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Abstract Mercury emissions from forest fires in countries bordering the Mediterranean
Sea have been estimated on the basis of satellite observations for the year 2006. The assess-
ment has been done by means of the Moderate Resolution Imaging Spectroradiometer
(MODIS) products (MOD12Q1, MOD14A2, MOD15A2, MOD44B). Estimates show that
wild fires have burnt 310,268 ha in the Region, affecting by 45% the Mixed Forest and by
37% the Evergreen Needleleaf Forest and the Evergreen Broadleaf Forest. The amount of
biomass burned was about 66,000 Mg for the Evergreen Needleleaf Forest, 72,000 Mg for the
Evergreen Broadleaf Forest and 196,000 Mg for the Mixed Forest. The total amount of mer-
cury released to the atmosphere in the Mediterranean countries accounted for 4.3 Mg year−1

with Italy, France, Austria, Bulgaria, Algeria, Spain and Croatia being the most contributing
countries with annual emission ranging from 330 to 970 kg year−1. The maximum release of
Gaseous Elemental Mercury (GEM) and particulate mercury (Hg(p)) in the region occurred
in July with 1,218 kg. The uncertainty of our estimates is comparable with that associated to
current assessments of mercury emissions from major industrial sources.

Keywords Remote sensing · GIS · Europe · Northern Africa · Western Asia · Forest fires ·
Emissions · Mercury

1 Introduction

Mercury is released in the atmosphere from a multitude of natural and anthropogenic sources.
On global scale natural sources (including re-emission of previously deposited mercury)
account for about 40% of the total mercury released annually; however, this percentage may
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be much higher (up to 60% of the regional total) in the Mediterranean region where emissions
from forest fires and biogenic processes may be substantial [43,47,48].

The necessity of improving the estimate of mercury emissions from natural sources has
been widely recognized because there is a strong need in the development of integrated
modelling systems for assessing source–receptors relationships [27,36,49].

The assessment of truly natural Hg sources and their relative importance compared with
emissions from anthropogenic and natural sources is, then, a key step in studying the global
cycling of Hg [36]. The estimate of spatial and temporal distribution of mercury emissions
is, indeed, of fundamental importance to improve the performance of transportation and
chemical regional, as well as global scale, models [8,34,46,48].

The ratio between the relative contributions of these source categories may vary with
region and time of the year [42,48]. Recent studies report small differences between natural
and anthropogenic sources, suggesting that the contribution from the upper layer of soils and
geologic sources [23] as well as volcanic emissions [51] may have been underestimated, and
that the contribution from forest fires to the overall mercury atmospheric budget assessed for
several countries is increasing [8,16,66].

Among natural sources, mercury emissions from biomass burning have recently received
a growing attention due to their potential significant contribution to the regional atmospheric
mercury budget [3,8,16,17,50,57,62,66]. Every year, forest fires destroy a large area of
woodland (around 450,000 km2) [28] and during the last year (summer 2007) the impact of
forest fires in Italy, Greece, Algeria and Balkan Countries has caused significant social and
environmental damages. Most of these fires are caused by humans, however, there are many
natural factors such as drought, wind speed and topography, which influence the spread of
fires and govern their devastating effects. The relationship of the amount of burnt biomass
and surface with Hg emission to the atmosphere suggests that the control of fires may well
reduce Hg releases to the atmosphere.

Previous studies have estimated mercury emissions from forest fires on the basis of direct
or indirect measurements of Hg concentrations in smoke of boreal wildfires [2,16,17,62],
or tropical forest with intense phytomass burning [66]. Often, the amount of carbon released
from burnt biomass has been used as proxy to estimate Hg emissions [2,17,62]; while Hg
emission coefficients have been estimated directly or indirectly from burning vegetation
[8,16,57,69]. A recent paper by Cinnirella and Pirrone [8] has used the remote sensing (RS)
data to estimate mercury emissions from forest fires for the Russian Federation. The aim of
this paper is to estimate mercury emissions from forest fires in the Mediterranean region on
the basis of RS data, and specifically by using the Moderate Resolution Imaging Spectro-
radiometer (MODIS) datasets that provide information on cell-by-cell basis (1 × 1 km) at a
daily resolution.

2 Methodology

Mercury emissions from forest fires were estimated using a method that accounts for the
burnt surface, standing phytomass and mercury emission factors scaled down at pixel-
by-pixel level [8]. Following the considerations that the relative content of mercury in soil
and vegetation may vary substantially [18,64] and no measurements of the emission factors
for both soil and vegetation have been done during forest fires, a global Emission factor
(Ef ) was used in the assessment. Hence, mercury emissions from forest fires (QHg) (in kg of
mercury) were estimated as:

QHg = A · M · Ef (1)
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where A is the burnt area (ha), M is the amount of standing phytomass (kg ha−1) and Ef is the
Emission factor. Friedli et al. [17] found that Ef was in the range of 112 ± 17 µg of mercury
per kg of fuel and varies with phytomass type and other environmental factors (i.e. ambi-
ent temperature, relative humidity, mercury content in vegetation and soil). Due to limited
information available, a global Ef was adopted in assessing the spatial distributions of mer-
cury emissions, whereas the phytomass amount and burnt area were estimated on the basis of
remote sensing observations. Information derived from MODIS datasets (ftp://e0dps01u.ecs.
nasa.gov) have been processed under ArcGIS� (v. 9.0, ESRI) to estimate mercury emissions
from forest fires on a monthly basis. Integration has been done for those data having eight-day
interval detection, leading to the spatial and temporal definition of forest fires in the Med-
iterranean region. The use of MODIS allows captures data in 36 spectral bands ranging in
wavelength from 0.4 to 14.4µm and at varying spatial resolutions (2 bands at 250 m, 5 bands
at 500 m and 29 bands at 1 km). Therefore, it gives a better spatial and temporal resolution
of burnt areas and biomass amount and lower costs in pre- and post-processing of data [8].

2.1 Fires identification

When using satellite observations of burnt surfaces for assessing mercury emissions, most
of the uncertainty is related to the evaluation of the fire activity [54,69]. In the case of
MODIS, daily fire activity was identified by the MODIS Fire and Thermal Anomalies Prod-
uct [20,21,29]. Terra MODIS on board sensors detect fire locations using 4- and 11-µm
brightness temperatures. The detection strategy is based on the absolute detection if the
fire is strong enough; for weak fires it is based on the detection sensitivity relative to the
background value to account for the variability of the surface temperature and reflection
by sunlight. The MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1 km SIN Grid
product (MOD14A2) is a 1 km gridded composite of the most confident fire pixel detected
in each grid cell over an eight-day interval. The Collection 4 product for the year 2006 was
retrieved and only nominal and high confidence values (values 8 and 9 with a high quality
assessment) have been considered for fire detection. In addition, MODIS global land cover
product (MOD12Q1) [63] has been used to select those pixels pertaining to forest (Fig. 1).
IGBP classes 1–6 selected from MOD12Q1 represent very well the forest as showed in Fig.
2, whereas the ratio between forests as reported in FRA 2000 [13] and forests detected by
MODIS fit the line 1:1 with the exception of Spain.

The process of fire detection implied the development of a model constructed under the
Geoprocessor Programming Modeller (Fig. 3a). To obtain annual forest surface affected by
fires, dataset has been processed at monthly level.

2.2 Standing biomass

The estimate of forest biomass by remote sensing has been investigated in a number of stud-
ies at several spatial and temporal scales [4,6,33,40,41]. These studies present inferences
between ground data (i.e. diameter at breast height (DBH), basal area (G), stand volume (V))
and crown characteristics (i.e. Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Leaf Area Index (LAI)) and convert from forest inventory data into
biomass density estimates [58,70]. Forest volume inventories, however, emphasize only on
the commercially valuable wood, neglecting the whole aboveground biomass. Several studies
have developed methodologies for assessing the Biomass Expansion Factor (BEF) to convert
volume to mass and to account for the total biomass available on the ground [59]. Gracia
et al. [22] produced algorithms for the assessment of Aboveground Biomass Expansion
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Fig. 1 Forests surrounding the Mediterranean Sea. Details show forest of the southernmost part of the Italian
and Istrian peninsula. IGBP classes are, hereafter, reported as ENF (Evergreen needleleaf forest), EBF (Ever-
green broadleaf forest), DNF (Deciduous needleleaf forest), DBF (Deciduous broadleaf forest), MF (Mixed
forests), CS (Closed shrublands)
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Fig. 2 Ratio between forest surface as reported in the Forest Resource Assessment 2000 [13] and forests
detected by MODIS (MOD12Q1, IGBP classes 1–6). The data fit well the line 1:1 with the exception of Spain
(circled point)
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Fig. 3 The mercury emissions model developed under the Geoprocessor Programming Modeller (ARC-
GIS�). Sub-models of forest surface affected by fires (a), fuel load (b) and combustion efficiency (c) used to
calculate Hg emissions

Factors (ABEF), which represent the ratio between the aboveground biomass and the stem
volume.

In this work, the density of forest aboveground biomass (that is the fuel load) was estimated
at a spatial resolution of 1 km using foliage-based generalized allometric models developed
for European forests [35,39], ABEFs [22] and MODIS land data (Table 1). Aboveground
biomass was derived from foliage and wood biomass, which is a function of the percentage
vegetation coverage (MOD44B) for different forests [24], Leaf Area Index (MOD15A2) [32]
and land cover types (MOD12Q1) [63]. Details on the methodology used to estimate above-
ground biomass are reported in Zhang and Kondragunta [70]. Models for different forest
typologies were constructed to estimate fuel load at a spatial and temporal step of 1 km and
monthly level (Fig. 3b).

2.3 Emission factor

The limited information available on mercury emission factors for forest fires have led to the
selection of an Emission factor (Ef ) equal to 112 ± 17 µg kg−1 that was derived throughout
field experiments [17]. The Ef reflects the average value of other emission factors reported
in literature [8] and depends upon several factors. They include the mercury concentrations
in foliage, which varies with plants’ tissues, the efficiency of mercury released to the atmo-
sphere that is strongly controlled by the Hg substrate concentration, light intensity and air
temperature and the efficiency of phytomass combustion.

The combustion efficiency is a critical factor when estimating emissions from burnt
phytomass because high fire intensity and a complete combustion imply higher emissions of
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Table 1 Land Cover type 1 classes (IGBP) selected from MOD12Q1 and used for assessing the above-ground
biomass

Class IGBP (Class Type 1) Allometric model ABEFs LAI SLA

Biomass = a∗LAIb (Mg m−3) (m−2 m−2) (m2 kg−1)

(Mg ha−1)

a b

1 Evergreen needleleaf forest (ENF) 11.9 0.98 0.70 2.60 8.2

2 Evergreen broadleaf forest (EBF) 34.3 1.03 0.90 2.30 32.0

3 Deciduous needleleaf forest (DNF) 11.5 0.97 0.70 2.60 22.0

4 Deciduous broadleaf forest (DBF) 37.0 1.05 0.90 2.00 32.0

5 Mixed forest (MF) 15.0 1.01 0.80 2.30 20.1

6 Closed shrubland (CS) 37.4 1.09 1.10 2.30 12.0

Generalized allometric models (Biomass = a∗LAIb), aboveground biomass expansion factors (ABEFs) and
SLA have been associated to each Land Cover type

mercury as well as of other atmospheric pollutants (e.g. VOCs) to the atmosphere. Combus-
tion efficiency depends on fire intensity and duration, as well as on pre-fire biomass load and
water content [14,45,56,68]. It also depends upon the air/fuel ratio, fuel type, fuel chemis-
try, packing ratio for the fuel particles, surface area to volume ratio and method of ignition
[67,68]. The combustion efficiency was estimated to detect its contribution to the Emission
factor. Differences between subsequent scenes of the LAI product (MOD15A2) [32] were
estimated by calculating the percentage of change after the fire event.

Having the above in mind, monthly atmospheric mercury emissions from forest fires in
Southern Europe, Northern Africa and Western Asia (20–50N, −15–50 W) have been esti-
mated for the year 2006.

3 Results and discussion

Spatial and temporal distributions of forest fires in the Mediterranean region are reported in
Fig. 4a, which highlights those regions with high frequency in the occurrence of forest fires.
The total forest area impacted by wild fires in 2006 was 310,268 ha (Table 2) which was sim-
ilar to that reported for 1990–1999 and 2000–2005 (∼450,000 ha) periods. Suspected values
are those reported for Austria (1,242 ha against an average of 74 ha) and Spain. The latter
shows a value that is greater than those provided by official statistic data which accounts for
143,990 ha (www.mma.es). The significant difference might be due to the misclassification
of EBF, which is about 50% of the burnt forest, and the correct detection of burnt surface.
The misclassification of EBF is due to Collection 4 product anomalies that mismatch MODIS
surface reflectance and algorithm retrieval over evergreen broadleaves [63]; anomalies have
been adjusted with Collection 5. In addition, in the case of Mediterranean forests a high
distinction between burnt and not burnt areas is provided maximizing Surface/Brightness
temperature during the compositing technique [7].

Nearly 45% of burnt surface was MF (Fig. 4b), whereas ENF and EBF accounted for
a 37% totally. Spain, Algeria, Italy, France and Turkey are among the first six impacted
countries with EBF as the most fire affected forest with 107,500 ha followed by MF with
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Table 2 Burnt forest area (ha) in
2006 estimated from MODIS
satellite images

Averages for 1990–1999 and
2000–2005 periods are derived
by Cinnirella and Pirrone [8]

Country 2006 1990–1999 2000–2005

Albania 103 1,076 12,339

Algeria 43,467 54,689 55,763

Austria 1,242 74 73

Bosnia and

Herzegovina 103 973 529

Bulgaria 4,761 6,037 22,268

Croatia 724 8,619 51,796

Cyprus 103 274 3,411

Egypt 207 − −
France 9,625 22,731 25,222

Greece 6,831 47,054 48,415

Hungary 517 1,289 1,467

Israel 0 5,501 3,053

Italy 15,420 118,795 69,333

Libya 0 31 31

Macedonia 1,345 3,605 9,968

Morocco 2,794 3,340 −
Portugal 65,097 332 136,976

Romania 1,759 220 2,369

Slovakia 828 615 843

Slovenia 103 615 468

Spain 200,259 159,798 137,308

Switzerland 517 451 89

Syria 207 − −
Tunisia 103 1,423 1,423

Turkey 9,521 10,450 9,435

Yugoslavia 724 2,835 5,717

77,500 ha and ENF with 61,500 ha. In Algeria and Spain EBF represented 46–48% of fired
forests, whereas in France, Greece, Italy and Turkey MF accounted for 40–78% of total burnt
forests (Fig. 4c).

The MOD14A2 product resolution does not allow a detailed mapping of forest fires (i.e.
district or province level), nevertheless 1 km spatial resolution is considered high spatial reso-
lution in atmospheric modelling at regional level for which a 5–10 km resolution is generally
adopted [10,19,26,31].

The MODIS sensor allows mapping of fires of at least 50 ha (∼700 m resolution) and
in the Southern EU, areas of forest fires bigger than 50 ha accounts for about 75% of the
total burnt area [26]. In our case, the total amount of forest surface destroyed by fires should
be considered conservative, because small forest fires (<50 ha) are coarsely detected and
Mediterranean forest surface is frequently fragmented.

Standing biomass shows variations in space (Fig. 5) and time and, as expected, is signif-
icantly associated with the forest typology (Fig. 6). On average, ENF have 25 Mg ha−1 of
aboveground biomass, EBF 24 Mg ha−1, DBF 18 Mg ha−1, MF 29 Mg ha−1 and CS accounts
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Fig. 5 Distribution of standing biomass in countries bordering the Mediterranean Sea
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for 17 Mg ha−1. The magnitude of our estimate is in agreement with that estimated by Zhang
and Kondragunta [70], Michel et al. [38] and Chiesi et al. [5] that reported similar data for
similar biomes in the United States and India. On the contrary, very different values have
been reported in the Mediterranean with ENF of 41 Mg ha−1 and EBF of 49 Mg ha−1 [5,22].
Total burnt biomass in Algeria, Spain, France, Greece, Italy and Turkey has been estimated
to be 2,677,000 Mg that is mainly derived from EBF and MF forests (around 1,900,000).

Italian, Austrian, Slovenian and Croatian forests hold more than 60% of total biomass,
while the surface of forests in African countries is generally very limited. The amount of
standing biomass in the Mediterranean region might be underestimated because the sub 1 km
grid scale heterogeneity is very frequent. Heterogeneity is introduced by a variety of factors,
including forest age, vegetation association and conditions, site topography and pedology,
climate and historical disturbance. The Mediterranean landscape heterogeneity, which has
a sub-kilometre scale, suggests that the validation data should be carefully aggregated by
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averaging weighted areas to obtain the aboveground biomass estimates as experienced for
the Net Primary Production estimate [55,65].

Errors in validating data, which are related to several tasks of data handling and gathering,
including classification, measurements, sampling and modelling, can be reduced by selecting
the appropriate number of classes (error will decrease as the number of classes decreases, but
highly aggregated classes may subsume heterogeneity relevant to scaling biomass), assess-
ing the aboveground biomass (many components of biomass are difficult or impossible to
quantify because of their inaccessibility), selecting the most representative sample plots (to
obtain the true mean and distribution of the classes) and controlling the process (process-
based aboveground biomass estimates are typically driven by meteorological data) [65].

The uncertainty originated in the estimate of standing biomass from inventory data is
very high and affects considerably the final estimate of mercury emissions. The accuracy in
estimating the timber density my reach ±30% [1], leading up to a 50% increase/decrease of
the emissions [8].

Standing biomass density associated with the combustion efficiency contains the highest
uncertainty factor in the mercury emission estimates [8,37]. The uncertainty depends upon
several factors including fuel type, fuel load, fuel chemistry, fuel moisture content, pack-
ing ratio for the fuel particles, surface area to volume ratio and method of ignition and is
nearly ±50%. Fire dynamics and combustion efficiency should be considered in the overall
uncertainty estimate [44]. Differences on fire typology (surface, crown, and total) of for-
ested areas change the amount of burnt phytomass leading to a lower or higher Hg emission.
The latter was combined with the combustion efficiency for which is generally assumed
100% consumption for litter and herbaceous phytomass, 60% consumption for shrub and
tree regeneration, 100% consumption for canopy foliage and 50–65% consumption for can-
opy fine branchwood. In our case, the use of MOD15A2 product is a simple way to account
for vegetation consumption but it does not consider the amounts of various fuel types con-
sumed. Indeed, crown fires, affecting the barks and twigs, represent only 20–30% of fires in
Russia [9,61], but it may represent more than 90% in Canada [15,30]. However, mercury
released to the atmosphere from vegetation is primarily related to mercury concentrations in
foliage [11,12,52,53,60] leading to the consideration that MOD15A2 is a useful dataset to
estimate combustion efficiency product although is approximate.

Mercury emissions from forest fires in 2006 have been estimated for Mediterranean-rim
countries (sensu lato) (Fig. 7). Fires occurred in Portugal and Spain do not had the same
impact on Hg emissions as in Italy and France (bar chart in Fig. 7), despite the higher number
of fires that occurred in the Region. The relevance of standing biomass well explains the
difference. In 2006 the most affected areas were the North-Eastern Iberian Peninsula, the
southern part of Italy, the northern part of Algeria, the western part of Russia and middle-east
countries facing the Sea. Due to the Mediterranean climatic trend, the central months of the
year have contributed substantially to the total annual budget (pie charts in Fig. 7), with
nearly 75% of mercury has been released in May, June and July.

Table 3 summarizes monthly Hg emissions for countries within the Mediterranean domain.
The total of estimated annual emissions (4.3 Mg year−1) is higher than that reported in our
previous estimate (2.7 Mg year−1) [8] that was based on a ground-based approach. The
primary reason for the higher value predicted for 2006 is the lack of data (i.e. burnt surfaces,
biomass) for several countries (e.g. Algeria, Egypt, Syria) for the 1990–2004 period.

Italy, France, Austria, Bulgaria, Algeria, Spain and Croatia are the countries with the
highest emissions ranging from 330 to 970 kg in the year 2006. It is not surprising that the
large burnt area of Spain (∼200,000 ha) does not contribute in the same manner as the smaller
Italian and France areas (∼15,000 and ∼9,000 ha, respectively). The burnt forest typology
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the annual emission, whereas pie-charts represent monthly emissions for the period June to September. Dots
represent the location of mercury emissions from forest fires

(mainly EBF in Spain while mainly MF in Italy and France) and the burnt biomass explain
the different contributions.

Following the burnt surface trend in 2006, the maximum release of GEM and Hg(p)
from forest fires occurred in July with 1,218 kg. This is of paramount importance when
considering the cycles of oxidation, deposition, reduction and re-emission in which Hg0(g)
is involved and, therefore, in its lifetime. The lifetime of Hg0(g) in the MBL, and in the
atmosphere in general, has implications not only for the way in which Hg transport is
considered but also for the contribution which evasion of Hg0 from the sea makes to the
global Hg budget. In a recent paper Hedgecock et al. [25] proposed a revision of the life-
time for Hg0 that would occur when air temperatures are low and sunlight and deliques-
cent aerosol particles are plentiful. Thus the lifetime for clear-sky conditions was estimated
to be actually shorter at mid-latitudes and high latitudes than near the equator, and for
given latitude and time of year, cooler temperatures enhance the rate of Hg oxidation. Un-
der typical summer conditions (for a given latitude) of temperature and cloudiness such
as those occurring in July, the lifetime of Hg0(g) in the MBL is calculated to be around
10 days.

4 Conclusions

The aim of this paper was to improve a first assessment of mercury emissions from forest
fires in the Mediterranean Region that was based on direct forest surveys and provided infor-
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mation at country level [8]. The step ahead of this study was to estimate monthly mercury
emissions from forest fires and provide a much more robust dataset on burnt surface, typolo-
gies and amount of standing biomass on cell-by-cell basis (1 km×1 km). Mercury emissions
from forest fires in 2006 have been found higher than that reported in our previous estimate
because of the more detailed spatial and temporal dataset for all countries surrounding the
Mediterranean.

Estimated emissions presented in this work are affected by an acceptable degree of uncer-
tainty comparable to the uncertainties of continental scale emission inventories and can still
be useful to regional air quality modelling. Uncertainties related to the assumption of an
undifferentiated emission factor for each forest type and time of the year represent an impor-
tant gap for those who attempt to perform an assessment of mercury emissions from forest
fires by using RS data.

Major implication of this assessment is that Hg emissions from forest fires reveal a funda-
mental role in global mercury cycle because of the time of the year when these events occur.
Indeed, typical summer conditions of temperature and cloudiness affect the Hg0(g) lifetime
in the MBL that drives the evasion of Hg0 from the sea surface and, therefore, affects the Hg
global budget. Further studies on Hg emission from forest fires should take into account the
following topics:

• the Ef that in our assessment was assumed from literature. Ef was derived from direct mea-
surements of forest fires over a conifer forest (Black spruce), which shows a 15% variation
(112 ± 17 µg kg−1) [17]. New direct measurements of Hg emissions during forest fires
are necessary to extend the database on Ef in different pedological and forest contexts;

• the error associated with estimates of burnt areas is generally within 15–30%. Recent
release of MODIS product (v. 5) allow to estimate burnt areas with a better accuracy
therefore it should be tested to obtain datasets with a lower uncertainty;

• the stock of phytomass, in terms of timber density, is often underestimated by 30%.
Improvement of estimates can be obtained by calibrating satellite observations with in
situ measurements and developing more detailed allometric models.

Acknowledgements This study is part of the MERCYMS project founded by the European Commission
DG-Research (Contr. No. EVK3-2002-00070).
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