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Abstract This study implemented three analytical models to investigate the lateral dis-

tribution of depth-averaged streamwise velocity in a rectangular channel with lateral,

unevenly-distributed, flexible submerged vegetation. Secondary flow, vegetation drag, and

turbulent shear were introduced into the momentum equations to represent the interaction

between vegetation and flow. Comparison of model results and experimental data indicated

that predictions were improved with a mixing layer model, which considers the secondary

flow term in the mixing region, particularly for channels with a high aspect ratio. The

research established a relationship between the vegetation drag coefficient and the Rey-

nolds number. A sensitivity analysis of the dimensionless eddy viscosity coefficient and

bed friction factor indicated that the coefficient had as significant an impact as the second

factor on the lateral velocity profile. A reasonable dimensionless eddy viscosity coefficient

is essential to predict velocity accurately.

Keywords Lateral velocity distribution � Submerged vegetation � Secondary flow �
Mixing region � Sensitivity analysis

1 Introduction

In nature, aquatic vegetation grows heterogeneously. Riparian vegetation may be present in

simple or compound channels, and profoundly influences flow characteristics within veg-

etative and non-vegetative zones. The vegetation in channels affects local water depth and

velocity profile, meanwhile, these influence on flow vary with vegetation type and distri-

bution. Generally, streamwise velocity is fast in the non-vegetated zone, and slows in the
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vegetated zone. The velocity gradient between the vegetated and non-vegetated zones leads

to a mass and momentum exchange with secondary circulations. This region is called the

mixing region or mixing layer [1]. Previous research demonstrated that local water depth,

secondary flow intensity, turbulence, and vegetation drag force affect velocity profile [2–7].

The lateral profile of velocity provides an approximate view of discharge and solute

transport features; these profiles have interested many researchers. Shiono and Knight

[2–4] presented an analytical model of compound channels to predict the lateral velocity

distribution and bed shear stress, dividing the channels into several subsections. This

approach is known as the Shiono and Knight Method (SKM), and since its publication, the

SKM has been continuously improved to improve specific predictions.

Ervine et al. [5] introduced a secondary flow term to the SKM model, to estimate the

velocity and shear stress for straight and meandering overbank flow patterns. This approach

emphasized the secondary flow term in rectangular prismatic channels. Subsequent research

demonstrated that the secondary cells significantly influence velocity distribution [6, 7]. Van

Prooijen et al. [8] proposed a new eddy viscosity model, incorporating the horizontal coherent

structures and the bottom turbulence to quantify the transverse momentum exchange. Tang

et al. [9] presented a new boundary condition at the interface between themain channel and the

adjoined floodplain, effectively predicting the lateral velocity distribution.

Other investigations have analyzed channel flow characteristics by dividing channels with

emergent vegetation into several subsections [10–14]. Rameshwaran et al. [10] proposed a

quasi, two-dimensional model to calculate the depth-averaged velocity and bed shear stress in

a prismatic channel with emergent vegetated floodplain. This study also introduced vegetation

drag term and porosity factor to represent the effect of vegetation. Huai et al. [11, 12]

developed a lateral profile of streamwise velocity in a compound and rectangular channel with

partially emergent artificial rigid vegetation. Chen et al. [13] solved depth-averaged velocity

by solving the dimensionless momentum equation; this expression establishes a relationship

between the secondary flow and the inertia. In a related study, de Lima et al. [14] analyzed the

linear stability of the lateral velocity gradient in a channel with partial vegetation. Liu et al.

[15] introduced porosity to represent the effect of vegetation in the SKM; the new model has

been used to predict depth-averaged velocity and bed shear stress successfully in a compound

channel with emergent and submerged vegetation.

Although these different models have predicted the lateral velocity distribution in an

open channel with lateral unevenly distributed vegetation, most have focused on compound

channels with rigid emergent vegetation on the floodplain. However, flexible submerged

vegetation is common in rivers, and corresponding analytical models for lateral velocity

are rare. In addition, the role of secondary flow on the prediction precision is unclear, and

the parameters in corresponding models need to be defined.

This study compared different models predicting the lateral profile of streamwise

velocity in a rectangular channel with partially covered flexible submerged vegetation.

Further, laboratory experiments were conducted to calibrate model parameters, including

the secondary flow coefficient, dimensionless eddy viscosity, vegetation drag coefficient,

and the bed friction factor.

2 Theoretical analysis

This study focuses on the transverse distribution of depth-averaged longitudinal velocity in

a rectangular open channel with partially flexible submerged vegetation (Fig. 1). In this

figure, H is the flow depth, hv is the height of vegetation, B is the channel width, Bnv and Bv
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is the width of non-vegetated and vegetated zones, respectively (subscript nv and v are used

to identify parameters in non-vegetated and vegetated zones).

Based on mechanical analysis results, the governing equation representing the longi-

tudinal motion of a fluid element in a steady uniform flow is:

qgS0dxdydzþ
oszx
oz

dxdydzþ osyx
oy

dxdydz� 1

2
qCDku

2
vdxdydz ¼

oquv
oy

dxdydz ð1Þ

In this equation, q is the fluid density; g is the gravitational acceleration; S0 is the

channel slope; s is the Reynolds stress in corresponding panels; CD is the plant drag

coefficient (in the non-vegetated zone CD = 0). Further, k is the density of vegetation; it is

defined as k = amD, where m is the number of branches per unit channel area; D is the

branch diameter; and a is a constant reflecting the projected area ratio of stem-leaf to stem.

In other words, a is the total projected area of stem-leaf divided by the projected area of

stem. Additionally, uv is the local mean streamwise velocity around the vegetation; u and

v are local mean velocity components corresponding to x and y; x, y, z are longitudinal,

lateral, and vertical coordinates.

Equation (1) does not consider vegetation blockage, since the porosity of the vegetative

is high. Liu et al. [15] demonstrated that in these cases, the influence of porosity on the

lateral distribution of streamwise velocity can be ignored.

By integrating Eq. (1) over the water depth H, the depth-averaged equation is obtained:

qgS0H � sb þ
Z H

zðyÞ

osyx
oy

dz� 1

2
qCDkhvU

2
v ¼ oqH uvð Þd

oy
ð2Þ

In this expression, Uv is the depth-averaged velocity around the vegetation; subscript d

is the depth-averaged value; sb is the bed shear stress; and the right hand term presents the

lateral gradient of the secondary flow [5], and zðyÞ ¼
0; 0� y�Bnv

hv; Bnv\y�B

(
.

To obtain the depth-averaged streamwise velocity Ud in channels with submerged

vegetation, Stone and Shen [16] introduced the submergence degree coefficient h*

Vegetation

B

Bnv Bv

H

y

z

hv

Fig. 1 Sketch of open channel with partial vegetation
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(h* = hv/H). They further established the relationship between Uv and Ud, as

Uv=Ud ¼
ffiffiffiffiffiffiffiffiffi
h�kv

p
, where kv ¼ 1� Dm0:5

� ��
1� h�Dm0:5
� �� �2

. However, this expression

was developed for rigid cylinders, and it does not apply to the flexible vegetation in this

experiment. As such, we introduced the coefficient g to estimate the ratio of Uv to Ud. This

study also introduced the depth-averaged lateral shear stress syx, Darcy-Weisbach friction

factor f, the depth-averaged eddy viscosity eyx, a dimensionless eddy viscosity f, and the

local shear velocity U*. These are expressed, respectively, as:

syx ¼
1

H

Z zs

zðyÞ

syxdz; f ¼ 8sb
qU2

d

; syx ¼ qeyx
dUd

dy
; eyx ¼ fHU� ¼ fHUd

ffiffiffiffiffiffiffi
f =8

p

Secondary flows cannot be ignored in natural channels, particularly those that are partially

vegetated [5, 7, 15]. Ervine et al. [5] expressed the secondary flow term as (uv)d = k1-
k2Ud

2 = KUd
2, where K was assumed to be a constant to represent the intensity of secondary

flow cells in a compound channel. In real-world conditions, u and v vary with z; as such, k1
and k2 also vary with z, so K is not a constant along the z direction. The sign of secondary

current term should be determined from the location and rotation of the secondary current

cells. Spooner and Shiono [17] also demonstrated that K was not constant across a strong

secondary flow in a meandering channel. In the paper, an analytical solution was given by

assuming uvð Þd¼ KU2
d (Eq. 3), though K was alterable across a secondary cell [17].

Consistent with Tang et al. [7] and Liu et al. [15], (uv)d can be expressed as:

uvð Þd¼
1

H

Z H

0

uvð Þdz ¼ 1

H

Z H

0

k1 zð Þk2 zð ÞU2
d

� �
dz ¼ U2

d

1

H

Z H

0

k1 zð Þk2 zð Þð Þdz ¼ KU2
d ð3Þ

In this expression, K is a depth-averaged value, and should vary from positive (clockwise

cell) to negative (anti-clockwise cell), depending on the secondary flow cell rotation.

Equation (2) can be expressed as a second-order linear ordinary differential equation using

Ud:

qgS0H � f

8
qU2

d þ
o

oy
qfH2 f

8

� 	1=2

Ud

oUd

oy
� qHKU2

d

( )
� 1

2
qCDkhvg

2U2
d ¼ 0 ð4Þ

This model is called a secondary flow model (SFM); the analytical solution for Eq. (4)

is

Udð Þnv¼ C1e
r1y þ C2e

r2y þ gS0H

f=8

� 	1=2

Udð Þv¼ C3e
r3y þ C4e

r4y þ gS0H

f=8þ CDkhvg2=2

� 	1=2

8>>><
>>>:

ð5Þ

where r1;2 ¼
Knv �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2

nv þ fnv
f
8ð Þ

1=2
f=4ð Þ

q
fnvH

f
8ð Þ

1=2 ; r3;4 ¼
Kv �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2

v þ fv
f
8ð Þ

1=2
CDkhvg2þf=4Þ½ �

q
fvH

f
8ð Þ

1=2 .

When K = 0, Eq. (4) is the same form as presented by Huai et al. [11]; it ignores the

effect of secondary flow. We call this the Huai Model (HM). In this model, we divide the

channel into 2 sub-regions, the non-vegetated and vegetated regions, respectively:
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qgS0H � f

8
qU2

d þ
o

oy
qfH2 f

8

� 	1=2

Ud

oUd

oy

( )
� 1

2
qCDkhvg

2U2
d ¼ 0 ð6Þ

By solving Eq. (6), the depth-averaged velocity Ud is given by:

Udð Þnv¼ C1e
r1y þ C2e

�r1y þ gS0H

f=8

� 	1=2

Udð Þv¼ C3e
r2y þ C4e

�r2y þ gS0H

f=8þ CDkhvg2=2

� 	1=2

8>>><
>>>:

ð7Þ

Within this expression, r1 ¼
ffiffiffiffi
2
fnv

q
f
8

� �1=4 1
H
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=8þCDkhvg2=2

fvH2 f=8ð Þ1=2=2

r
.

According to van Prooijen et al. [8], a compound channel’s cross-section can be divided

into two laterally uniform regions and a mixing region. An intense transverse exchange of

mass and momentum occurs at the mixing region (see Fig. 1 in [8]). In this study, we adopt

this mixing region concept; the mass transport and increased momentum are assumed to

occur primarily in the mixing layer. The corresponding model is called the mixing layer

model (MLM). Laboratory measurements show that the mixing layer width is approxi-

mately 10 % of the channel width, and the layer is mainly located on the non-vegetated

side.

The mixing layer width, d, is defined according to van Prooijen et al. [8] as

d ¼ 2ðy75% � y25%Þ. The cross section is then divided into four areas: the non-vegetated

region, the mixing layer in the non-vegetated region, the mixing layer in vegetated region,

and the vegetated region. To solve the second-order linear ordinary differential equation,

Ud is expressed as:

Ud1 ¼ C1e
r1y þ C2e

r2y þ 8gS0H

f

� 	1=2

Ud2 ¼ C3e
r3y þ C4e

r4y þ 8gS0H

f

� 	1=2

Ud3 ¼ C5e
r5y þ C6e

r6y þ gS0H

f=8þ CDkhvg2=2

� 	1=2

Ud4 ¼ C7e
r7y þ C8e

r8y þ gS0H

f=8þ CDkhvg2=2

� 	1=2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ

In this expression, r1;2 ¼ �
ffiffiffiffiffiffi
2

fnv

s
f

8

� 	1=4
1

H
; r3;4 ¼

K2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2

2 þ fnv
f
8

� �1=2
f=4ð Þ

q

fnvH
f
8

� �1=2 ;

r5;6 ¼
K3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2

3þfv
f
8ð Þ

1=2
CDkhvg2þf=4ð Þ

q
fvH

f
8ð Þ

1=2 ; r7;8 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=8þCDkhvg2=2

fvH2 f=8ð Þ1=2=2

r
.

Assuming that each domain’s flow is unaffected by adjacent domains, the unknown

coefficient Ci is determined by solving the linear equations using the Gaussian elimination

method [18]. The boundary conditions are:
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1. No-slip condition, i.e. Ud = 0 at the edge of the channel;

2. At the interface between two zones, we applied the continuity of unit force proposed

by Tang et al. [9]:

ðHsxyÞðiÞy¼ 0:3 þ hsm ¼ ðHsxyÞðiþ1Þ
y¼ 0:3; sm ¼ 1

8
qfmU

2
d ð9Þ

In this expression, fm is the mean value of fnv and fv.

3. Continuity of velocity at the joint of panels, i.e., Udð Þi¼ Udð Þiþ1,

o Udð Þi
�
oy ¼ o Udð Þiþ1

�
oy.

3 Determining model parameters

Before using the models above to form predictions, it was important to determine values

for f , f, K, CD and k. In general, reasonable values for these parameters are obtained using

curve fitting techniques, based on experiments, experience [19, 20], or a multi-objective

evolutionary algorithm [21].

3.1 Darcy-Weisbach factor f

Significant research has been conducted about f [2, 22, 23]; these can significantly influ-

ence prediction accuracy [24]. In this study, f was obtained using the equation f = 8gn2/R1/

3, where R is the hydraulic radius for each subarea. Preliminary tests were conducted in the

experimental channel, without vegetation, to derive the Manning’s coefficient n. As such,

the friction factor f is the ‘‘skin friction’’ of the bed surface and does not account for the

resistance to flow caused by vegetation. Although f is affected by secondary flow and

bottom turbulence in the mixing layer, the lateral variation of f is not accounted for.

3.2 Dimensionless eddy viscosity coefficient

Researchers have also proposed different expressions of eddy viscosity to estimate

transverse momentum [4, 8, 25, 26]. For non-vegetated regions, past research has reported

dimensionless eddy viscosity coefficients varying from 0.08 to 0.4 [7, 23, 24, 27, 28]. Here,

the dimensionless eddy viscosity coefficients, fnv and fv, were the average values of that in
the non-vegetated and vegetated regions. These were obtained indirectly from the Rey-

nolds stress values, based on the measured turbulent velocities.

3.3 Parameter K

The parameter K is a proportional factor that varies along the cross-section to characterize

secondary flow intensity. Flow characteristics over vegetation vary with local water depth,

and the intensity and number of secondary flow cells change simultaneously. Besides, the

sign of K is determined by the rotation of secondary current cells, and the accuracy of

prediction is related to the number of secondary cells. Therefore, different values of K are

needed to reflect secondary cell intensity.

1272 Environ Fluid Mech (2016) 16:1267–1282

123



With respect to the models considered above, the HM model ignores secondary flow

(i.e. K = 0), whereas SFM and MLM determine K values using the trial-and-error method;

values vary from -0.024 to 0.006.

3.4 Vegetation resistance

The drag force on flexible vegetation differs from the drag force on rigid vegetation,

because of vegetation deformation and reorganization. Many studies [20, 29–31] have

characterized flow resistance, but this parameter often relies on study of specific vegeta-

tion, and cannot be easily extrapolated to other studies. For natural reeds with foliage,

larger values of CD are reported [29, 32, 33].

Vegetation resistance is not only related to the vegetation drag coefficient CD, but also

to the vegetation density k. For our experiments, the vegetation density k was static, based

on the expression k = amD; the value of a was as 1.25, based on the projected area ratio of
stem-leaf to stem. Therefore, the value of k is 2.5 m-1, and vegetation resistance variance

was represented by the varying drag coefficient CD. In this study, a trial-and-error method

was used to obtain CD, providing a best fit with the depth-averaged velocity data.

4 Laboratory experiment

A 0.6 m wide and 20 m long glass rectangular channel in the Hydraulic Laboratory of

Wuhan University in China was adopted for experiment. The bed slope S0 was fixed at

0.04 %. Plastic artificial grass with a height of 4.5 cm (Fig. 2) covered half of the channel;

each grass plant consisted of four branches of approximately 1 mm diameter (i.e.

D = 1 mm), each with six leaves. The grass was positioned in a parallel pattern at a

density of 2000 stems m-2 (m). The channel’s flow discharge was controlled by an electric

magnetic valve with an accuracy of 0.1 L s-1; a downstream gate was adjusted to ensure

uniformity of flow.

In this study, seven cases were conducted; Table 1 lists the corresponding hydraulic

parameters,and g was obtained based on the measured values for Uv and Ud. Terms are

defined as follows: Hr is the relative depth (Hr = (H - hv)/H), b is the aspect ratio (b = B/

Fig. 2 Experimental set up
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H), and Rev is the Reynolds number in the vegetation region (Rev = aDUcv/t). In this final

parameter, Ucv is the temporally and cross-sectionally averaged velocity in the vegetated

zone, and t is the kinematic viscosity of water. Three-dimensional (3D) instantaneous

velocities were measured using a 16 MHz Micro ADV system, manufactured by Sontek.

The measurement time and frequency were set as 60 s and 50 Hz, respectively, at each

measuring point. Figure 3 displays arrangement of measuring points along cross section;

seven vertical lines were measured across the section, where the mixing layer was con-

firmed to be fully developed. The vertical interval was 1–2 cm; for zones near the chan-

nel’s bottom and water surface, a finer 0.5 cm interval was applied.

5 Results

This study compared data from three models (HM, SFM, and MLM) against experimental

data for the lateral distribution of depth-averaged longitudinal velocity in channels with

unevenly distributed vegetation. Manning’s roughness coefficient and dimensionless eddy

viscosity coefficient used in the models were listed in Table 2. The values of K in each

model were displayed in Table 3. Figure 4 showed the results of cases A1 and B4.

The steep gradient at the interface between the vegetated and non-vegetated zone

(y = 0.3 m) verified that significant mass and momentum exchange occurs. However, all

three models overestimated Ud at the mixing region, without considering experimental

uncertainty of velocity measurements. HM generated the poorest prediction of the three

models. The peak value predicted by SFM was slightly deflected to the non-vegetated

region compared with the experimental data. Finally, the MLM slightly overestimated the

Table 1 Experimental cases

Cases Q (L s-1) H (cm) Hr b g Ucv (m s-1) Rev

A1 20.0 16.0 0.72 3.75 0.73 0.104 99.39

A2 30.0 18.0 0.75 3.33 0.59 0.164 156.73

B1 16.5 13.6 0.67 4.41 0.73 0.091 86.96

B2 19.5 12.6 0.64 4.76 0.77 0.111 106.08

B3 16.0 19.0 0.76 3.16 0.81 0.070 66.90

B4 10.0 11.6 0.61 5.17 0.82 0.049 46.83

B5 14.9 14.6 0.69 4.20 0.81 0.074 70.72

3m 9m 5m 3m

10cm
5cm
10cm
5cm

vegetation

U

xy

Fig. 3 Arrangement of measuring points along cross-section
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velocity in the interface between the vegetated and non-vegetated zone, and underesti-

mated the velocity near the channel wall in most cases.

To quantify prediction accuracy, the Root-Mean-Square Error (RMSE) between the

modelled velocity and measured velocity was used:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Udð Þai� Udð Þmi
� �2

n

vuuut
ð10Þ

In this expression, subscripts a and m indicate the modelled result and measured result,

respectively, and n is the number of measured points for each case. Table 4 lists the

corresponding values for all cases analyzed using the three different models; these data

show that MLM generates the best prediction of the experimental data. MLM resulted in an

averaged RMSE of 0.010 m s-1; the RSME for HM and SFM were 0.018 m s-1 and

0.014 m s-1, respectively.

Figure 4 and Table 4 show that Case B4 calculations using the MLM agreed most

closely with the experimental data. When the aspect ratio increased, the prediction pre-

cision improved, and Case B4 had the highest aspect ratio (b = 5.17). This suggests that

MLM predictions will be the most accurate in the wide and shallow channels, and the

sidewall effect can be ignored when studying these areas.

6 Discussions

6.1 Parameter K

Rameshwaran and Shiono [10] documented significant secondary flow in the mixing

region; its intensity increased as the relative water depth increased. Therefore, it was not

Table 2 Manning’s roughness
coefficient and dimensionless
eddy viscosity coefficient

A1 A2 B1 B2 B3 B4 B5

n 0.01 0.01 0.015 0.01 0.017 0.017 0.016

f 0.017 0.016 0.039 0.018 0.046 0.052 0.044

fnv 0.25 0.12 0.26 0.20 0.32 0.34 0.26

fv 0.12 0.08 0.09 0.10 0.10 0.12 0.10

Table 3 The values of K in the
main channel and floodplain used
for all cases

Cases SFM MLM

Knv Kv K2 K3

A1 -0.005 0.000 -0.005 -0.002

A2 -0.005 0.002 -0.010 0.006

B1 -0.006 0.006 -0.020 -0.010

B2 -0.020 0.002 -0.010 -0.004

B3 -0.020 0.000 -0.020 0.000

B4 -0.010 -0.010 -0.010 -0.080

B5 -0.010 -0.006 -0.024 -0.004
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surprising that the model worked well when introducing the effect of secondary flow for

the seven cases having a high relative water depth (Hr C 0.61). Ervine et al. [5] suggested

the K would be equal or less than 0.5 % for straight channels; however, in this study, K

varied from -0.024 to 0.006. This difference may be caused by the relative depth, and the

influence of rough submerged vegetation on secondary circulation. This latter impact was

also found by Ohmoto et al. [34] when studying a channel with vegetation at one side. In

Fig. 4 Comparison between analytical and experimental Ud (case A1 (a) and B4 (b))
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that study, the secondary flow intensity was stronger when there was submerged vegetation

than when there was emergent vegetation. Furthermore, the secondary flow cell pattern

was controlled by the shape of the cross section and its roughness distribution. Knight et al.

[35] suggested that the signs of K should be alternated, coupled, and related to the rotation

direction of secondary cells. A more accurate prediction can be expected once proper

values were adopted. From Fig. 4, it was not difficult to find that the better prediction can

be made, if the sign of K for four sub-areas in MLM were (?, -, -, ?), accordingly,

which were consistent with the work of Knight.

6.2 Drag coefficient CD

Figure 5 shows the relationship between CD and Rev (varied from 46.82 to 156.73), where

CD is used to model the seven cases. CD increased when the depth-averaged velocity

decreased; this finding was similar to findings from Tanino et al. [36] and Kothyari et al.

[37]. A sensitivity analysis also investigated the effect of CD on the prediction (Fig. 6). The

values of CD were set as 0.5 CD, 1.0 CD, 1.5 CD, and 2.0 CD. The results indicated that the

Table 4 The RMSE for all cases
RMSE (m s-1)

A1 A2 B1 B2 B3 B4 B5

HM 0.018 0.026 0.016 0.018 0.017 0.013 0.016

SFM 0.011 0.019 0.013 0.015 0.014 0.009 0.014

MLM 0.008 0.013 0.010 0.011 0.012 0.007 0.011

y = 107.29x-0.861

R² = 0.9403

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

0 50 100 150 200

C D

Rev

Fig. 5 Rev versus CD used for the seven cases
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drag coefficient CD significantly influenced the lateral distribution of streamwise velocity

in the vegetated region. As such, good estimates were not possible until proper values were

adopted.

Fig. 6 Sensitivity analysis of drag coefficient CD by MLM

Fig. 7 Dimensionless eddy viscosity for case A1 and B4
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6.3 Eddy viscosity f and Darcy-Weisbach factor f

In this experiment, the instantaneous and the temporal averaged velocity in x, y, z direc-

tions were measured to facilitate calculation of Reynolds stresses. Figure 7 shows the

dimensionless eddy viscosity, determined using equations syx ¼ �qu0v0 ¼ qexy
oUd

oy
and

Fig. 8 Influence of dimensionless eddy viscosity (a) and Darcy-Weisbach factor (b) on the calculated Ud

Environ Fluid Mech (2016) 16:1267–1282 1279

123



exy ¼ fHU�, in which U� ¼
ffiffiffiffiffiffiffiffiffiffi
gRS0

p
. The local velocity gradient, oUd=oy, was estimated

using a third-order polynomial best fit across five consecutive data points. Results show

that fnv is larger than fv, because of the high relative water depth (Hr C 0.61). This finding

is consistent with Fernandes et al. [38], whose research shows that the dimensionless eddy

viscosity coefficient in a floodplain decreases as water depth increases.

The sensitivity analysis also considered the dimensionless eddy viscosity coefficient f
and Darcy-Weisbach factor f using MLM, presented in Fig. 8. The values of f and f were

set as 0.5 f, 1.0 f, 1.5 f, 2.0 f, and 0.5 f, 1.0 f, 1.5 f, 2.0 f, respectively. The results indicated
that both dimensionless eddy viscosity and the Darcy-Weisbach factor played a significant

role in the lateral distribution of streamwise velocity. As f or f increased, the velocity

decreased, whereas the velocity in the non-vegetated region gradually reached a constant at

a relatively high f or f. These factors were not sensitive to vegetation. Therefore, this study

concludes that the effect of f cannot be ignored in a non-vegetated region, which is

different from conclusions proposed by Zeng et al. [24] and Liu et al. [15]. For the cases in

this study, the transverse shear was obvious in non-vegetated areas.

7 Conclusions

In this study, three models, the huai model (HM), secondary flow model (SFM), and

mixing layer model (MLM), were adopted to investigate the physical mechanisms and

critical parameters affecting velocity in a rectangular channel with laterally unevenly

distributed vegetation. This included modelling solutions for the lateral distribution of

depth-averaged streamwise velocity, including examining flow feature parameters, such as

bed friction factor, dimensionless eddy viscosity, secondary flow coefficient, and vegeta-

tion drag coefficient.

Comparison of the modelled solutions and experimental data indicated that the MLM

resulted in the most precise prediction of the three models. This was particularly true for

the wide and shallow channels, because of the clear three-dimensional flow features and

prominent secondary flow cells in the mixing region. A regression analysis was used to

assess the relationship between the vegetation drag coefficient CD and vegetation Reynolds

number Rev in channels with submerged vegetation. In addition, a sensitivity analysis

indicated that the dimensionless eddy viscosity f cannot be ignored, as it influenced

velocity distribution in a similar way as the bed friction factor. Although the MLM, based

on the mixing region concept, worked well, there were many and varied methods to

determine the range of mixing region, pointing to the need for further study about mixing

mechanisms.

Acknowledgments This work was supported in part by the natural science foundation of China (No.
51379154, 51439007 and 11472199).

References

1. Stephenson D, Kolovopoulos P (1990) Effects of momentum transfer in compound channels. J Hydraul
Eng 116(12):1512–1522. doi:10.1061/(Asce)0733-9429(1990)116:12(1512)

2. Shiono K, Knight DW (1988) Two dimensional analytical solution for a compound channel. Pro-
ceedings. 3rd International Symposium on Refined Flow Modelling and Turbulence Measurements,
Tokyo, pp 503–510

1280 Environ Fluid Mech (2016) 16:1267–1282

123

http://dx.doi.org/10.1061/(Asce)0733-9429(1990)116:12(1512)


3. Shiono K, Knight DW (1990) Mathematical models of flow in two or multi stage straight channels.
Proceedings of International Conference on River Flood Hydraulics: pp 229–238

4. Shiono K, Knight DW (1991) Turbulent open channel flows with variable depth across the channel.
J Fluid Mech 222:617–646. doi:10.1017/S0022112091001246

5. Ervine DA, Babaeyan-Koopaei K, Sellin RHJ (2000) Two-dimensional solution for straight and
meandering overbank flows. J Hydraul Eng 126(9):653–669. doi:10.1061/(Asce)0733-9429(2000)126:
9(653)

6. Omran M, Knight DW, Beaman F, Morvan H (2008) Modelling equivalent secondary current cells in
rectangular channels. River Flow 1:75–82

7. Tang XN, Knight DW (2009) Analytical models for velocity distributions in open channel flows.
J Hydraul Res 47(4):418–428. doi:10.3826/jhr.2009.3187

8. van Prooijen BC, Battjes JA, Uijttewaal WSJ (2005) Momentum exchange in straight uniform com-
pound channel flow. J Hydraul Eng 131(3):175–183. doi:10.1061/(Asce)0733-9429(2005)131:3(175)

9. Tang XN, Knight DW (2008) Lateral depth-averaged velocity distributions and bed shear in rectangular
compound channels. J Hydraul Eng 134(9):1337–1342. doi:10.1061/(Asce)0733-9429(2008)134:
9(1337)

10. Rameshwaran P, Shiono K (2007) Quasi two-dimensional model for straight overbank flows through
emergent vegetation on floodplains. J Hydraul Res 45(3):302–315

11. Huai WX, Xu ZG, Yang ZH, Zeng YH (2008) Two dimensional analytical solution for a partially
vegetated compound channel flow. Appl Math Mech-Engl 29(8):1077–1084. doi:10.1007/s10483-008-
0811-y

12. Huai WX, Geng CA, Zeng YH, Yang ZH (2011) Analytical solutions for transverse distributions of
stream-wise velocity in turbulent flow in rectangular channel with partial vegetation. Appl Math Mech
32(4):459–468. doi:10.1007/s10483-011-1430-6

13. Chen G, Huai WX, Han J, Zhao MD (2010) Flow structure in partially vegetated rectangular channels.
J Hydrodyn 22(4):590–597. doi:10.1016/S1001-6058(09)60092-5

14. de Lima AC, Izumi N (2014) Linear stability analysis of open-channel shear flow generated by veg-
etation. J Hydraul Eng 140(3):231–240. doi:10.1061/(Asce)Hy.1943-7900.0000822

15. Liu C, Luo X, Liu XN, Yang KJ (2013) Modeling depth-averaged velocity and bed shear stress in
compound channels with emergent and submerged vegetation. Adv Water Resour 60:148–159. doi:10.
1016/j.advwatres.2013.08.002

16. Stone BM, Shen HT (2002) Hydraulic resistance of flow in channels with cylindrical roughness.
J Hydraul Eng 128(5):500–506. doi:10.1061/(Asce)0733-9429(2002)128:5(500)

17. Spooner J, Shiono K (2003) Modelling of meandering channels for overbank flow. Proc Ins Civ Eng-
Water Marit Eng 156(3):225–233

18. Kincaid DR, Cheney E (2002) Numerical analysis: mathematics of scientific computing, 3rd version.
American Mathematical Society, Providence

19. Jarvela J (2002) Flow resistance of flexible and stiff vegetation: a flume study with natural plants.
J Hydrol 269(1–2):44–54. doi:10.1016/S0022-1694(02)00193-2

20. Wilson CAME (2007) Flow resistance models for flexible submerged vegetation. J Hydrol
342(3–4):213–222. doi:10.1016/j.jhydrol.2007.04.022

21. Sharifi S, Sterling M, Knight DW (2009) A novel application of a multi-objective evolutionary algo-
rithm in open channel flow modelling. J Hydroinform 11(1):31–50. doi:10.2166/hydro.2009.033

22. Myers WRC, Knight DW, Lyness JF, Cassells JB, Brown F (1999) Resistance coefficients for inbank
and overbank flows. Proc Ins Civ Eng-Water Marit Eng 136(2):105–115

23. Xu WL, Knight DW, Tang XN (2004) Study on friction factor and eddy viscosity of overbank flows.
Adv Water Sci 15(6):723–727 (in Chinese)

24. Zeng YH, Guymer I, Spence KJ, Huai WX (2012) Application of analytical solutions in trapezoidal
compound channel flow. River Res Appl 28(1):53–61. doi:10.1002/rra.1433

25. Lambert MF, Sellin RHJ (1996) Discharge prediction in straight compound channels using the mixing
length concept. J Hydraul Res 34(3):381–394

26. Hirschowitz PM, James CS (2009) Transverse velocity distributions In channels with emergent bank
vegetation. River Res Appl 25(9):1177–1192. doi:10.1002/rra.1216

27. Choi SU, Joung Y (2012) Numerical prediction of morphological change of straight trapezoidal open-
channel. J Hydro-Environ Res 6(2):111–118. doi:10.1016/j.jher.2012.01.003

28. Knight DW (1999) Flow mechanisms and sediment transport in compound channels. Int J Sediment Res
14(2):217–236

29. Kouwen N, Unny TE, Hill HM (1969) Flow retardance in vegetated channel. J Irr Drain Div
95(IR2):329–340

Environ Fluid Mech (2016) 16:1267–1282 1281

123

http://dx.doi.org/10.1017/S0022112091001246
http://dx.doi.org/10.1061/(Asce)0733-9429(2000)126:9(653)
http://dx.doi.org/10.1061/(Asce)0733-9429(2000)126:9(653)
http://dx.doi.org/10.3826/jhr.2009.3187
http://dx.doi.org/10.1061/(Asce)0733-9429(2005)131:3(175)
http://dx.doi.org/10.1061/(Asce)0733-9429(2008)134:9(1337)
http://dx.doi.org/10.1061/(Asce)0733-9429(2008)134:9(1337)
http://dx.doi.org/10.1007/s10483-008-0811-y
http://dx.doi.org/10.1007/s10483-008-0811-y
http://dx.doi.org/10.1007/s10483-011-1430-6
http://dx.doi.org/10.1016/S1001-6058(09)60092-5
http://dx.doi.org/10.1061/(Asce)Hy.1943-7900.0000822
http://dx.doi.org/10.1016/j.advwatres.2013.08.002
http://dx.doi.org/10.1016/j.advwatres.2013.08.002
http://dx.doi.org/10.1061/(Asce)0733-9429(2002)128:5(500)
http://dx.doi.org/10.1016/S0022-1694(02)00193-2
http://dx.doi.org/10.1016/j.jhydrol.2007.04.022
http://dx.doi.org/10.2166/hydro.2009.033
http://dx.doi.org/10.1002/rra.1433
http://dx.doi.org/10.1002/rra.1216
http://dx.doi.org/10.1016/j.jher.2012.01.003


30. Aberle J, Jarvela J (2013) Flow resistance of emergent rigid and flexible floodplain vegetation. J Hy-
draul Res 51(1):33–45. doi:10.1080/00221686.2012.754795

31. Chapman JA, Wilson BN, Gulliver JS (2015) Drag force parameters of rigid and flexible vegetal
elements. Water Resour Res 51(5):3292–3302. doi:10.1002/2014WR015436

32. Tsujimoto T, Okada T, Kontani K (1993) Turbulent structure of open channel flow over flexible
vegetation. KHL Progressive Report 4. Kanazawa University, Kanazawa, Japan

33. Meijer DG (1998) Model test submerged vegetation, physical model investigation. Report of HKV
Consultants, Rijkswaterstaat/RIZA, Den Haag [in Dutch]

34. Ohmoto T, Okamoto T, Nakashima T (2002) Three-Dimensional Flow Structure in an Open Channel
with a Flexible Vegetation Zone. In: Hydraulic Measurements and Experimental Methods 2002.
American Society of Civil Engineers, pp 1-10

35. Knight DW, Omran M, Tang XN (2007) Modeling Depth-Averaged Velocity and Boundary Shear in
Trapezoidal Channels with Secondary Flows. J Hydraul Eng 133:39–47. doi:10.1061/(Asce)0733-
9429(2007)133:1(39)

36. Tanino Y, Nepf HM (2008) Laboratory investigation of mean drag in a random array of rigid, emergent
cylinders. J Hydraul Eng 134(1):34–41. doi:10.1061/(Asce)0733-9429(2008)134:1(34)

37. Kothyari UC, Hayashi K, Hashimoto H (2009) Drag coefficient of unsubmerged rigid vegetation stems
in open channel flows. J Hydraul Res 47(6):691–699. doi:10.3826/jhr.2009.3283

38. Fernandes JN, Leal JB, Cardoso AH (2014) Improvement of the Lateral Distribution Method based on
the mixing layer theory. Adv Water Resour 69:159–167. doi:10.1016/j.advwatres.2014.04.003

1282 Environ Fluid Mech (2016) 16:1267–1282

123

http://dx.doi.org/10.1080/00221686.2012.754795
http://dx.doi.org/10.1002/2014WR015436
http://dx.doi.org/10.1061/(Asce)0733-9429(2007)133:1(39)
http://dx.doi.org/10.1061/(Asce)0733-9429(2007)133:1(39)
http://dx.doi.org/10.1061/(Asce)0733-9429(2008)134:1(34)
http://dx.doi.org/10.3826/jhr.2009.3283
http://dx.doi.org/10.1016/j.advwatres.2014.04.003

	Lateral velocity distribution in open channels with partially flexible submerged vegetation
	Abstract
	Introduction
	Theoretical analysis
	Determining model parameters
	Darcy-Weisbach factor f
	Dimensionless eddy viscosity coefficient
	Parameter \overline{K}
	Vegetation resistance

	Laboratory experiment
	Results
	Discussions
	Parameter \overline{K}
	Drag coefficient CD
	Eddy viscosity zeta and Darcy-Weisbach factor f

	Conclusions
	Acknowledgments
	References




