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Abstract Four networks of wind data are used to construct the first systematic estimates of
the horizontal diffusivity from observations of submeso motions on scales often unresolved
in numerical models. Currently, the horizontal diffusivity in numerical models is specified
mainly for numerical reasons without observational support. The data analysis in this study
emphasizes the stable boundary layer although results are briefly presented for the unsta-
ble boundary layer. The horizontal diffusivity is estimated from the horizontal gradient and
the observed flux. Horizontal gradients of scalars are generally difficult to directly estimate
from observations with sufficient accuracy for much of the data. As an alternative, simulated
particles with conservative properties are introduced into the observed wind field in order
to estimate the horizontal diffusivity for submeso motions. The sensitivity of the horizontal
diffusivity to details of the method is examined. The horizontal diffusivity increases with the
range of time and space scales that are included in the evaluation. The horizontal diffusivity
is much larger with significant topography and may increase with wind speed, depending on
the site location. The coarse station spacing or the small domain size is found to be a major
limitation to the analysis.

Keywords Dispersion · Diffusion · Stable boundary layer · Submeso · Mesoscale

1 Introduction

The horizontal transport by atmospheric mesoscale motions has been studied mainly for
special cases of well-defined phenomena such as thunderstorms, sea breezes, and slope
winds. In boundary layers with strong stratification where turbulence mixing is weak, hori-
zontal transport by mesoscale motions becomes important [22]. Based on numerical studies,
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laboratory experiments and theoretical considerations, the mesoscale modes in stratified flow
are viewed as a combination of a variety of types of gravity waves [13,14,17,19]; horizontal
modes sometimes referred to as pancake vortices [16]; solitons [20]; and a wide variety of
other complex forms (see references in [9]). In the daytime convective boundary layer, the
small-scale part of the mesoscale range is replaced by turbulent boundary-layer scale eddies,
which might include convectively driven boundary-layer eddies and longitudinal roll vorti-
ces e.g., [4,8]. Such large eddies may be coupled to gravity waves above the boundary layer
sometimes referred to as convection waves e.g., [6]. Since daytime “turbulent” eddies extend
to much larger scales compared to turbulence in the stable boundary layer, the important
daytime mesoscale motions begin at larger scales compared to the mesoscale motions in the
stable boundary layer.

The nocturnal mesoscale motions included in this study extend down to Eulerian time
scales of a minute or less, horizontal length scales as small as ten metres and vertical
depth scales as small as several metres. To reduce conflicts with traditional use of the term
“mesoscale”, we use the term “submeso” to describe motions extending down to such small
scales e.g., [2,3,11]. In particular, we pragmatically refer to all of the motions resolved by
the networks as “submeso”, without specific physical meaning. In this regard, we make an
analogy between the networks and grid boxes of a numerical model. Then “submeso” in a
numerical model becomes analogous to “unresolved”.

In numerical models, the unresolved horizontal transport between grid cells is represented
by a single horizontal diffusivity for turbulence and unresolved submeso motions combined.
Presently, there is no observational basis for determination of the horizontal diffusivity. The
numerical values of such diffusivities have historically been determined by numerical consid-
erations in order to control numerically unstable modes, particularly “two-delta-x waves”.
The total model horizontal diffusion is the sum of the implicit numerical diffusion in the
differencing scheme and the explicit horizontal diffusion related to the horizontal diffusivity.

The horizontal flux has been generally neglected in boundary layer studies because the
horizontal divergence of the flux occurs on much larger horizontal scales than the vertical
scale of the vertical flux divergence. However, with strongly stratified flow, the vertical mix-
ing of scalars by the turbulence may become extremely weak e.g., [25] while the horizontal
transport by submeso motions can be rather large, as found in this study. The vertical flux
by the submeso motions is difficult to estimate due to large sampling errors and difficulties
measuring very weak vertical motions, and is outside the scope of this study.

Theoretically, relating the horizontal flux to the horizontal gradient is uncertain. Important
horizontal flux can occur through rotation of the vertical flux in the presence of vertical shear
that is not related to the mean horizontal gradient [5,24]. For example, horizontal velocity
fluctuations are significantly correlated with fluctuations of temperature and other quantities
because vertical velocity fluctuations systematically generate fluctuations of both horizon-
tal velocity and scalars. In stratified flow, downdrafts (updrafts) generate positive (negative)
temperature fluctuations and positive (negative) along-wind velocity fluctuations. As a result,
horizontal flux of heat can be generated without horizontal gradients of temperature. Fortu-
nately, this process may be less important for submeso motions in stratified flow, compared to
turbulence, because the submeso vertical motions are generally either very weak or associated
with wave motions with little vertical scalar flux.

No attempt known to us has been made to directly estimate horizontal diffusivities for
transport by submeso motions using networks of observations. Unfortunately, horizontal gra-
dients of scalars in the stable boundary layer are normally too erratic for reliable estimates
except in special cases [12]. Therefore, we will examine the horizontal diffusivity estimated
from simulated particles released into the observed wind field. This study emphasizes the
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stable case where the horizontal diffusion by submeso motions is thought to play a greater
relative role compared to the daytime convective boundary layer.

2 Data analysis

Approximately 30 networks were examined for possible use for estimation of the horizontal
diffusivity. All but three were eliminated because of inadequate sampling frequency, inade-
quate instrument response time, erratic station spacing, nonuniform deployment or inadequate
documentation. The three selected networks still include major shortcomings for the analyses
needed here. We confine the nocturnal computations to the 10-h period from 2000 to 0600
local time.

The CASES99 network [15] consists of 7 sonic anemometers deployed 5 m above the
ground surface across a 600-m wide domain with short grass ground cover. The Iowa net-
work [7] deployed 12 sonic anemometers above corn and soybeans. Here, we exclude the
three eastern sonic anemometers, which are missing significant data. This elimination also
reduces the ratio of the east-west network width to the north-south width from almost 3 to
about 1.5. A ratio of unity is optimal.

The Utah network (Dugway Proving Ground) consists of 26 stations with R. M. Young
Model 05103 anemometers with an accuracy of 0.3 ms−1 and an official startup threshold of
1.0 ms−1. Numerous values of <1.0 ms−1 were observed possibly due to a smaller threshold
for cessation of propeller motion. In addition, the propeller could be motionless for only part
of the 5-min summation periods. About 0.2% of the 5-min periods reported zero motion. We
do not eliminate these infrequent cases. This network is characterized by large station spacing
of 5–10 km such that much of the submeso motion on time scales <5 min are not spatially
resolved. To partially compensate for the coarser time resolution, the wind components are
linearly interpolated to 1-min intervals. The linear interpolation leads to only minor changes
in the computed values of the horizontal diffusivity.

The two-dimensional horizontal nature of the motions in stratified flow is problematic with
terrain features between stations. For example, a low range of hills might preclude horizontal
transport across the range and the correlation of the wind field between adjacent stations might
be small. Or, air motion at a station may be confined to pools of cold air trapped in low-lying
areas, not resolved by the network. In these cases, the network winds may overestimate the
horizontal dispersion since the interpolated wind field does not include interruption of surface
airflow by trapping cold air in low lying areas. The Utah network includes several ranges
of hills and mountains. Since the wind interpolation scheme used below ignores such inter-
ruption of the surface flow, we define two subnetworks that are not disrupted by significant
topography. This seriously reduces the number of stations. For the Utah network, this paper
will focus on a subnetwork in the western half of the main basin (Fig. 1). A second “northwest”
Utah network is defined, but will be used less since the between-station spacing is generally
greater than 10 km. More information on the networks can be found in Mahrt et al. [10].

2.1 Wind field

To filter out the turbulence for stable conditions, the flow is first averaged over 1-min periods
at each station. Based on cospectra, the turbulence is normally confined to scales <1 min
for our stable boundary-layer data. The 1-min averages can sometimes exclude the smallest
submeso motions, but could inadvertently include some turbulence in the windiest cases.
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Fig. 1 The Utah subnetwork is defined by the square box. This subnetwork includes only 6 of the original
26 stations in an effort to avoid to horizontal decoupling by terrain features. The horizontal and vertical lines
intersecting the centre are the sampling lines. The simulation in this figure uses the north-south sampling line
where the initial isolines of q are in the north-south direction (Sect. 4). The simulated particles are colour
coded according to their value of q in arbitrary units. This figure is an example of particle displacement after
1 h of simulation. Patterns vary dramatically between 1-h periods

Alternatively, one could partition the turbulence and submeso motions for each individual
record; however, we forego application of a variable averaging time in favour of examination
of a constant range of scales.

Stochastically, the time scale of the submeso motion increases approximately linearly with
its horizontal scale, but at a rate that is an order of magnitude smaller than Taylors hypothesis
[10], as sketched in Fig. 2. This implies that propagation velocities are much larger than
the wind speed. In addition, the propagation direction based on animations of the wind field
often showed little relation to the wind direction. For individual motions, deviations from
the mean time–space relationship in Fig. 2 are large. Since each network resolves different
spatial scales, optimum time averaging of flow statistics might be chosen in terms of the
network size and station spacing. However, this procedure is complex and the relationship
between space and time scales is not sufficiently robust for confident choices of time scales.
Therefore, we average over a constant time period, here chosen to be 1 h. Thus, we include
motions between time scales of 1 min and 1 h and on horizontal scales between the station
spacing and the domain size, as sketched in Fig. 2.
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Fig. 2 Schematic of space and time scales defining the present analysis. The stochastic line (space
scale=8.3 ms−1 time scale) represents the average relation between space and time scales for mesoscale
motions in Mahrt et al. [10]. The nocturnal wind speed averaged over all of the nocturnal datasets is approxi-
mately 2.5 ms−1. For individual records, the deviations from this line are large. The outer grey area indicates
the exclusion of time scales through choice of averaging and record length, and exclusion of horizontal scales
due to the finite station spacing and size of the network

For application to modelling, we make an analogy between the entire network and a model
grid area by considering the network-averaged wind to be the model resolved flow. We will
remove the network-averaged wind from the 1-min observations to focus on smaller-scale
(subgrid) motions. Removal of the network-averaged wind can be viewed as transforming
the coordinate system to move with the spatially averaged flow. Larger mesoscale motions
dominate the time dependence of the network-averaged wind so that the removal of the
network-averaged flow partially removes time variations on larger time scales. This was
quantitatively examined by Belušić and Mahrt [3] who studied the influence of removing the
spatial mean on sequentially smaller scales. In the present study, the removal of the network
mean does not influence the horizontal gradients of wind within the network.

The network-averaged wind is computed by first interpolating the station winds to a finer
grid using inverse square weighting and then spatially averaging the gridded wind vectors.
This reduces the direct bias introduced by simple averaging of the stations winds with nonuni-
form distribution of station locations. The grid spacing was 50 m for the CASES99 network,
500 m for the Iowa network and 1 km for the Utah network. To further reduce the bias in the
Iowa network, a cluster of 4 stations were averaged to form one effective station.

2.2 Unstable case

Estimation of the horizontal diffusivity for the daytime unstable case incurs additional diffi-
culties. The large daytime boundary-layer eddies appear to be as large as the entire CASES99
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network; therefore, CASES99 is excluded from the daytime analysis. Ten-minute averaging
of the data will be used instead of 1-min averaging in order to filter out the turbulence, which
occurs on larger time scales compared to the nocturnal turbulence. This increased averaging
of the initial data reduces the sample size by a factor of 10 compared to 1-min averages. For
this reason, we extend the flux averaging period from 1 to 4 h. Extending the averaging time
to even longer time periods incorporates significant nonstationarity due to diurnal variation.
In fact, we limit our analysis to a single 4-h period each day from 1100 to 1500 local time in
order to minimize diurnal variation. The resulting sample sizes are marginal.

3 Horizontal diffusivity

Computing the horizontal diffusivity from observed horizontal fluxes is problematic because
estimation of the horizontal gradients from the data is generally prone to large errors. The
horizontal gradients of scalars, such as temperature and moisture, are only occasionally
well-defined in our networks and generally sensitive to the method and scale of the gradi-
ent estimate. Unfortunately, estimates of the behaviour of the horizontal transport require a
large sample size and do not permit limiting the analysis to special selected cases with well-
defined horizontal gradients. Application of smoothing techniques to improve the estimate
of the horizontal gradients was too sensitive to the choice of method.

Alternatively, the horizontal diffusivity can be estimated by releasing simulated particles
into the observed wind field. Simulated particles are released into the flow with the conserved
value of a generic scalar, q , determined from the particle release point. The goal here is to
use the released particles as an intermediate tool to quantify the horizontal transport by the
observed submeso motions rather than to propose a particle model for general use, as in
[23]. The current approach is somewhat analogous to semi-Lagrangian advection schemes
in numerical models e.g., [18] except here we are using observed winds that are interpolated
to each particle position that then transports the particle over a given time step.

The source value of the generic scalar is specified to increase linearly in the x-direction
with no dependence on the y-direction, such that

qs f c(x) = dqs f c

dx
x (1)

where x is the distance of the particle release point from the west edge of the domain and the
gradient is assumed to be constant in space and time.

The simulations initially release 2,000 particles randomly distributed throughout the net-
work domain. Particle velocities are updated each minute. To offset loss of particles across
the domain boundary during the iteration, an additional 100 particles are released each min-
ute with random spatial distribution. Integrations are carried out over each of the 1-h periods
that comprise the 10-h nocturnal period. The particles transported by the observed flow lead
to a horizontal flux of q . The motion of the particles is computed for each one-minute period
using inverse-square interpolation of the gridded winds to each particle position.

While this approach leads to more stable estimates of the horizontal diffusivity com-
pared to estimating horizontal gradients from the observations, several important limitations
remain:

(1) The simulations are two-dimensional with no vertical transport.
(2) Removal of the domain-averaged flow to simulate removing the model resolved flow

(Sect. 2.1) implies that the particle simulation grid is moving with the mean flow, yet
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the input wind data are from stations at fixed points. Therefore, the present approach
is only a tool to isolate the transport by submeso motions and reduce the depletion of
simulated particles from rapid transport out of the domain by the mean flow.

(3) The spatial structure of the smallest submeso variation is lost due to the limited spatial
resolution of the networks. This is a serious deficiency.

(4) Horizontal gradients of the density of the particles may develop and influence the value
of the flux across the sampling line. Sensitivity tests suggest that this difficulty is some-
what random and much less important than the problem of network resolution.

(5) A large sample size is required to stochastically describe the impact of submeso motions,
partly because of their larger time scale compared to the turbulence eddies and the signif-
icant influence of isolated submeso events. The sample sizes for the Iowa and CASES99
networks are a significant limitation to the analysis.

(6) The larger networks spatially resolve some motions with time scales greater than 1 h,
which could lead to overestimation of the transport.

As an example of the last difficulty, the initial phase of a low-frequency wave mode leads
to gradient transport since any motion perpendicular to the sampling line initially generates
gradient flux. Even if the total horizontal flux over an entire period of a wave is zero, the last
part of the cycle may not be completely included in the 1-h period and, therefore, the total
horizontal flux may be artificially increased. Such a wave mode seems to be developing in
Fig. 1, however the “return phase” of this wave was not subsequently observed, resulting in
a true net flux even with longer averaging. This sampling problem is briefly examined in the
next section. Because of the above six difficulties, the errors for the horizontal diffusivities
will be large and the error estimates themselves are uncertain (Sect. 5).

4 Decomposition

To compute the transport of q by the particle motion, we define a sampling line through the
centre of the domain to simulate the wall of a model grid box. The particle velocity and value
of q is recorded as each particle crosses the sampling line. Sampling lines are defined in the
north-south direction with specified east-west scalar gradients (Fig. 1) and in the east-west
direction for specified north-south gradients. The length of the sampling line is equal to the
length of the smaller of the east-west and north-south widths of the observational domain.
For brevity, we now discuss the decomposition only in terms of the north-south sampling
line. Recall that the network averaged wind has been removed.

To obtain a larger sample, the particles crossing the sampling line are collected over a
time period, τF , here 1 h. We then decompose the particle flow as

φ = φ + φ∗ (2)

where φ is the particle value of either q or u when the particle crosses the sampling line, the
overbar is the 1-h average for all of the particle values crossing the sampling line within a
1-h record, and symbol ∗ indicates the deviations of the individual particle values from this
average. We view this averaging as an approximation to an ensemble average even if a poor
one with large sampling errors. The overbar averaging operator implicitly includes spatial
averaging along the sampling line in addition to 1-h time averaging. We assume that the sta-
tistics are independent of position along the north-south sampling line since the generation
of particle q-values is independent of y. This assumption requires that variations of the wind
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along the north-south line are random. The error due to heterogeneity of the wind field is
discussed below.

The submeso flux of q across the sampling line over time interval τF is

u∗q∗. (3)

Since q∗ is generated by velocity fluctuations, the flux tends to increase faster than line-
arly with increasing strength of the submeso motions (σu∗ ) where σu∗ refers to the standard
deviation of the particle velocities at the sampling line during the 1-hr period. However, the
correlation between u∗ and q∗ is small, averaging a little more than 0.2 for the Iowa network,
a little more than 0.3 for the CASES99 network and about 0.6 for the Utah network. It is not
known if the more significant correlation for the Utah network is due to inclusion of larger
spatial scales or organization of motions by the topography.

Since sampling errors are large for individual 1-h records, we subsequently average the
fluxes over a longer period, here, over all of the nocturnal records for the entire field program.
This flux is written as

〈
u∗q∗ 〉

(4)

where the angle bracket denotes averages for the entire field program, recorded in Table 1.

Table 1 Networks

Site Net. size K Hsub SEsub −Ruq σu σq

Iowa 5.7 8.5 0.12 0.21 0.19 2.00

Short 5.7 8.1 0.12 0.22 0.19 1.99

10 h 5.7 4.9 0.10 0.21 0.18 1.30

FP 5.7 7.9 0.12 0.22 0.19 1.91

EW 5.7 22.7 0.08 0.33 0.19 3.29

CASES99 0.5 4.5 0.09 0.37 0.16 0.64

10 h 0.5 4.5 0.09 0.37 0.21 0.64

FP 0.5 6.4 0.07 0.37 0.21 0.73

EW 0.5 10.7 0.10 0.46 0.22 0.87

Utah 11 493 0.07 0.59 0.73 8.56

Short 11 201 0.10 0.46 0.44 6.40

10 h 11 489 0.07 0.59 0.73 8.57

FP 11 460 0.08 0.59 0.73 7.95

1 year 11 654 0.02 0.62 0.81 9.54

EW 11 545 0.10 0.60 0.67 9.62

UtahNW 43 809 0.08 0.57 0.83 12.43

The network size (km), horizontal diffusivity (m2 s−1), relative error, correlations between u∗ and q∗ and the
standard deviations of u (ms−1) and q (arbitrary units). “Short” refers to the reduction of the sampling line to
1/3 of its original size. The network size is the smallest of the widths in the N-S and E-W directions. 10 year
indicates removal of the wind vectors averaged over the 10-h nocturnal period, FP signifies removal of the
wind vectors averaged over the entire field program, EW indicates use of the east-west oriented sampling lines
and 1 year indicates using 1 year of data instead of 1 month of data for the Utah network. Bold is the eddy
diffusivity value for the default computation
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The corresponding horizontal diffusivity for the submeso flow for the entire field program
is computed as

K Hsub = −
〈
u∗q∗ 〉

dq/dx
. (5)

Since the specified horizontal gradient is independent of time, the brackets are not needed in
the denominator. The values in Table 1 suggest that the horizontal diffusivity increases with
domain size and increases substantially with topography, explored in more detail in Sect. 6.
Since our general approach has not been previously used, we first examine the dependence
of the diffusivity on the calculation method.

5 Sensitivity to method details

To examine the sensitivity of the value of the horizontal diffusivity to the details of the method
of calculation, we now examine a sequence of temporary alterations to the method.

5.1 Sampling line

The position of the sampling line within the network leads to differences in the horizontal
diffusivity up to a factor of two, presumably due partly to the sparse station spacing in the
presence of surface heterogeneity. Here, we have reported only the results for the sampling
lines bisecting the centre of the network, which is least affected by network boundaries.

Decreasing the length of the sampling line captures a smaller range of spatial scales and is
expected to decrease the horizontal diffusivity. Decreasing the sampling line to 1/3 its original
length reduces the diffusivity by more than half of its original value for the Utah network,
but reduces the diffusivity by only 5% for the Iowa network. The CASES99 network is too
small to further decrease the length of the sampling line.

The above results are based on a north-south sampling line. With an east-west sampling
line in the Iowa network, the value of the diffusivity is more than twice that for the north-
south sampling line (Table 1). This augmentation may be due to the rectangular shape of the
network with an east-west width about 50% greater than the north-south width. This would
suggest that the network configuration is more important than the details of the computation
method. However, the data also include large east-west variations of the v component on
some of the nights, which would increase the diffusivity for the east-west sampling line. The
cause of such motions is not known. The horizontal diffusivity for the CASES99 network
based on the east-west sampling line is about twice as large as that for the north-south sam-
pling line. It is not known if this difference is related to the dominance of southerly flow in
the CASES99 field program and the potential influence of the mean flow on the structure
of the submeso flow. For the Utah network, the diffusivity with the east-west sampling line
is about 5% greater than that for the north-south sampling line. Although this difference is
of marginal significance, we also note that the Utah network experiences more north-south
flow than east west flow, and is embedded in primarily north-south oriented topography.

5.2 Removal of the stationary wind

The wind field is influenced not only by transient submeso motions, but also by surface heter-
ogeneity, instrument bias and micrometeorological siting of the instruments. To estimate the
collective effect of these influences on the computed diffusivity, we have averaged the wind
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vectors at each station over a longer period and then removed this mean vector from the wind
data at each station. This mean spatial variability is disorganized in the Iowa network. Perhaps
each station is influenced by local surface conditions. However, the differences of the wind
vector between stations could not be related to local crop type or row orientation. The experi-
ment-averaged spatial variability of the wind field for the CASES99 network is related to very
small local changes in surface elevation. The spatial variation across the network is most orga-
nized for the Utah network. The removal of the wind velocities averaged over the entire field
program (Table 1, FP) reduces the horizontal diffusivity by only about 6–7% for the Iowa and
Utah networks. The removal of the experiment means actually increases the diffusivity for the
CASES99 network by about 40% suggesting that the surface heterogeneity partially counter-
acts horizontal diffusion associated with transient submeso motions, for unknown reasons.

The removal of the 10-h averaged winds filters out the night-to-night variability of the
mean circulation and removes the influence of the micro-siting that varies from night to night
due to wind direction changes. This removal reduces the submeso diffusivity by almost 40%
for the Iowa network and a little more than 15% for the Utah network, but had no impact on
the diffusivity for the CASES99 network. Evidently, the impact of removal of the stationary
part of the flow on the horizontal diffusivity depends on the network; general conclusions
are not possible.

5.3 Averaging time

The above calculations include motions between 1 min and 1 h. To isolate the influence of the
larger time scales, we have removed the 10-min averaged flow computed from nonoverlapping
windows. This removal of motions on time scales <10 min reduces the horizontal diffusivity
by about 20%, the exact decrease varying with network and calculation method. This time
averaging reduces the flux error (6) in Sect. 5.5. Such averaging may be preferable in terms
of sampling errors, but introduces sensitivity of the diffusivity to the exact scales removed.

5.4 The between-network variation

The sensitivity of the horizontal diffusivity to the details of the method of calculation indicates
that the diffusivity is computed with at least a factor of two uncertainty. Like the diffusivity
itself, this sensitivity varies substantially between networks. Notice that the sensitivity of the
diffusivity to the different methods listed in Table 1 for the Iowa and CASES99 networks
occurs mainly through changes of σq while the magnitude of the variability of the wind field
σu is less sensitive to method changes. This result implies that the different methods lead to
different particle displacement statistics mainly because the value of q at the sampling line
is determined by the perpendicular particle travel distances from the particle origin. This in
turn implies that the different calculation methods emphasize different horizontal scales. For
the Utah network, the horizontal diffusivity is more sensitive to the variation of σu , compared
to the other two networks, thus preventing general conclusions.

5.5 Random error

The randomness in the initial particle positions leads to small order of 1% differences between
simulations. A more important random error occurs due to large differences between hourly
records and the finite number of hourly records. The significance of the diffusivities can be
assessed by estimating the relative standard error of the flux
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SE = σF

|F |√(N )
(6)

where F is the one-hour flux, σF is the between-hour variation of F , |F | is the absolute
value of the flux averaged over the entire field program and N is the number of one-hour
records. The relative standard error does not qualify in terms of a random ensemble process
since the one-hour records come from a variety of synoptic regimes. However, SE will serve
as a relative measure of variability and uncertainty of the mean flux. This error measure is
typically 10% for the submeso flux, suggesting that the flux values averaged over the entire
field program are statistically significant. The relative standard error is small compared to
the other uncertainties discussed above. Using the entire year of data for the Utah network
decreases the relative standard error to only 2% and also increases the averaged diffusivity
by about 30%, partly due to stronger winds during the winter compared to the month of June
selected for this study.

6 Dependence on scale and ambient conditions

The diffusivity presumably depends on both time and spatial variations of the flow. Anfossi
et al. [1] and Vickers and Mahrt [21] found that the kinetic energy of the mesoscale motions
based on time variation did not depend significantly on wind speed or stability. However,
information on time variation cannot be used to infer spatial variation. For the Iowa net-
work, the horizontal diffusivity for winds >2 ms−1 is about twice that for winds <2 ms−1,
although the scatter is large (Fig. 3). The ratio of the averaged strong-wind horizontal dif-
fusivity to the weak-wind horizontal diffusivity is about 1.6 for the Utah network, 1.2 for
the CASES99 network, and near unity for the sparse Utah Northwest network. The large
scatter and negative values of the diffusivity for some of the records (Fig. 3) result partly
from the fact that the sampling problem for submeso motions is more severe than that for the
turbulence, which occurs on smaller spatial scales (greater sample size). In addition, some or
most of the types of submeso motions may not be augmented by wind speed. The cause of
potential augmentation is not known although stronger wind speed corresponds to stronger

Fig. 3 Dependence of the hourly
submeso diffusivity on the speed
of the network-averaged wind
vector for the Iowa Network. The
large scatter is partly due to
inadequate sampling of the
submeso scale motions for
individual hours. The large
scatter may mask an increase of
the horizontal diffusivity with
increasing speed. The scatter is
even greater for the other three
networks
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Fig. 4 The increase of the horizontal diffusivity with the size of the network based on averaged values of the
horizontal flux for the CASES99 (C), Iowa (I), Utah (U) and Utah Northwest (UNW) networks

shear instability and possibly more gravity wave activity. For the strongest wind cases, the
turbulence might directly contribute to some of the wind variance on time scales >1 min.

The horizontal diffusivity probably increases with the range of scales captured by the
network (Fig. 4), consistent with the increase of the horizontal diffusivity with the network
size for the 4 networks in Table 1. However, the diffusivity increase by about two orders of
magnitude between the two smaller networks and the two Utah networks, which is probably
related to the surrounding topography. The values of σu∗ average 3–4 times larger for the
Utah network compared to those for the Iowa and CASES99 networks. The greater kinetic
energy of submeso motions in complex terrain is documented in [10].

7 Daytime case

The use of the longer time step of 10 min for the unstable cases leads to greater particle loss
through the boundaries of the domain. Therefore, in order to maintain an adequate particle
sample size, 500 new particles are randomly released after each 10-min time step throughout
the simulation period from 1100 to 1500 local time.

Since the turbulence is larger scale in the daytime convective boundary layer, the range
of submeso scales between the largest turbulence scales and the network width is smaller
compared to the nocturnal boundary layer. However, the larger central scale of the submeso
motions in the daytime boundary layer leads to larger horizontal particle displacements and
therefore larger perturbations of q . The larger q fluctuations together with stronger velocity
fluctuations correspond to significantly larger horizontal diffusivities for the daytime case. For
the Iowa network, the average daytime horizontal diffusivity is an order of magnitude larger
than that for the nocturnal boundary layer, but the relative sampling error, SE , is almost order
of unity. For the Utah network, the daytime horizontal diffusivity is about 2.5 times larger than
the nocturnal value, on average and the relative sampling error is approximately 0.3. Since the
sampling is inadequate for the Iowa network and the small CASES99 network could not be
used for daytime conditions, we are unable to form definite conclusions for the daytime case.

8 Conclusions

Four networks of wind observations ranging from 500 m width to approximately 40 km width
were used to estimate the horizontal diffusivity due to nocturnal submeso motions. Estimation
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of horizontal gradients of scalars from nocturnal observations is problematic for much of the
data due to complex spatial variation of scalars and inadequate spatial resolution. We have
instead released simulated particles into the observed wind field. The particles are assigned
values of a conservative variable based on the particle origin and a specified horizontal gra-
dient. While both the coarse station spacing and particle technique limit the accuracy of
the estimates of the horizontal flux (Sect. 4), the estimates do provide the first systematic
evaluation of the horizontal diffusivity from observations.

The resulting horizontal diffusivities increase modestly with the range of scales of motions
resolved by the data networks, but are much larger for the networks embedded in complex
terrain. The averaged horizontal diffusivity increases from <5 m2 s−1 for a network of 500 m
width with relatively flat terrain to 500 m2 s−1 for a network a little more than 10 km across
surrounded by modest mountains extending 200–500 m above the basin. The horizontal
diffusivities sometime exhibit a tendency to increase with wind speed. We have avoided
constructing an actual formulation for use in numerical models; however, Table 1 includes
numerical information for initial guidance.

None of the networks used in this study were designed for estimation of the horizontal
diffusivity. Finer station spacing is required to more completely resolve the submeso flow and
detect horizontal decoupling due to cold pools. Longer operation of the network is required,
particularly to obtain an adequate sample for examination of the dependence of the horizontal
diffusivity on other parameters.
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