Z t

0

Z L

0

�ddð Þ q
d0

3
€d � 1

2
qd0hx€uþ

1

2
qgd0 �

1

2
b 1þ uxð Þ

� �
dxds

þ 1

2

Z t

0

Z L

0

dbð Þ d 1þ uxð Þ � d0½ �dxds

ð32Þ

Noting that the virtual functions du, dd and db are arbitrary, we obtain

qd0€u�
1

2
qd0hx €d þ qd0h

2
x €u� qgd0�hx þ

1

2

o bdð Þ
ox

¼ 0

q
d0

3
€d � 1

2
qd0hx€uþ

1

2
qgd0 �

1

2
b 1þ uxð Þ ¼ 0

d 1þ uxð Þ ¼ d0;

8>>>><
>>>>:

ð33Þ

which is the shallow water equation based on displacement and pressure (SWE-DP). The

third equation in Eq. (33) is the incompressible condition of the shallow water system.

In the above steps from Eq. (30) to (32), we use the boundary condition du x; sð Þ ¼ 0 for

0� s� t, which holds on only when the horizontal displacement at x ¼ 0 is given. If

boundary condition at x ¼ 0 is replaced with giving the water depth d 0; sð Þ for 0� s� t,

introduce the following force

f sð Þ ¼ 1

2
bd 0; sð Þ; 0� s� t ð34Þ

which is actually a pressure applied at x ¼ 0. In this case, the potential energy should be

modified to

U ¼ 1

2

Z L

0

qgd0ddx�
Z L

0

qgd0h xþ uð Þdx� fu 0; sð Þ: ð35Þ
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Correspondingly, the action should be modified to

S ¼ 1

2

Z t

0

Z L

0

q d0 _u
2 þ d0

3
_d2 � d0hx _u _d þ d0h

2
x _u

2

� �
dxds�

Z t

0

1

2

Z L

0

qgd0ddxds

þ
Z t

0

Z L

0

qgd0h xþ uð Þdxdsþ 1

2

Z t

0

Z L

0

b d 1þ uxð Þ � d0½ �dxdsþ
Z t

0

fu 0; sð Þds
ð36Þ

Taking the first variation of S, and setting dS ¼ 0 will yield Eqs. (33) and (34).

If the effect of the vertical velocity is ignored, the kinetic energy is T1, and the SWE-DP

(33) can be simplified as

qd0€u� qgd0�hx þ
1

2

o bdð Þ
ox

¼ 0

qgd0 � b 1þ uxð Þ ¼ 0

d 1þ uxð Þ ¼ d0

8>>><
>>>:

ð37Þ

Combining the second and third equations in Eq. (37), we obtain

b ¼ qgd0
1þ ux

¼ qgd: ð38Þ

Noting that b is the pressure at the water bottom and d is the water depth, Eq. (38)

reflects the assumption of the hydrostatic pressure, which is the fundamental assumption in

the SVE. Indeed, Eq. (37) is mathematically equivalent to the SVE, which will be proven

in the appendix. Hence, some analytical solutions to the SVE can be employed to test the

validity of the numerical scheme to the SWE-DP proposed in the next section.

3 Numerical scheme

The proposed SWE-DP is nonlinear, and it is hard to solve this equation by purely ana-

lytical methods. In this section, with the help of the discretized constrained Hamilton

variational principle, a hybrid method combining the finite element for the spatial dis-

cretization and the symplectic Zu-class method for the time integration is presented for this

equation.

3.1 Discretization in space

The proposed SWE-DP (33) is derived in terms of the constrained Hamilton variational

principle. Hence, it is a natural choice to use the finite element method for spatial dis-

cretization. Let the region 0; L½ � be divided into Ne basic elements with Nd nodes; see

Fig. 2.

On the nth element, the horizontal displacement u xð Þ is approximated by the linear

function, and d xð Þ and b xð Þ are treated as constant values, i.e.,

u xð Þ ¼ xnþ1 � x

Dxn
un þ

x� xn

Dxn
unþ1; d xð Þ ¼ dn; b xð Þ ¼ bn; ð39Þ

where xn is the node location on the x-axis, Dxn is the length of the nth element, un is the

horizontal displacement of the nth node, dn is the water depth evaluated at the mid-point of
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the nth element, and bn is the pressure of the water bottom evaluated at the mid-point of the

nth element. In terms of Eqs. (33) and (39), the incompressible condition on the nth

element can be approximated as

dnDxn 1þ unþ1 � un

Dxn

� �
¼ Dxnd0;n: ð40Þ

The kinetic energy can be approximated as

T ¼ 1

2
_uTMu _uþ 1

2
_d
T
Md

_d� _d
T
Mdu _u; ð41Þ

in which

qu ¼ qd0 1þ h2x
� �

; qd ¼
qd0
3

; qud ¼ qhxd0; ð42Þ

u ¼ u1 u2 . . . uNd
ð ÞT; d ¼ d1 d2 . . . dNe

ð ÞT

Mu ¼ diag Mu;1 . . . Mu;n . . . Mu;Ndf g
Md ¼ diag qd;1Dx1 qd;2Dx2 . . . qd;Ne

DxNe

	 


Mdu ¼
1

4

Dx1qud;1 Dx1qud;1 0 � � � 0

0 Dx2qud;2 Dx2qud;2
. .
. ..

.

..

. . .
. . .

. . .
.

0

0 � � � 0 DxNe
qud;Ne

DxNe
qud;Ne

2
6666664

3
7777775
;

ð43Þ

and

Mu;1 ¼
Dx1qu;1

2
; Mu;n ¼

Dxn�1qu;n�1 þ Dxnqu;n
2

; Mu;Nd
¼

DxNe
qu;Ne

2

qu;n ¼ qu
xn þ xnþ1

2

� �
; qd;n ¼ qd

xn þ xnþ1

2

� �
; qud;n ¼ qud

xn þ xnþ1

2

� �
:

ð44Þ

The potential energy can be approximated as

U ¼ gTdd� gThh ð45Þ

where

1u 2u dNu1

1

d 2

2

d
β

Ne

Ne

d

ββ

Fig. 2 The finite element mesh
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gTh ¼ Dx1
2

gu;1;
Dxn
2

þ Dxn�1

2

� �
gu;n;

DxNe

2
gu;Nd

� �T

gTd ¼ gd;1 þ gd;2
� �

Dx1
2

gd;2 þ gd;3
� �

Dx2
2

. . .
gd;Nd�1 þ gd;Nd

� �
DxNe

2

� �T

hT ¼ h x1 þ u1ð Þ; h xn þ unð Þ; h xNd
þ uNd

ð Þð ÞT

gd;n ¼
qg
2
d0 xnð Þ; gu;n ¼ qgd0 xnð Þ:

ð46Þ

The Lagrangian modified term can be approximated as

R ¼ 0:5bTDdþ 0:5dTBCu� 0:5bTs ¼ 0:5bTDdþ 0:5bTDCu� 0:5bTs ð47Þ

where

sT ¼ Dx1d0;1 Dxnd0;2 DxNe
d0;Ne

ð Þ
D ¼ diag df g; D ¼ diag Dx1;Dx2; . . .f g
bT ¼ b1 b2 . . . bNe

� �
; B ¼ diag bf g

C ¼

�1 1 0 � � � 0

0 �1 1 . .
. ..

.

..

. . .
. . .

. . .
.

0

0 . . . 0 �1 1

2
666664

3
777775
:

ð48Þ

In terms of Eqs. (41), (45) and (47), the action can be approximated as

S ¼
Z t

0

1

2
_uTMu _uþ 1

2
_d
T
Md

_d� _d
T
Mdu _u� gTddþ gThh

þ 1

2
bTDdþ 1

2
bTDCu� 1

2
bTs

2
64

3
75ds; ð49Þ

in which u and d are the horizontal displacement vector and the water depth vector,

respectively, and b is the bottom pressure vector.

In the integrand of Eq. (49), the summation of the first three terms represents the kinetic

energy, the summation of the fourth and fifth terms represents the potential energy, and the

summation of the last three terms represents the constrained term.

According to the constrained Hamilton variational principle, dS ¼ 0. If u and d at times

0 and t are given, i.e., du 0ð Þ ¼ du tð Þ ¼ 0 and dd 0ð Þ ¼ dd tð Þ ¼ 0, dS ¼ 0 causes the fol-

lowing equations:

Mu €u�MT
du
€d� hxgh � 0:5CTBd ¼ 0

Md
€d�Mdu €uþ gd � 0:5Db� 0:5BCu ¼ 0

Dd þ DCu� s ¼ 0

8><
>: ; ð50Þ

which constitutes a system of differential algebraic equations (DAEs).

3.2 The Zu-class method

The nonlinear DAEs (50) are obtained from the first variation of Eq. (49), which corre-

sponds to a constrained Hamiltonian system. For the Hamiltonian system, the symplecticity
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is a characteristic property [29]. As the symplectic method can preserve the property of

symplecticity and the approximate energy necessary for a long time computation, it often is

preferable to simulate the Hamiltonian dynamical system [27]. However, for the con-

strained Hamiltonian system, it is required for a time integration method to preserve not

only the symplectic structure of the Hamiltonian system but also all the constraints. In Ref.

[36], a method preserving all the constraints was developed by Zhong et al. The numerical

experiment of the double pendulum presented in [36] shows that this method can preserve

energy well. In Ref. [37], it was named the Zu-class method. In Ref. [38], this method was

proven to be symplectic. The symplectic Zu-class method is based on the discretized

Hamilton variational principle. In the symplectic Zu-class method, the constraint condi-

tions are satisfied strictly at the integration points, and the orbit is treated as geodesic in the

state space and is therefore approximated by using the time finite element method. In this

sub-section, the symplectic Zu-class method will be employed to solve the DAEs (50).

In the steps from Eq. (49) to Eq. (50), u and d at times 0 and t are assumed to be known,

which causes du 0ð Þ ¼ du tð Þ ¼ 0 and dd 0ð Þ ¼ dd tð Þ ¼ 0. However this assumption is

unnecessary according to classical mechanics [31, 35, 39]. Let action (49) be modified as

S ¼
Z t

0

1

2
_uTMu _uþ 1

2
_d
T
Md

_d� _d
T
Mdu _u� gTddþ gThh

þ 1

2
bTDd þ 1

2
bTDCu� 1

2
bTs

2
664

3
775ds

þ uT 0ð Þpu 0ð Þ � uT tð Þpu tð Þ
þ dT 0ð Þpd 0ð Þ � dT tð Þpd tð Þ

ð51Þ

where pu tð Þ and pd tð Þ are the momentum vectors. Letting the first variation of Eq. (51) be

zero will not yields Eq. (50), but rahter the following equation:

pu ¼ Mu _u�MT
du
_d; pd ¼ Md

_d�Mdu _u: ð52Þ

The Zu-class method is based on Eq. (51). Let the time domain be discretized as

t ¼ t0; t1; . . .; tk; . . .; tk ¼ k � Dt; ð53Þ

where Dt is the time step, which should be limited by the usual CFL (Courant–Friedrichs–

Lewy) condition [1, 3] to guarantee the convergence of the numerical results. Let the

velocities in tk; tkþ1½ � be approximated as

_uk tð Þ ¼ ukþ1 � uk
Dt

; _dk tð Þ ¼ dkþ1 � dk
Dt

; t 2 tk; tkþ1½ �; ð54Þ

where #k ¼ # tkð Þ, and the displacements be approximated as

u tð Þ ¼ ukþ1 þ uk
2

; d tð Þ ¼ dkþ1 þ dk
2

; t 2 tk; tkþ1½ �: ð55Þ

The bottom pressure is approximated to be a constant in tk; tkþ1½ �, i.e.,

b tð Þ ¼ bk; t 2 tk; tkþ1½ �: ð56Þ

In terms of Eqs. (51), and (54)–(56), the action for t 2 tk; tkþ1½ � can be written as
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S ¼
Z tkþ1

tk

Tds�
Z tkþ1

tk

Udsþ
Z tkþ1

tk

Rdsþ uTk pu;k � uTkþ1pu;kþ1 þ dTk pd;k � dTkþ1pd;kþ1

ð57Þ

where

Z tkþ1

tk

Tds ¼ 1

2
uTkþ1 � uTk
� �

Mu

ukþ1 � uk
Dt

� �
þ 1

2
dTkþ1 � dTk
� �

Md

dkþ1 � dk
Dt

� dTkþ1 � dTk
� �

Mdu

ukþ1 � uk
Dt

� �
Z tkþ1

tk

Uds ¼ Dt
2
gTd dk þ dkþ1ð Þ � Dt

2
gTh h ukð Þ þ h ukþ1ð Þ½ �

Z tkþ1

tk

Rds ¼ 1

2
bTkD

Dt
2

dk þ dkþ1ð Þ þ 1

2
bTk

Dt
2

DkCuk þ Dkþ1Cukþ1ð Þ � 1

2
DtbTk s

ð58Þ

Substituting Eq. (58) into the action integral and taking the first variation gives

dS ¼ d uTkþ1 � uTk
� �

Mu

ukþ1 � uk
Dt

� �
þ d dTkþ1 � dTk

� �
Md

dkþ1 � dk
Dt

� d dTkþ1 � dTk
� �

Mdu

ukþ1 � uk
Dt

� �
� d uTkþ1 � uTk

� �
MT

du

dkþ1 � dk
Dt

� �

� Dt
2
d dTk þ dTkþ1

� �
gd �

Dt
2

duTk hukgh þ duTkþ1hukþ1
gh

� �� �

þ dbTk
� �Dt

4
D dk þ dkþ1ð Þ þ d dTk þ dTkþ1

� �Dt
4
Dbk

þ dbTk
� �Dt

4
DkCuk þ Dkþ1Cukþ1ð Þ þ Dt

4
ddTk
� �

BkCuk þ ddTkþ1

� �
BkCukþ1


 �

þ Dt
4

duTk
� �

CTDkbk þ duTkþ1

� �
CTDkþ1bk


 �
� dbTk
� � 1

2
Dts

þ duTk pu;k � duTkþ1pu;kþ1 þ ddTk pd;k � ddTkþ1pd;kþ1

ð59Þ

where

huk ¼
ohT ukð Þ
ouk

; hukþ1
¼ ohT ukþ1ð Þ

oukþ1

ð60Þ

Equation (59) can be further simplified as
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dS ¼ duTkþ1

� �
Mu

ukþ1 � uk
Dt

� �
�MT

du

dkþ1 � dk
Dt

� �
þ Dt

2
hukþ1

gh þ
Dt
4
CTDkþ1b� pu;kþ1

� �

þ duTk
� �

�Mu

ukþ1 � uk
Dt

� �
þMT

du

dkþ1 � dk
Dt

� �
þ Dt

2
hukgh þ

Dt
4
CTDkbþ pu;k

� �

þ ddTkþ1

� �
Md

dkþ1 � dk
Dt

�Mdu

ukþ1 � uk
Dt

� �
þ Dt

4
Db� Dt

2
gd þ

Dt
4
BCukþ1 � pd;kþ1

� �

þ ddTk
� �

�Md

dkþ1 � dk
Dt

þMdu

ukþ1 � uk
Dt

� �
þ Dt

4
Db� Dt

2
gd þ

Dt
4
BCuk þ pd;k

� �

þ dbT
� �Dt

4
Ddk þ DkCuk � sð Þ þ Ddkþ1 þ Dkþ1Cukþ1 � sð Þ½ �

ð61Þ

Noting that dS ¼ 0 and Ddk þ DkCuk � s ¼ 0 in terms of Eq. (50), we have

Mu

Dt
ukþ1 � ukð Þ �MT

du

dkþ1 � dk
Dt

� �
þ Dt

2
hukþ1

gh þ
Dt
4
CTDkþ1bk � pu;kþ1 ¼ 0

�Mu

Dt
ukþ1 � ukð Þ þMT

du

dkþ1 � dk
Dt

� �
þ Dt

2
hukgh þ

Dt
4
CTDkbk þ pu;k ¼ 0

Md

dkþ1 � dk
Dt

�Mdu

ukþ1 � uk
Dt

� �
� Dt

2
gd þ

Dt
4
Dbk þ

Dt
4
BkCukþ1 � pd;kþ1 ¼ 0

�Md

dkþ1 � dk
Dt

þMdu

ukþ1 � uk
Dt

� �
� Dt

2
gd þ

Dt
4
Dbk þ

Dt
4
BkCuk þ pd;k ¼ 0

Ddkþ1 þ Dkþ1Cukþ1 � s ¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð62Þ

Equation (62) is a system of nonlinear algebraic equations that can be solved using

Newton’s iteration method. If Md and Mdu in Eq. (62) are replaced with Mde and Mdue
(e � 1), Eq. (62) can be used to analyze the shallow water problem ignoring the effect of

the vertical velocity. In this case, the results are in agreement with the SVE solution.

4 Numerical examples

In this section, three classical numerical examples are used to verify the reliability of the

proposed SWE-DP and the effectiveness of the proposed numerical method. These

examples have been used frequently by many researchers to test different numerical

methods [40–42].

4.1 Evolution of shorelines over a parabolic topography

The first example is a perturbed shallow water flow in a one-dimensional container with a

parabolic bed profile, which provides a perfect test for the proposed method in dealing with

bed sloping source term and wetting/drying condition. The analytical solutions for this

problem were derived by Sampson et al. [40]. The initial water domain is shown in Fig. 3.

The bed profile is defined by

h xð Þ ¼ h0 � h0
x

a

� �2

ð63Þ
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where h0 ¼ 10 m, and a ¼ 3000 m. According to Ref. [40], the analytical horizontal

displacement and water surface are shown as

u x; tð Þ ¼ a2

2gh0
Bx 1� cosxtð Þ ð64Þ

and

g x; tð Þ ¼ � 1

g
Bx cosxt xþ u x; tð Þð Þ � a2B2

8g2h0
x2 cos 2xt � B2

4g
; x ¼

ffiffiffiffiffiffiffiffiffiffi
2gh0

p

a
; ð65Þ

respectively, in which the involved parameters are selected as B ¼ 5 m=s, g ¼ 10 m
�
s2.

Numerical simulation is performed with a time step Dt ¼ 1 s and a uniform grid with

Ne ¼ 300 elements. The simulation lasts for 6000 s. Figure 4 shows the predicted water

surface elevation at different times. Figure 5 shows the predicted locations of the left and

right shorelines. Excellent agreement is observed between the numerical prediction and

analytical solutions from Figs. 4 to 5, which validates that the proposed method is able to

address the shallow water with complex bed topographies and wet-dry interfaces.

The considered problem here is a conservative system, where the total energy of the

system, denoted by H tð Þ, will keep constant with time. The total energy is the summation

of the kinetic energy and the potential energy, i.e., H tð Þ ¼ T þ U. Figure 6 shows the

relative error of the total energy, defined by H tð Þ � H0½ �=H0, where H0 ¼ H 0ð Þ. This
figure shows that the proposed method conserves precisely the discrete energy of the

considered shallow water system over long times. The relative energy error is on the order

of 10�10.

Simulating the shallow water problem with wet-dry interfaces and a sloping bottom, the

numerical solutions often cannot conserve the total mass of the system exactly. In [17], a

zero mass error method was proposed by Brufau et al. Here the ability of the proposed

method to conserve the mass is also tested. Figure 7 shows the relative error of the total

mass of the system, denoted by m tð Þ � m0½ �=m0, in which

m tð Þ ¼ q
XNx

n¼1

dn Dxn þ unþ1 � unð Þ ð66Þ

is the total mass of the shallow water system, and m0 ¼ m 0ð Þ.

-5000 -3000 -1000 1000 3000 5000
-10
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z
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D

Fig. 3 The water profile at
t ¼ 0 s
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It can be observed from Fig. 7 that the relative mass error is on the order of 10�16,

which means that the proposed method can provide numerical results with zero mass

errors.

Fig. 4 Water surface elevation at different times: a t ¼ 1000 s; b t ¼ 2000 s; c t ¼ 3000 s; d t ¼ 4000 s; e
t ¼ 5000 s; f t ¼ 6000 s
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Fig. 5 Locations of shorelines: a Left shoreline; b Right shoreline

0 1000 2000 3000 4000 5000 6000

10-10
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2
Fig. 6 Energy relative error,
H tð Þ � H0½ �=H0, for 6000 s

0 1000 2000 3000 4000 5000 6000

10-16

0
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4
Fig. 7 Mass relative error,
m tð Þ � m0½ �=m0, for 6000 s
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4.2 Spreading of a drop of shallow water

As the second example, the spreading of a parabola-shaped two-dimensional drop of

shallow water on a horizontal plane is considered. The drop is initially confined to xj j\1

according to

z ¼ g0 xð Þ ¼
1� x2 for xj j\1

0 for xj j 	 1;

(
ð67Þ

and then is at rest. Upon releasing the drop, it spreads under the effect of gravity. The

gravitational acceleration is g ¼ 1 m
�
s2. The temporal evolution of this system has been

analytically investigated by Frei [43]. He noted that the parabolic shape is always retained

and that the velocity across the drop is a linear function, i.e.,

g x; tð Þ ¼ k�1 1� n
k

� �2
" #

; _u xð Þ ¼ n
kt
k

� �
ð68Þ

in which, n is defined by Eq. (1), k describes the half-width of the drop, and kt ¼ ok=ot is
the velocity of the leading edge. Following Refs. [43, 44], k tð Þ is obtained numerically as

the root of the following equation

t ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k� 1ð Þ

p
þ ln

ffiffiffiffiffiffiffiffiffiffiffi
k� 1

p
þ

ffiffiffi
k

p� �h i
: ð69Þ

The proposed SWE-DP is used to simulate this problem, and the numerical simulation is

performed with Ne ¼ 100 elements. The time step is selected as Dt ¼ 0:01 s, and the

numerical simulation lasts for 2 s. It is worth noting that the analytical solution (68)

provided by Frei was derived based on the SVE, in which the effect of the vertical velocity

is ignored. Hence in the numerical simulation, the matrices Md and Mdu in Eq. (62) are

replaced with 0 �Md and 0 �Mdu, respectively.

The analytical solutions and the numerical results computed using the proposed method

are compared in Fig. 8. The first panel in Fig. 8 shows the comparison of the water free

surfaces at 1 and 2 s, and the second panel in Fig. 8 shows the comparison of the velocities

at 1 and 2 s. It can be observed that the numerical results computed using the proposed

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

t = 1s

t = 2s

SWE-Zu

Analytical

-4 -2 0 2 4
-2

-1

0

1

2

t  = 1s

t  = 2s
SWE-Zu

Analytical
Ref. [33]

Fig. 8 Comparison between different solutions. First panel water free surfaces at 1 and 2 s; Second panel,
velocities at 1 and 2 s
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method are in excellent agreement with the analytical solution. The example used here was

also discussed in Ref. [45], where the SVE was used to model the drop and a second order

high resolution algorithm was applied to solve the SVE. The numerical velocities given in

Ref. [45] are also displayed in the second panel of Fig. 8. It can be seen that these

numerical velocities given in Ref. [45] are different from the analytical solutions at the left

and right moving wet-dry interfaces, while the proposed method performs well at the wet-

dry interfaces. Indeed, other researchers discussed this example by solving the SVE by

means of different types of numerical schemes, e.g., Refs. [44, 46]. However, the accuracy

of the numerical velocities at the left and right moving wet-dry interfaces in these reports

was unsatisfactory. The numerical results demonstrate that the proposed model can cor-

rectly handle the problem of wet-dry interfaces.

In Fig. 9 the relative error of the total energy of the drop versus time is displayed. From

Fig. 9 it may be observed that the relative energy error is on the order of 10�6, which

means that the proposed method conserves precisely the discrete energy of the considered

shallow water system. The max relative error of the total mass for 2 s is on the order of

10�16, and hence the relative error of the total mass versus time is not exhibited here.

4.3 Dam break on dry bed

Consider a reservoir with length 150 m and water depth 10 m; see Fig. 10. Suddenly, the

right dam is broken and the water pours out of the reservoir. The right side of the dam is the

dry bed. Initially, the water surface is defined as

0 0.5 1 1.5 2

10-6

-8

-6

-4

-2

0
Fig. 9 Energy relative error,
H tð Þ � H0½ �=H0

0 150

10

( )mx

(
)

m
z

0

water dam

Fig. 10 The dam
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z ¼ g0 xð Þ ¼
h0; if x� x0

0; if x[ x0;

(
ð70Þ

where x0 ¼ 150 m and h0 ¼ 10 m. The initial velocity is _u x; 0ð Þ ¼ 0 m=s, and the gravi-

tational acceleration is g ¼ 9:81 m=s.
According to Ref. [42], the analytical solution can be given as

g x; tð Þ ¼

h0; if n� x0 � t
ffiffiffiffiffiffiffi
gh0

p

1

9g
2

ffiffiffiffiffiffiffi
gh0

p
� n� x0

t

� �2

; if x0 � t
ffiffiffiffiffiffiffi
gh0

p
\n� x0 þ 2t

ffiffiffiffiffiffiffi
gh0

p

0; if n[ x0 þ 2t
ffiffiffiffiffiffiffi
gh0

p

8>>>>><
>>>>>:

ð71Þ

and

_u x; tð Þ ¼

0; if n� x0 � t
ffiffiffiffiffiffiffi
gh0

p
2

3

ffiffiffiffiffiffiffi
gh0

p
þ n� x0

t

� �
; if x0 � t

ffiffiffiffiffiffiffi
gh0

p
\n� x0 þ 2t

ffiffiffiffiffiffiffi
gh0

p

0; if n[ x0 þ 2t
ffiffiffiffiffiffiffi
gh0

p
;

8>>>><
>>>>:

ð72Þ

where n is defined by Eq. (1).

It should be noted that in the analytical solutions (71) and (72) were derived based on

the SVE, in which the effect of the vertical velocity is ignored. Hence, to test the reliability

of the proposed SWE-DP and the correctness of the proposed numerical scheme, the

matrices Md and Mdu in Eq. (62) are replaced with 0 �Md and 0 �Mdu, respectively in the

numerical simulation. Another numerical simulation considering the effect of the vertical

velocity is also performed. Both these numerical simulations are performed with Ne ¼ 444

elements and a time step of Dt ¼ 0:01 s. The numerical simulation lasts for 6 s.

In Fig. 11, the water surface elevations and water discharges at t ¼ 6 s computed using

different methods are compared in the first and second panels, respectively. The black solid

line represents the analytical solution. The red dash line represents the numerical results

computed using the proposed method in the case of e ¼ 0, i.e., where the effect of the

vertical velocity is ignored, and the blue dotted line represents the numerical results

computed using the proposed method in the case of e ¼ 1, i.e., where the effect of the

vertical velocity is considered.

Excellent agreement is observed between the numerical results of e ¼ 0 and the ana-

lytical solutions, from Fig. 11. No oscillations are detected in the computed results. This

demonstrates the reliability of the proposed SWE-DP and the correction of the numerical

scheme proposed in Sect. 4. It can also be observed from Fig. 11 that the vertical velocity

makes the curves of the numerical results more smooth. Figure 12 shows the relative error

of the total energy. It is clear that the proposed method conserves precisely the discrete

energy. The relative energy error is on the order of 10�6, and no numerical diffusion is

detected in the computed results. The results depicted in these figures show that the

proposed method is able to be employed to the shallow water problem with wet-dry

interfaces.

Because the max relative error of the total mass for 6 s is on the order of 10�16, the

relative error of the total mass versus time is not exhibited here.
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4.4 Order of accuracy of the proposed scheme

The error of the proposed method depends on two factors, i.e., the mesh size and the time

step. To analyze the order of accuracy of the proposed scheme, the example 4.1 is used.

The effect of the mesh size on the proposed method is discussed first by using different

mesh sizes and the same time step. We select four quantities, i.e., uA, uB, dC and bD, to
determine the order of accuracy. Here, uA and uB represent the displacements at the points

A and B, respectively. dC is the water depth at the point C, and bD the pressure at the point

D. The points A, B, C, and D are shown in Fig. 3. The x coordinate values of the points A

and B are �4060:66 m and 1939:34 m. The x coordinate values of the points C and D are

both �1060:66 m. Points A and B are the initial left shoreline and right shoreline,
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Fig. 11 Comparison between different solutions. First panel water free surfaces at 6 s; Second panel, water
discharge at 6 s
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respectively. Points C and D are located at the water surface and bottom, respectively. Let

the numerical error be defined by

e yð Þ ¼

PNt

i¼1

y tið Þ � y
 tið Þj j

PNt

i¼1

y
 tið Þj j
ð73Þ

where y tið Þ are the solutions at time ti computed using different mesh sizes, and y
 tið Þ are
the reference solutions at time ti. Nt is the number of time steps. The numerical error can be

expressed as e ¼ CDxs, in which C is a constant independent of the mesh size Dx, and s is

the order of accuracy associated with the mesh size. Thus, the errors e1 and e2 for two

different mesh sizes Dx1 and Dx2 can be given by

e1 ¼ CDxs1; e2 ¼ CDxs2; ð74Þ

and the order of accuracy can be shown by

s ¼ log10 e1ð Þ � log10 e2ð Þ
log10 Dx1ð Þ � log10 Dx2ð Þ : ð75Þ

Three different mesh sizes Dx1 ¼ 60 m, Dx2 ¼ 30 m, Dx3 ¼ 30 m and Dx4 ¼ 15 m are

selected to determine the order of accuracy in space. The solutions with mesh size Dx4 are
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1

2

Fig. 12 Energy relative error for 6 s

Table 1 The effect of the mesh
size on the convergence rate

uA uB dC bD

e1 1.645E-02 1.663E-02 7.106E-04 7.107E-04

e2 5.566E-03 5.628E-03 2.211E-04 2.213E-04

e3 1.930E-03 1.952E-03 1.010E-04 1.011E-04

Order 2.088 2.088 1.809 1.808
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seen as the reference solution. The time step is Dt ¼ 1 s, and the interval of the time

integration is set to be 0; 6000½ � s. The numerical errors ei i ¼ 1� 3ð Þ of uA, uB, dC and bD
are listed in Tables 1, in which ei represents the numerical error calculated by using the

mesh size Dxi. The orders of accuracy in space, calculated by the use of Eq. (75), are also

listed in this table.

From Table 1, it can be seen that the numerical errors decrease as the mesh size

gradually decreases, and the order of accuracy associated with the mesh size is approxi-

mately 2.

Next, we test the effect of the time step on the accuracy of the proposed method by

using different time steps and the same mesh size. Let the numerical error be defined by

e y tð Þð Þ ¼ y tð Þ � y
 tð Þk k1
y
 tð Þk k1

ð76Þ

where y tð Þ are the displacement and pressure vectors computed using different time steps,

and y
 tð Þ is the reference solutions. The numerical error can also be expressed as e ¼ CDtl,
in which C is a constant independent of the time step Dt and l is the order of accuracy

associated with the time step. For two different time steps Dt1 and Dt2, the errors are

e1 ¼ CDtl1; e2 ¼ CDtl2; ð77Þ

and the order of accuracy can be expressed as

l ¼ log10 e1ð Þ � log10 e2ð Þ
log10 Dt1ð Þ � log10 Dt2ð Þ : ð78Þ

Four time steps Dt1 ¼ 2 s, Dt2 ¼ 1 s, Dt3 ¼ 0:5 s, and Dt4 ¼ 0:25 s are selected and the

solutions computed using the smallest time step are seen as the reference solutions. The

mesh size is Dx ¼ 20 m. The numerical errors ei i ¼ 1� 3ð Þ of u tð Þ, d tð Þ, and b tð Þ at times

t1 ¼ 1000 s, t2 ¼ 3000 s and t3 ¼ 5000 s are listed in Tables 2, in which ei represents the

numerical error calculated by using the time step Dti. The orders of accuracy in time,

calculated by the use of Eq. (78), are also listed in Table 2.

From Table 2, it can be seen that the numerical errors decrease as the time step

gradually decreases, and the order of accuracy associated with the time step is approxi-

mately 2. In terms of Tables 1 and 2, it is possible to conclude that the accuracy of the

proposed method is second order.

5 Conclusion

The Lagrange method and the constrained Hamilton variational principle in classical

mechanics are used for the shallow water wave problem with a sloping bottom and wet-dry

interface. Based on the constrained Hamilton variational principle, a shallow water

equation based on the displacement and pressure (SWE-DP) has been presented. A hybrid

numerical method combining the finite element method for spatial discretization and the

symplectic Zu-class method for time integration is constructed for the SWE-DP. Three

numerical examples are used to test the reliability of the proposed SWE-DP and the

effectiveness of the hybrid numerical method proposed for the SWE-DP. Numerical

examples show that the proposed method performs well in the simulation of shallow water

with a sloping bottom and wet-dry interface.
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In this paper, we only consider one-dimensional shallow water. However, the basic

ideas can be expanded to other hydrodynamics problems. Though the Eulerian coordinate

system is the most popular approach in hydrodynamics, the Lagrangian coordinate system

can be seen as an efficient supplementary approach based on its advantages of satisfying

exactly nonlinear boundary conditions, such as the free surface orwetting/drying condition.

We believe that the displacement method will play an important role in accurately and

efficiently simulating hydrodynamics problems. In our next work, the proposed method

will be expanded to shallow water with two dimensions.
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Appendix: Relation with the SWEs in the Euler description

Let the flow velocity in the Euler description be denoted by V n; tð Þ. In terms of Eq. (1), we

have

o

ox
¼ 1þ uxð Þ o

on
ð79Þ

and

�d n; tð Þ ¼ �d xþ u x; tð Þ; tð Þ ¼ d x; tð Þ
�u n; tð Þ ¼ �u xþ u x; tð Þ; tð Þ ¼ u x; tð Þ;

ð80Þ

where �# nð Þ denotes the variable in the Euler description. The Lagrangian acceleration can

be expressed as

€u xð Þ ¼ oV n; tð Þ
ot

þ V
oV n; tð Þ

on
: ð81Þ

In terms of Eqs. (1) and (16), we have

�hx ¼
oh að Þ
oa

����
a¼xþu

¼ oh nð Þ
on

: ð82Þ

Substituting Eqs. (81) and (82) into the first equation of Eq. (37) and noting Eq. (79), we

have

qd0
oV n; tð Þ

ot
þ V

oV n; tð Þ
on

� �
� qgd0

oh nð Þ
on

þ 1

2

o bdð Þ
ox

¼ 0: ð83Þ

In terms of the second and third equations of Eq. (37), we can obtain the following

equations

on
ox

¼ ux þ 1 ¼ d0

d x; tð Þ ¼
d0

�d n; tð Þ
; ð84Þ

and

b ¼ qg
d0

1þ uxð Þ ¼ qg�d n; tð Þ: ð85Þ
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Substituting Eqs. (84) and (85) into Eq. (83) yields

oV n; tð Þ
ot

þ V
oV n; tð Þ

on
þ g

o�d

on
¼ g

oh nð Þ
on

: ð86Þ

Meanwhile, the derivative of (84) with respect to time is

_uxd x; tð Þ þ 1þ uxð Þ _d x; tð Þ ¼ 0: ð87Þ

Noting that

_ux ¼
o _u xð Þ
ox

¼ oV nð Þ
ox

¼ oV

on
1þ uxð Þ; ð88Þ

and

od

ot
¼ o�d

ot
þ o�d

on
V; ð89Þ

Equation (87) can be further rewritten as

o�d

ot
þ o V �dð Þ

on
¼ 0: ð90Þ

Eqs. (86) and (90) constitute the SVE in the Euler description,

oV n; tð Þ
ot

þ V
oV n; tð Þ

on
þ g

o�d

on
¼ g

oh nð Þ
on

o�d

ot
þ o V �dð Þ

on
¼ 0:

8>><
>>:

ð91Þ

The above analysis means that the proposed SWE-DP is mathematically equivalent to

the SVE when the effect of the vertical velocity is ignored.

Equation (37) can also be expressed in the conservative form. Introduce the two

variables:

pu ¼ qd0 _u; c ¼ d0=d ð92Þ

where pu is the moment in the x-direction, and c is a dimensionless parameter, that is the

ratio of the water depths at times 0 and t. Using Eqs. (38) and (92), the first equation in

Eq. (37) can be rewritten as

opu

ot
þ o

ox

qgd20
2c2

� �
¼ qgd0�hx: ð93Þ

In terms of Eq. (92), the incompressible equation, i.e., the third equation in Eq. (37), can

be rewritten as

c ¼ 1þ ux ð94Þ

Noting from Eq. (92) that _u ¼ pu= qd0ð Þ, the partial derivative of Eq. (94) with respect to
t yields
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oc
ot

¼ oux

ot
¼ o utð Þ

ox
¼ o

ox

pu

qd0

� �
ð95Þ

Hence, Eq. (37) can be expressed as the following conservative form

opu

ot
þ o

ox

qgd20
2c2

� �
¼ qgd0�hx

oc
ot

þ o

ox

�pu

qd0

� �
¼ 0

8>>><
>>>:

ð96Þ

The first equation in Eq. (96) represents the momentum conservation equation, and the

second one represents the mass conservation equation. However, it can be observed by

comparison with Eq. (91) that there is no so-called convection term in Eq. (96).
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