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Abstract Erosion of sand or other granular material is a subject of utmost importance in
several fields of practical interest, including industrial processes or environmental issues.
Resulting from intricate interaction between the incident flow field and localized body forces
responsible for the granular material cohesion, erosion is a particularly complex phenom-
enon. The present work addresses this problem, proposing a numerical method to compute the
time evolution of a sand dune subjected to aeolian erosion, along with the associated entrain-
ment and deposition fluxes. Turbulent fluid flow is computed through a three-dimensional
Navier-Stokes solver based on a generalized coordinate system. A Lagrangian approach is
adopted for tracking the trajectories of particles entrained in the saltation regime, thus allow-
ing prediction of the corresponding deposition locations. Different models for saltation fluxes
are tested, along with several formulations for the creeping-to-saltation flux ratio, creeping
threshold and creeping distance. Comparison with results from wind tunnel experiments is
very encouraging, stressing the relative importance of creeping in the erosion process for the
presently studied conditions.

Keywords Erosion · Saltation · Creeping · CFD (Computational Fluid Dynamics) ·
Dune deformation · Numerical model

1 Introduction

Numerical modeling of two-phase flows has been increasingly used as an efficient and rela-
tively affordable support to design and optimization in industry as well as for environmental
protection (cf. [1–4]). In particular, the transport of solid particles by atmospheric wind is
present in many situations of practical relevance: dune formation and erosion; transport of
dust generated from different sources, e.g. through the wind action on coal storage piles.
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When a dune or stockpile, consisting of cohesionless grains, is exposed to a sufficiently
strong wind, its profile is susceptible of being reshaped as a result of entrainment and depo-
sition of particles. The dynamics of such a phenomenon depends on a variety of factors,
including the flow strength and direction relative to the dune, surrounding conditions and
sediment supply.

The dynamics of particles exposed to the wind is a complex function of several parameters,
which can be subdivided in two main groups: particles’ properties and flow characteristics.
In the first group, one can name the size of particles and granular material density. The
second group includes fluid properties (e.g., fluid density, ρ, and viscosity, μ), and flow
characteristics, namely the wall shear stress, τw , or, correspondingly, the friction velocity,
defined as u∗ = √

τw/ρ.
According to the pioneering work of Bagnold [5], the elementary dynamics of relatively

large sand grains, subjected to an incident fluid flow, consists of saltation and creeping.
Saltation is the process in which sand grains make short jumps, while creeping is the process
where relatively large particles, of diameter in the range of 0.5–1 mm, roll or slide along
the free surface. Saltation is often considered to be the primary mode of aeolian transport;
however creeping flux becomes significant if the sand grains are relatively large.

Different strategies have been adopted to model the evolution of dunes morphology. In
the cellular automata dune model (e.g., [6–9]), the eroded slabs are chosen randomly and
moved downwind a specified number of lattices.

Some other works (e.g., [10–12]) are based on the mass conservation equation of Exner
[13], by balancing the temporal variation of sand surface elevation with the divergence of the
saltation sand flux. The use of this procedure requires the adoption of the saturation length
concept [14].

For relatively gentle dunes, and assuming that flow separation does not occur, some
researchers have used the analytic theory of boundary layer perturbation of Jackson and
Hunt [15] to prescribe the shear stress (e.g., [10,12]).

In most of the aforementioned studies, only the saltation process was modeled, and creep-
ing was assumed negligible. In the present work, the creeping flux is expected to be quite
significant due to the sand granulometry, dune surface shape and associated flow conditions.
This is in agreement with visual observations during the experiments. Therefore, creeping has
to be modeled in conjunction with saltation in the present case. Three saltation models (pro-
posed, respectively, by Bagnold [5], Kawamura [16], and Lettau and Lettau [17]) are tested
in the case of a sinus-shaped sand dune, and the model of Wang and Zheng [18] is adopted
for the creeping. Those flux models were obtained through field observation and wind tunnel
experiments for flat, horizontal sand bed conditions, and their constants of proportionality
were tuned for those conditions. As the original sand surface geometry considered in the
present study is not flat, but instead presents a sinusoidal shape, the models’ parameters
require appropriate calibration, which is accomplished by fitting the computational results to
the experimental data of Ferreira and Fino [19], with recourse to calibration coefficients to
be defined later.

In this work, sand erosion predictions are established through the use of a computational
model coupling the fluid phase calculation (CFD) with the particle phase (erosion) calculation,
via a time-marching procedure. The CFD model is a home-made code that solves the three-
dimensional Reynolds-averaged Navier–Stokes equations in a boundary fitted coordinate
system, using a control volume approach. Turbulence effects upon the mean flow field are
simulated with a k −ε type turbulence model. The resulting solution provides the shear stress
distribution along the sandy surface, which is necessary to determine the emission fluxes
due to saltation and creeping processes. The flow field obtained from the CFD model also
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provides the required information to compute the Lagrangian tracking of particle saltation
trajectories. Distances covered by those particles which are entrained along the dune surface
due to creeping are computed with a specific model. In order to simulate the avalanche
process, the maximum slope between adjacent nodes is enforced to 33◦, the angle of repose.
As reported later, the time evolution of the dune morphology is calculated through an iterative
procedure, where the global duration is divided into a number of successive time steps: in each
of these parcels, flow and particulate phases are calculated separately, and the dune shape is
then correspondingly updated, as a consequence of combined erosion and deposition effects.

Results indicate that, for the present conditions, the relative importance of creeping, as
compared to saltation, in the global erosion phenomenon, clearly exceeds the one predicted
by most authors for flat, horizontal sand beds.

2 Models

2.1 Flow simulation

2.1.1 Governing equations

The partial differential equations that govern the steady three-dimensional turbulent wind
flow and related phenomena occurring in this problem can be obtained as particular cases
of the following general differential equation, written for a unit volume in the conservative
form and in Cartesian co-ordinates, xi , for i ranging from 1 to 3 [20]:

∂

∂xi

(
ρuiφ − Γe f f,φ

∂φ

∂xi

)
= Sφ (1)

where ρ is the air density, which is assumed to be constant, and the Einstein convention
is adopted for the index i . In Eq. (1), where the first term inside the brackets accounts for
advection, φ is a general specific (per unit mass) time-mean dependent variable, to which are
associated particular values or expressions for the corresponding effective diffusion coeffi-
cient, Γe f f,φ , and source term, Sφ , as follows:

Conservation of momentum (φ ≡ ui )

ρ
∂

∂x j

(
ui u j

) = − ∂p

∂xi
+ ∂

∂xi

[
Γ

(
2
∂ui

∂x j

)]
+ ∂

∂x j

[
Γ

(
∂ui

∂x j
+ ∂u j

∂xi

)]
− 2

3
ρ
∂k

∂xi
(2)

where p stands for pressure and Γ = μ + μt , with μ and μt being the laminar and the
turbulent dynamic viscosity, respectively.

Conservation of mass (φ ≡ 1)

∂ui

∂xi
= 0 (3)

T urbulencemodelling(φ ≡ k, ε)
Turbulence effects upon the mean flow field are modeled with recourse to the standard

k − ε turbulence model of Launder and Spalding [21]. The corresponding equations are
presented below.

123



148 Environ Fluid Mech (2013) 13:145–168

∂

∂xi
(ρui k) = ∂

∂xi

[(
μ+ μt

σk

)
∂k

∂xi

]
+ P1 − ρε (4)

∂

∂xi
(ρuiε) = ∂

∂xi

[(
μ+ μt

σε

)
∂ε

∂xi

]
+ ε

K
(C1 P1 − C2ρε) (5)

P1 = −ρu′
i u

′
j
∂ui

∂x j
(6)

μt = Cμ
ρk2

ε
(7)

Cμ = 0.033; C1 = 1.45; C2 = 1.9; σk = 1; σε = 1.3 (8)

2.1.2 Physical treatment near solid boundaries

Roughness effects upon the boundary layer are modeled by assigning a variation of velocity
near the ground according to the following logarithmic law:

u1u∗
τw/ρ

= 1

κ
ln

(
E
ρu∗z1

μ

)
−ΔB (9)

where κ is the von Karman constant (=0.41), u1 is the velocity at the distance z1 from the
ground and u∗ represents the friction velocity. ΔB accounts for the shift intercept of the
logarithmic law at z = 0 due to roughness effects. For uniform sand-type roughness, ΔB is
strongly correlated with the non-dimensional roughness height, K +

s :

K +
s = ρKs u∗/μ (10)

where Ks is the average value of the physical roughness height. According to Cecebi and Brad-
shaw [22], ΔB assumes different formulations depending on the flow regime, as described
next.

Hydrodynamically smooth regime (K +
s ≤ 2.25)

ΔB = 0 (11)

Transitional regime (2.25 < K +
s ≤ 90)

ΔB = 1

κ
ln

(
K +

s − 2.25

87.75
+ 0.5K +

s

)
sin

[
0.4258

(
ln K +

s − 0.811
)]

(12)

Fully rough regime (K +
s > 90)

ΔB = 1

κ
ln(1 + 0.5K +

s ) (13)

The logarithmic law for wind speed is based on the hypothesis of local equilibrium, i.e.,
shear stress τw is constant with height and turbulence kinetic energy production rate equals
the dissipation rate. This may be stated as:

ε = P1

ρ
= τw

ρ

∂u

∂z
= τ 2

w

μtρ
(14)

Substituting Eq. (7) into Eq. (14), and noting that τw = ρu2∗, leads to:

u∗ = C1/4
μ

√
k (15)
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The shear stress at the ground is computed from Eq. (9):

τw = ρu p u∗[
1
κ

ln
(

E
ρu∗z p
μ

)
−ΔB

] (16)

where the friction velocity, u∗, is given by (15). This evaluates the momentum flux at the
ground, thus providing the corresponding boundary condition. The value for the turbulence
kinetic energy at the solid boundary is directly given by Eq. (15):

k = u2∗√
Cμ

(17)

and, for the dissipation rate:

ε = u3∗
κd

(18)

2.1.3 Transformation of the governing equations and their numerical solution

In order to deal with irregular boundary geometries, the original transport equations are
transformed from the Cartesian space into a generalized coordinate system, through the
application of the chain rule, and recast in the strong law conservation form. Exemplifying
for the momentum conservation, the following formulation is obtained:

∂

∂ξ j

(
JρU j ui

) = ∂

∂ξm
μe f f J

[
gmn ∂ui

∂ξn
+ ∂ξm

∂x j

∂ξn

∂xi

∂u j

∂ξn
− 2

3

∂ξm

∂xi

∂ξn

∂x j

∂u j

∂ξn

]

−J
∂ξ j

∂xi

∂p

∂ξ j
− 2

3
J

(
∂ξ j

∂xi

∂ (ρk)

∂ξ j

)
(19)

where ui is a generic Cartesian velocity component, xi and ξi are the generic Cartesian and
computational coordinates, respectively, Ui is a generic contravariant velocity component,
the terms gmn are contravariant metric relations and J is the Jacobian of the transformation.
A control volume (CV) approach is used for the numerical integration of the transport equa-
tions. A staggered grid is adopted for the location of the three components of the velocity
vector, which are located at the centre of each face of each CV. Scalars such as pressure and
turbulent quantities are positioned at the geometric centre of the CV′s. After discretisation
and integration, the equations are cast in the general algebraic form [20]:

aPφP

(
1 + 1

E

)
=

∑
nb

anbφnb + b + aPφ
∗
P

E
(20)

This equation relates the value of the generic variable φ (velocity components or turbu-
lence quantities) at location P with its neighbouring (nb) values. b is a source term and E
represents a subrelaxation parameter. The SIMPLEC algorithm [23], adapted for a general-
ized coordinate system (cf. [24], for details), is employed to obtain the segregated solution
of the primitive Cartesian velocity components (u, v, w) and pressure, p. The discretized
equations are then solved using the tridiagonal matrix algorithm TDMA [20], with sweeps
of the whole domain along the three computational directions.
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2.2 Particle tracking

Numerical simulation of the present two-phase flow problem is performed by adopting an
Eulerian type description for the continuous phase (as described in the preceding sections),
together with a Lagrangian type approach for tracking the particle trajectories. The latter
type of analysis was also adopted by other authors for horizontal bed configurations, namely
Anderson and Haff [25] and Shao and Li [26]. As reported by Oliveira et al. [27], the
solid phase (sand grains) is considered to be composed of hard, spherical, non-rotating,
smooth, elastic particles of uniform diameter d p , mass m p and mass density ρ p , where the
superscript, p , stands for particulate phase. Owing to the very low value of the air-to-sand
mass density ratio, ρ/ρ p , the only significant forces acting upon each particle are assumed
to be the drag and gravitational forces. The equation of motion for a single sand particle of
unit mass is therefore reduced to the following, simplified form [28]:

du p
i

dt
= 3

4

μ

ρ p(d p)2
CDRep(ui − u p

i )+ gi

(
1 − ρ

ρ p

)
(21)

where t and gi stand for time and gravity acceleration along direction i , respectively, and the
two terms in the right-hand side represent, in the same order, the forces that were mentioned
above and are responsible for the particle acceleration (left-hand side). In Eq. (21), the

particle Reynolds number, Rep , is based on the particle-to-fluid relative velocity,
∣∣∣ �V rel

∣∣∣ =√(
ui − u p

i

)2
, and its product with the drag coefficient, CD , is calculated using an empirical

relation reported by Wallis [29]:

CDRep =
{

24 + 3.6 (Rep)0.687 , (Rep ≤ 1000)
0.44Rep, (Rep > 1000)

(22)

The particle trajectories, x p
i , are related to their instantaneous velocities, u p

i , through the
following expression:

dx p
i

dt
= u p

i (23)

The position and velocity of each particle along its trajectory are calculated for a time
level, t + Δt , as functions of the corresponding values that are available for the previous
time level, t . Eqs. (21) and (23) can be solved analytically, provided the time step Δt is
small enough, so that the properties of the fluid phase may be considered essentially constant
between the instants t and t +Δt . As an alternative for those cases where the fluid properties
cannot be considered unchanged over the integration time interval, Δt , the present model
also includes a fourth-order Runge-Kutta numerical integration scheme. The selection of
the time step, Δt , is based upon the local value of the Stokes number, St = τ p/τ , where
τ p and τ are the characteristic particle and fluid response times, respectively. In practice, if
St << 1, the particle essentially follows the fluid flow, and the time step is taken asΔt = τ ;
if St ≈ 1 or St >> 1, then Δt = τ p . In any case, Δt should not significantly exceed the
time necessary for the particle to traverse the local Eulerian grid cell. A further restriction
is imposed for those cases where the Runge-Kutta method is used: Δt should always be
kept below the stability limit that applies to this explicit type method. The details for the
integration procedure may be found in [27] and [30].

The interactions of the particles with solid boundaries are modeled through collisions
with the introduction of a restitution coefficient. For each particle, the trajectory calculation
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is terminated when the particle leaves the calculation domain at outflow boundaries, or,
alternatively, its position remains unchanged after a significant amount of time.

In this work, the effect of fluid turbulence upon particle dispersion is accounted for by
using the concept of particle-eddy encounters [27,31].

2.3 Sand erosion simulation

Along its own trajectory, each particle of mass m p is actually representative of a number of
identical particles that are permanently injected into the calculation domain, with constant
emission flux, through the same injection point. Each trajectory is thus associated to a mass
flow rate of particles, q . In the present conditions, the phenomenon which is responsible for
the injection of sand particles into the flow domain is ground erosion due to the wind. The two
mechanisms considered here that originate erosion are saltation (sand grains are airborne)
and creeping (grains roll over the surface).

Many different models are available in the literature, relating the local wind characteristics
with the resulting wind erosion by saltation (see [32] for a review). The great majority of such
proposals is based upon a relation between the local value of the friction velocity, u∗, and the
corresponding threshold value, u∗t,salt , below which no saltation occurs. In the present work,
the following three models (hereafter called BG, KW and LL) are tested for the saltation flux,
qsalt :

qsalt,BG = cBG

√
d p

D

ρ

g
u∗

(
u2∗ − u2∗t,salt

)
(24)

qsalt,K W = cK W
ρ

g

(
u∗ − u∗t,salt

) (
u∗ + u∗t,salt

)2 (25)

qsalt,L L = cL L

√
d p

D

ρ

g
u2∗

(
u∗ − u∗t,salt

)
(26)

Equation (24) is a straightforward modification of Bagnold’s original model [5,33], and
the other two were proposed by Kawamura [16], and Lettau and Lettau [17], respectively. In
Eqs. (24) and (26), d p is the grain diameter (d p = 0.5 mm in the present work, according to
[34]), D is a reference sand grain diameter (D = 0.25 mm, regardless of the value of d p , see
[5]). Constants cBG , cK W , and cLT were determined empirically for flat, horizontal surfaces.
Corresponding values, from original references, are cBG = 1.8, cK W = 2.78 and cL L = 4.2.
These values were, in the present work, adapted to better fit the experimental data (which
includes inclined surfaces). Best fit (results to be presented later in this work) was obtained
using cBG = 4.066, cK W = 3.5 and cL L = 3.6.

Equations (24) to (26) give the streamwise (or horizontal) flux, i.e., the mass flux of sand
particles moving in saltation, crossing a vertical plane with 1 m width and infinitely high, with
units (kg m−1s−1). The three models consider the horizontal flux as being proportional to
the third power of u∗. In order to compute the vertical displacement of each cell, in each time
step, the vertical flux (Qsalt ), or emission rate, with units (kg m−2s−1), has to be obtained.
The vertical flux is assumed to be a fraction of the horizontal flux, qsalt , as considered in, e.g.,
[35–37]. The ratio (qsalt/Qsalt ) has units of length, and assuming saturated conditions for
the horizontal flux, such a length is taken equal to the mean jump length of saltation (Lsalt )

[38], given by [39]:

Lsalt = 1091.5 (ν2/g)1/3(u∗ − u∗t,salt )/
√

gd p (27)
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where ν is the fluid kinematic viscosity. The vertical flux due to saltation is then equal to:

Qsalt = qsalt

Lsalt
(28)

The assumption of saturated conditions might be questioned because it is not fulfilled in
the lower part of the windward slope, as discussed in [40] and [41]. However, at that location,
u∗ is lower than u∗t,salt (as will be discussed in Sect. 6) and, therefore, no erosion occurs
due to saltation. The above mentioned assumption is thus locally irrelevant.

In Eqs. (24) to (27), the threshold value, u∗t,salt , is given by [42]:

u∗t,salt = AB

√
(ρ p/ρ) gd p × √

ψ (29)

where the coefficient AB is equal to 0.1 [5], for d p ≥ 100 µm, and the correction function
ψ takes into consideration the possible existence of a non-zero local ground slope angle, θ :

ψ = cos θ + sin θ

tan β
(30)

In the previous expression, β is the angle of repose (β = 33◦, according to Iversen and
Rasmussen [42]).

The ejection velocity is randomly chosen for each particle saltation trajectory, based upon
a normal distribution with mean value, ū p

e , and standard deviation, u′p
e , equal to [43]:

ū p
e = 0.6u∗ u′p

e = 0.5ū p
e (31)

Similarly, the angle of ejection (referred to the local ground orientation) is also randomly
defined for each particle saltation trajectory, based on a normal distribution with mean value,
ᾱ

p
e , and standard deviation, α′p

e , equal to [43]:

ᾱ
p
e = 35o α

′p
e = 0.1ᾱ p

e (32)

In turn, the mass flux of erosion due to creeping, qcreep , is currently considered in the
literature to be related to the saltation mass flux. According to Wang and Zheng [18], the
following relation applies:

qcreep = αcr1

√
gd p

u∗
qsalt (33)

where the factor αcr1 is empirically defined and will be specified later. Similarly to saltation,
the creeping phenomenon is also associated to the local value of the friction velocity, u∗.
In the present work, the corresponding threshold value, u∗t,creep , below which no creeping
occurs, is proposed to be given by:

u∗t,creep = αcr2u∗t,salt (34)

where the empirical factor αcr2 is also defined later.
The length (in the main wind direction) of each saltation trajectory, lsalt , is directly deter-

mined by its Lagrangian tracking, through integration of Eqs. (21) and (23). This procedure
allows the direct determination of the deposition location for each saltation trajectory. An
equivalent procedure is not available to predict the length of each particle trajectory due to
creeping, lcreep . To overcome this difficulty, a formulation proposed by Andreotti et al. [38]
was adapted to the present conditions, thus yielding:

lcreep = 0.5λcr
u2∗
μ f g

(35)
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where μ f is a coefficient of dynamic friction (μ f = 0.4, following Shao [44]) and λcr is an
additional coefficient which value will be specified later.

In the global simulation procedure, particle trajectories are calculated assuming permanent
regime to hold. Solid material pertaining to the Eulerian ground surface control volume (CV)
that contains the point of injection of trajectory j is continuously eroded, during the whole
period of calculation of the particulate phase, �t . The amount of eroded material is thus
directly proportional to �t . If Ae denotes a characteristic area of the CV that contains the
ejection point of a saltation trajectory, then the vertical (z) coordinate of the central node of
that Eulerian CV will diminish by an amount of:

�he = (Qsalt ) j�t

ρ p Ae
(36)

Correspondingly, material deposition occurs at the ground surface CV where j saltation
trajectory ends. The central node of that incidence CV is thus vertically raised by an amount
given by:

�hi = (Qsalt ) j�t

ρ p Ai
(37)

where Ai stands for a characteristic area of that incidence CV. If deposition creates a local
slope angle larger than the angle of repose, β, then “avalanche” occurs: the excess solid
material slides around until a lesser slope is attained.

Ground deformation due to creeping erosion is treated in exactly the same way.
The global, two-phase calculation procedure is implemented as follows:

(i) The fluid flow phase is first calculated, ignoring the presence of particles.
(ii) The results thus obtained for the continuous phase are then frozen. For each CV of

the ground surface, a comparison is established between the local actual and threshold
friction velocities, in order to select the particle ejection points, and the calculation for
the dispersed phase is launched. As already stated, this Lagrangian component of the
calculation procedure is performed assuming stationary conditions to hold: each trajec-
tory, j , corresponds to a given amount of particles per unit time, which are continuously
ejected from the same ejection location. Particle ejection lasts for a pre-established time
duration, �t , which is common to all trajectories.

(iii) Following the completion of all particle trajectories, corresponding to a time duration
�t , the new ground configuration is calculated, as a cumulative result of erosion and
deposition effects (see Eqs. (36) and (37), respectively). The whole Eulerian grid is then
redefined, adapting itself to the newly calculated ground form.

(iv) The calculation procedure returns to step (i) and continues, until a preset time limit
t = ∑

i �t has been attained. In short, the total physical time, t , during which all
erosion and deposition phenomena actually occur, is artificially divided into a number
of parcels, i , each lasting for a time equal to�t , at the end of which a partial adjustment
of the ground form takes place. Global precision of the whole procedure is ensured by
using conveniently small values of �t .

The empirically based coefficients that are used in Eqs. (24) to (27) and (33) to (35) were
essentially established by the original authors for flat, horizontal ground configurations and
specific sand granulometry. This is rather different from the geometry used in the present
study, in which the initial, non-disturbed dune surface has a sinusoidal type form. As a
consequence, those empirical coefficients need to be calibrated for the present situation, as
reported in Sect. 5.
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Fig. 1 Simulation domain: dimensions and boundaries

3 Case study description

Although the whole calculation procedure described in the preceding sections is able to
simulate three-dimensional two-phase flows, the physical situation actually studied in the
present work is essentially two-dimensional.

3.1 Problem statement and simulation characterization

The geometry adopted in this work reproduces the experimental conditions of Ferreira and
Fino [19]. The longitudinal initial profile of the dune is given by the following equation:

z = H

2

[
1 + sin

(
π ×

{
x

L/2
+ 1

2

})]
(38)

where L and H stand for the initial length (L = 360 mm), and height (H = 60 mm) of
the dune, respectively. The x coordinate is aligned with the undisturbed flow (x = 0 at the
central axis of the dune), and z is the vertical coordinate. Figure 1 depicts the calculation
domain, along with the geometric dimensions and identification of the boundaries. Domain
extension and dune location were adjusted so as to ensure that nearly zero gradient conditions
are achieved at the inlet, outlet and top boundaries.

Based on the wind tunnel measurement data, a fully developed turbulent velocity profile
was assigned at the inlet boundary, according to the following equation:

u

U∞
=

( z

δ

)n
(39)

where u is the local streamwise velocity, U∞ = 9.1m/s is the undisturbed velocity, δ =
0.1m is the boundary layer height and n = 0.11 characterizes the profile shape. Regarding
turbulence specification, values of 10 % turbulence intensity and 0.02 m turbulence length
scale were assigned at this boundary.

Zero gradient (parabolic) conditions for all the variables were set at the outlet. At the
domain top a slip boundary was considered. In the dune region, a uniform roughness length,
z0 = 0.05 mm (corresponding to d p/10), was set to the ground surface.

3.2 Time and space grid independence

The computational mesh was generated using a simple algebraic method, with constant
spacing along the streamwise direction. A uniform vertical distance of 0.1 mm (between the
ground and the first CV centre) was used at the bottom boundary, for a total of 31 nodes along
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Fig. 2 Dependence of results with the mesh refinement in the streamwise direction: a t = 4 min; b t = 8 min.
Vertical scale is about 3× the horizontal scale

the vertical direction, distributed with a variable expansion factor. Increasing the number of
vertical levels did not have a noticeable effect in the results. Dependency of results with the
longitudinal mesh resolution is presented in Fig. 2, for two time levels. One may observe that,
although small, differences in the results obtained with these two meshes are more noticeable
at the downstream region for t = 8 min. For the remaining parts of the dune, both results are
mostly undistinguishable. Following these results, the 121 nodes configuration was adopted
for the simulations presented next. The corresponding mesh layout may be observed in Fig. 3.

For temporal discretization studies, the time step for the global time marching procedure,
�t , was set equal to 1 s, 4s and 10 s. Figure 4 presents the dune shape obtained in the simula-
tions using these time step values, at two instants. Differences in the results are only noticeable
for t = 8 min and are visually enhanced by the exaggerated vertical scale. Following these
observations, the �t = 4 s option was selected for the remaining simulations.

4 Results and discussion

Qualitative comparison of simulation results and experimental data was done by plotting the
surface shape obtained through both methods. For a quantitative evaluation of the relative
performance of the tested models, the root mean square of the dune surface vertical coordinate
deviation to the experimental data was used. This is defined as follows:
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Fig. 3 Final mesh used in the simulations (only the region around the non-eroded dune is shown)
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Fig. 5 Vectorial representation of the air flow velocity field: a t = 0 min; b t = 2 min. For better visualiza-
tion, vectors are represented every other node along the horizontal direction. The dashed line identifies the
recirculation region

σz =
√
�z2

i j (40)

where the vertical deviations�z where taken at all i computational nodes on the sand surface,
for the j time instants t = 2, 4, 6, 8, 12 min.

4.1 The relative importance of saltation and creeping

Figure 5 shows the distribution of calculated wind velocity vectors for two different instants,
namely t = 0 and t = 4 min. As expected, a recirculation zone is visible for t = 0 (just before
erosion starts) near the lee side of the dune. Besides, the maximum velocities are initially
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Fig. 6 Trajectories of sand grains from saltation. a t = 2 min; b t = 4 min; b t = 5 min. BG model

located in the close vicinity of the dune top. It is also apparent that these locally high values
tend to rapidly decrease as the dune begins to erode.

Correspondingly, the change in shape of the dune leads to a rapid decrease of the shear
stress generated by wind at the dune surface. As a consequence, when erosion starts, the local
highest values of the surface shear stress drop very rapidly to values lower than the threshold
limit for saltation to occur, u∗t,salt . This can be observed in Fig. 6, where calculated saltation
trajectories of sand grains are shown for three instants, namely t = 2, 4 and 5 min. In fact,
we may notice that, for t = 5 min, saltation has practically vanished.

However, experiments show that erosion does keep going on for time levels well beyond
t = 5 min. This is clear evidence that, for the present dune configuration and sand granu-
lometry, the relative importance of creeping, as compared to saltation, in the global erosion
procedure, is much higher than the one predicted in the literature for flat, horizontal initial
ground configurations.

The model that is proposed in this study for the whole erosion procedure reflects the
relative importance of creeping that is referred to in the preceding paragraphs.

5 Model validation and parameters’ fine tuning

Taking the experimental results reported in [19] as the validation reference for the present
numerical simulation, several tests were conducted in order to assess the relative performance
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of different models, as well as distinct parameter values within those models. Namely, the
three saltation BG, KW and LL models represented by Eqs. (24)–(26) were tested, as well
as different formulations for the creeping-to-saltation mass flux ratio (represented by αcr1

in Eq. (33)), creeping threshold (through αcr2 in Eq. (34)) and creeping deposition length
(through λcr in Eq. (35)). An additional function, Cψ , was defined in order to inhibit creeping
flux in regions of the dune surface with positive slope and providing, simultaneously, a rapid
transition around zero slope into the “creeping region” for positive slope:

Cψ = ψ4 if θ ≥ 0 (41)

Cψ = ψ0.5 if θ < 0 (42)

so that: αcr1 = A/Cψ , in Eq. (33); αcr2 = BCψ , in Eq. (34); λcr = C/Cψ , in Eq. (35), ψ
being given by (30). Here, A, B and C are parameters which values will be fine-tuned below.

5.1 Influence of the saltation model

Temporal evolution of the dune shape is shown in Fig. 7, for instants t = 4, 8, and 12 min,
using the three aforementioned saltation models BG, KW and LL. As already stated, best
fitting (between experiments and CFD predictions) for the three saltation models was achieved
by using cBG = 4.066, cK W = 3.5 and cL L = 3.6 in Eqs. (24)–(26). The creeping parameters
are kept unchanged. As reported below, they too correspond to the best fitting values, namely
αcr1 = 10/Cψ, αcr2 = 0.25Cψ and λcr = 11/Cψ . The root mean squares of the vertical
deviation values are σBG = 7.3 %; σL L = 11.4 %; σK W = 8.5 %. Closer approximation
to experiments was thus obtained with the BG model, which is therefore adopted in the
subsequent analysis.

Looking at Fig. 7, it can be seen that, depending on the saltation model, the predicted dune
profile varies quite significantly, in particular in the range 0 < x/H < 2 and at t = 12 min
(Fig. 7c). A similar trend was observed in the experiments, in the same x/H range, as
evidenced by the large dispersion of the experimental data, which is a clear indicator of the
high nonlinear nature of the aeolian erosion phenomenon.

At t = 12 min, while the LL and KW models suggest a relatively low erosion rate, the
BG model yields a considerably large erosion flux leading, by deposition, to the formation,
or ejection, of a new dune in the lee side. While the two former models preserve a relatively
large slope of the pile’s leeward face, the stronger erosion predicted by the BG model leads
to the earlier disappearance of the recirculation bubble. This latter model was thus adopted
for the subsequent analysis.

5.2 Influence of the creeping coefficient parameter

Several tests were also conducted, aiming at evaluating the sensitivity of the model towards
the value of the creeping coefficient parameter, αcr1, defined at the beginning of Sect. 5 as
αcr1 = A/Cψ . Evidence from experiments showed that the relative influence of creeping
in the whole erosion procedure strongly increases for negative slopes (θ < 0) and tends to
vanish for positive slopes. This is taken into account in the above mentioned definition of
αcr1, as both functions ψ and Cψ decrease for increasingly negative slopes. As a sample of
the sensitivity tests, Fig. 8 shows the time evolution of the dune surface for three instants
t = 4, 8, and 12 min, using two different approaches: BG1, for which αcr1 = 10/Cψ ;
and BG5, corresponding to αcr1 = 3/Cψ . All remaining parameters are kept unchanged,
namely αcr2 = 0.25Cψ and λcr = 11/Cψ . Although perfect agreement with experiments is
never achieved, BG1 approach always leads to the more favourable comparison, quantified
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Fig. 7 Dune shape at 3 instants: comparison between different models. a t = 4 min; b t = 8 min; c t = 12 min.
Vertical scale is about 3× the horizontal scale

as σBG1 = 7.3 %; σBG5 = 13.1 %. It is thus chosen for the analysis to be reported in the
next paragraphs.

5.3 Influence of the creeping threshold value

The brief analysis established in Sect. 4.1 clearly shows that dune erosion by creeping does
stand for a much longer time than erosion due to saltation. This means that the threshold value
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Fig. 8 Dune shape at 3 instants: influence of creeping coefficient. a t = 4 min; b t = 8 min; c t = 12 min.
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of surface friction velocity, u∗t,creep , below which erosion by creeping no longer takes place,
is lower than the corresponding threshold value for saltation, u∗t,salt . Such a feature is taken
into account in Eq. (34), as αcr2 is there less than unity. Moreover, experimental evidence
showed that creeping trigger is clearly favoured by negative slopes. This feature is taken into
consideration in the above mentioned definition of the threshold coefficient αcr2 = BCψ ,
as, again, both functions ψ and Cψ decrease for increasingly negative slopes. Several tests

123



162 Environ Fluid Mech (2013) 13:145–168

0.0

0.2

0.4

0.6

0.8

1.0(a)

(b)

(c)

-3 -2 -1 0 1 2 3 4 5 6

z/
H

x/H

Exp

BG1

BG2

0.0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3 4 5 6

z/
H

z/
H

x/H

-3 -2 -1 0 1 2 3 4 5 6

x/H

Exp

BG1

BG2

0.0

0.2

0.4

0.6

0.8

1.0

Exp

BG1

BG2

Fig. 9 Dune shape at 3 instants: influence of creeping threshold. a t = 4 min; b t = 8 min; c t = 12 min.
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were conducted in order to evaluate the relative influence of parameter αcr2. An illustrative
sample is shown in Fig. 9, where the temporal evolution of the dune profile is represented for
three instants, namely t = 4, 8, and 12 min, using two different approaches: BG1, for which
αcr2 = 0.25Cψ ; and BG2, corresponding to αcr2 = 1.0Cψ . All remaining parameters are
constant and shared by the different tests, namely αcr1 = 10/Cψ and λcr = 11/Cψ .
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Again, agreement with experiments is not entirely satisfactory. Still, BG1 model leads
to much better results than model BG2, with σBG1 = 7.3 % and σBG2 = 12.5 %, and is
therefore used in the analysis to follow.

5.4 Influence of the creeping distance parameter

Experiments reported in reference [19] evidenced that distances covered by sand grains
along their creeping path significantly increase for larger negative slopes. This is taken into
consideration through the definition of the creeping distance parameter, λcr = C/Cψ , that
was given at the beginning of Sect. 5, because, as already stated, both functions ψ and Cψ
decrease for increasingly negative slopes. In analogy to the formerly reported parametric
tests, numerical experiments were also conducted aiming to assess the relative influence of
λcr upon the whole erosion phenomenon. Sample results are shown in Fig. 10, where the
time evolution of the dune surface is depicted for three time levels, t = 4, 8, and 12 min,
using two different approaches: BG1, for which λcr = 11/Cψ ; and BG4, corresponding
to λcr = 6/Cψ . All remaining parameters are constant and shared by the different tests,
namely: cBG = 4.066, αcr1 = 10/Cψ and αcr2 = 0.25Cψ .

In summary, the best fitting between experiments and CFD predictions, for all the tests
reported in the previous paragraphs, was obtained with model BG1, with σBG1 = 7.3 % and
σBG4 = 9.7 %. This model is therefore adopted for the calculations reported hereafter.

6 Analysis of final results

Following the sensitivity analysis and tuning procedure that is reported in Sect. 5, the fol-
lowing resulting approach was adopted as the global model to simulate dune erosion for the
present configuration: (i)—Bagnold model, BG, described in Eq. (24) with cBG = 4.066, for
the saltation contribution; (ii)—creeping coefficient parameter αcr1 = 10/Cψ , in Eq. (33);
(iii)—creeping threshold parameter αcr2 = 0.25Cψ , in Eq. (34); (iv)—creeping distance
parameter λcr = 11/Cψ , in Eq. (35). The Cψ function has been defined in Eqs. (41) and
(42).

In Fig. 11 a comparison is shown between the temporal evolution of the dune profile
that was experimentally measured and the corresponding predictions obtained, for the same
successive instants, using the present, global erosion model that is recapped in the preceding
paragraph. Although full agreement is far from having been achieved, these validation results
are actually encouraging, considering the complex, sloppy shape of the initial dune profile.
In fact, the calibration of models’ empirical constants employed in transport rate models,
even for flat surfaces, is still an open topic, as was recently acknowledged by Sherman et al.
[45]. Moreover, although the presently studied configuration is essentially two-dimensional,
the global model is actually prepared for inclusion of fully three-dimensional ground con-
figurations.

One of the most striking features resulting from this study is the relative importance of the
erosion due to creeping, as compared to that resulting from saltation. In the authors’ opinion,
this is due to the relatively large sand grain diameter value (d p = 0.5 mm), which may be
classified as medium-coarse size [46], together with the non-flat nature of the sand surface,
which is in clear contrast with the flat, horizontal initial soil configurations, which are central
to the great majority of cases reported in the literature.

Figure 12 displays the predicted friction velocity threshold for both erosion modes—
saltation, u∗t,salt and creeping, u∗t,creep—as well as the actual surface friction velocity, u∗,
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Fig. 10 Dune shape at 3 instants: influence of creeping distance formulation. a t = 4 min; b t = 8 min; c
t = 12 min. Vertical scale is about 3× the horizontal scale

along the dune profile. It is clear that saltation only occurs within a localized region (close
to the dune crest) for t = 0 min and is completely absent for t = 8 min (cf. also visualization
of trajectories in Fig. 6). In turn, creeping is present in most part of the dune and also
downstream, for t = 8 min. The apparently surprising behaviour of the threshold lines for
t = 0 min, showing a localized jump around x/H = 2, is actually due to the flow reversal at
the recirculation region (cf. Fig. 5a), thus creating a slope discontinuity (it should be recalled
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that the slope angle is defined according to the flow direction) and the corresponding effect
upon function ψ , defined in Eq. (30).

The time evolution of the relative importance of saltation and creeping sand fluxes leaving
the dune surface may be observed in Fig. 13. Erosion by creeping is always present and its
total flux is increasing with time due to the sand increasing surface area as a result of the
dune extending downstream. The increasingly dune smoothness resulting from the erosion
process leads to a decrease in the surface shear stress values, thus inhibiting saltation. After
approximately 5 min, shear values fall below the corresponding threshold and erosion by
saltation completely vanishes.

7 Conclusions

Erosion is a rather complex phenomenon resulting from the interaction of several mechanisms
contributing to the removal of particles from their initial position. The present work describes
an innovative numerical method coupling CFD calculations for the fluid flow with modeling
of erosion by creeping and saltation. The present numerical method includes Lagrangian
tracking of particles as a means of computing saltation length. The aim of this work was also
to extend erosion calculations to complex sand surface shapes.
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Comparison of the numerical results with data from wind tunnel experiments allowed
a better tuning of coefficients for the creeping-to-saltation flux ratio, creeping threshold,
creeping distance and saltation flux model. Although saltation and creeping emission fluxes
due to erosion are both functions of the friction velocity, the former depends essentially on
the second power of friction velocity, while the later is mostly linear (cf. Eqs. (24)–(26), (27)
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and (33)). This feature represents a fundamental difference in the erosion process, especially
when the friction velocity is itself dependent on the erosion, as in the present case, where the
dune shape is smoothed by erosion.

Reasonable agreement with experiments is only achieved when the creeping mechanism is
given a dominant role in the global erosion model. This is actually not surprising, as the grain
diameter considered in this work is relatively large. Moreover, the creeping threshold friction
velocity showed to be nearly 25 % of the corresponding threshold for saltation, a difference
to which the effect of local slope still had to be added through inclusion of function Cψ ,
defined in Eqs. (41) and (42).

Although being very encouraging, the results obtained in the present study still leave room
for improvement, namely through the simulation of two way coupling effects, aiming to take
into account the local perturbation of wind flow due to the momentum associated with sand
particles. Further testing is also envisaged, including different sand particle diameters and
surface topographies, such as a two dunes in tandem, in order to better tune and settle the
proposed model.
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