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Abstract. The transport from the upper mixed layer into the pycnocline of particles with
negative buoyancy is considered. Assuming the hydrodynamic parameters to be time-
independent, an adjoint model is resorted to that provides a general expression of the
residence time in the mixed layer of the constituent under study. It is seen that the res-
idence time decreases as the settling velocity increases or the diffusivity decreases. Fur-
thermore, it is demonstrated that the residence time must be larger than z/w and smaller
than h/w, where z, h and w denote the distance to the pycnocline, the thickness of the
mixed layer and the sinking velocity. In the vicinity of the pycnocline, the residence time
is not necessarily zero; its behaviour critically depends on the eddy diffusivity profile in
this region. Closed-form solutions are obtained for constant and quadratic diffusivity pro-
files, which allows for an analysis of the sensitivity of the residence time to the Peclet
number. Finally, an approximate value is suggested of the depth-averaged value of the
residence time.
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1. Introduction

Wind stress or convective processes cause the development of a turbulent
– or mixed – layer adjacent to the surface of estuaries, lakes or seas. In
this region, vertical mixing is of a significant importance. The lower bound-
ary of the mixed layer often is a region exhibiting strong stratification, the
pycnocline; in the latter, turbulent mixing is negligible. Therefore, assum-
ing horizontal homogeneity, a non-buoyant particle is likely to remain for
a long time in the upper layer. However, particles such as phytoplankton

∗Corresponding author. E-mail: ericd@astr.ucl.ac.be



26 ERIC DELEERSNIJDER ET AL.

cells – or aggregates of them – silts and marine snow generally have a den-
sity larger than that of water. As a result, they tend to migrate downward.
In other words, the fate of sinking particles crucially depends on turbulent
mixing and settling: the former tends to homogenize their concentration
over the surface layer and the latter eventually allows the particles under
consideration to leave the surface layer. To determine the relative impor-
tance of these phenomena, it is appropriate to determine the timescales
over which they can significantly alter the concentration in the surface layer
of a cloud of settling particles.

If H and K denote typical values of the thickness of the mixed layer
and the vertical eddy diffusivity, the time needed to homogenize the con-
centration of a given constituent is of the order of Tm = H 2/K. On the
other hand, if W is a typical value of the downward migration velocity,
the timescale characterising settling is Ts = H/W , i.e. the time needed for
all the sinking material to enter the pycnocline assuming turbulent diffu-
sion to be negligible. The ratio of the mixing to the settling timescales is a
dimensionless parameter known as the Peclet number, Pe=Tm/Ts =WH/K

(e.g. [1–3]). If Pe � 1, settling is more efficient than mixing and the con-
centration of settling particles is likely to exhibit significant variations over
the height of the upper layer. By contrast, if the mixing timescale is much
smaller than that related to settling (Pe � 1), it is appropriate to assume
that sinking particles are evenly distributed throughout the surface layer.
Then, between the air-water interface and the pycnocline, the gradient
of the concentration of settling particles may be neglected, a simplifying
assumption that was resorted to in a number of mathematical develop-
ments [2–5]. Unfortunately, this simple approach is not always valid, for the
Peclet number is not necessarily small.

The depth of the mixed layer may lie in the range 101 −102 m, while the
order of magnitude of the vertical eddy diffusivity is 10−3 −10−1 m2 s−1 (e.g.
[6–8]). Using Stokes’ formula (e.g. [4, 9]), the settling velocity may be esti-
mated to range from 1 to 100 m day−1, i.e. W ≈10−5 −10−3 m s−1 [3–5, 10].
Thus, though the Peclet number may be as small as 10−3, its maximum is
of order 102, i.e. a value much larger than unity. At this point, one might
object that the eddy diffusivity and the thickness of the mixed layer are
not independent of each other, so that it is not appropriate to estimate the
upper bound of the Peclet number by taking the smallest value of K and
the maximum of H. Therefore, the range of acceptable values of Pe actu-
ally is narrower than that suggested above. Nonetheless, values of the order
of unity, or larger, cannot be ruled out a priori. Therefore, in some circum-
stances, models are needed that are capable of predicting explicitly vertical
profiles of concentrations in the upper turbulent layer (e.g. [10, 11]).

If the settling velocity increases, the rate at which particles sink into
the pycnocline also increases. This is obvious. However, no elementary
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reasoning may be used in order to elucidate the role of turbulent diffu-
sion. If the Peclet number is very small, it is well known that the par-
ticles flux leaving the upper mixed layer tends to be independent of the
eddy diffusivity and is approximately equal to the product of the settling
velocity and the depth-averaged particle concentration [2, 3, 5]. However,
if the Peclet number is not small, it is not clear a priori whether mixing
tends to increase or decrease the number of particles at the bottom of the
mixed layer, i.e. the number of particles that are on the verge of leaving the
upper layer by entering the pycnocline. It is believed that no general for-
mula can be derived that would predict the flux of material sinking into
the pycnocline, since the latter largely depends on the details of the initial
conditions and the relevant hydrodynamic parameters. Fortunately, another
measure exists of the rate at which particles leave the upper layer. It con-
sists in estimating their residence time, i.e. the time they spend in the mixed
layer. Doing so provides no details on the time evolution of the particle
flux leaving the upper layer, but allows one to gain significant insight into
the role of turbulent diffusion. In particular, an answer can be given to the
following question: does the residence time increase or decrease if the eddy
diffusivity increases? This issue will be addressed hereinafter without invok-
ing any assumption as to the order of magnitude of the Peclet number and
the theoretical results derived below will be of use for many questions of
practical importance in oceanography, such as the understanding of how
“sinking phytoplankton species manage to persist” (e.g. [12]).

The present article is organised as follows. First, the model for the set-
tling and diffusion of sinking material is outlined (Section 2). Next, in Sec-
tion 3, a method for estimating the residence time is established. Then, the
Pe→0 and Pe→∞ limiting cases are investigated. In Section 4, it is seen
that the adjoint model of Delhez et al. [13] leads to a general expression of
the residence time. Some of its properties are derived and illustrated (Sec-
tion 5) by considering various profiles of the eddy diffusivity. In Section
6, the behaviour of the residence time in the vicinity of the pycnocline is
examined. Finally, concluding remarks are made as to the usefulness of the
analytical results derived in the present study (Section 7).

2. Settling and Diffusion Model

Consider a passive – or inert – constituent settling in a horizontally homo-
geneous mixed layer adjacent to the surface of a water body. The lower
boundary of the surface layer is a pycnocline, in which turbulent diffusion
is assumed to be negligible. The sinking velocity, w, and the thickness of
the mixed layer, h, are assumed to be constant. Let z denote the vertical
coordinate, which is equal to 0 and h at the top of the pycnocline and the
water–air interface, respectively, so that the domain of interest is defined by
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inequalities 0≤z≤h (Figure 1). This way of defining the vertical coordinate
is not standard, but is well suited to the problem being tackled.

At any time t, the concentration of the constituent under consideration,
C(t, z), satisfies the following advection–diffusion equation:

∂C

∂t
= ∂

∂z

(
wC +κ

∂C

∂z

)
, (1)

where κ denotes the eddy diffusivity. For the purposes of the present
study, it is convenient to consider that the latter does not depend on time,
but further assuming that it is also independent of the vertical coordi-
nate would be too strong an idealisation [6, 8]. Hence, the eddy diffusiv-
ity is assumed to be a non-negative function of the vertical coordinate, i.e.
κ(z)≥0.

It is hypothesised that there is no flux of the constituent under study
through the air–sea interface, implying that the following boundary condi-
tion must be applied:[

wC +κ
∂C

∂z

]
z=h

=0. (2)

As the pycnocline is a barrier to turbulent diffusion, the turbulent diffusion
flux must be prescribed to be zero at the bottom of the mixed layer:[

κ
∂C

∂z

]
z=0

=0. (3)
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Figure 1. Sinking-diffusion model: illustration of its geometry, parameters and
boundary conditions.
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Upon specifying the initial profile of the concentration, C(0, z), the latter
may, in principle, be obtained at any point and any time t > 0. How-
ever, closed-form solutions are hard to derive for the present partial differ-
ential problem, especially when the eddy diffusivity is not constant in
space. Fortunately, as will be seen, determining explicitly the time evo-
lution of the concentration is not necessary to estimate the residence
time.

3. Residence Time

The amount of the constituent under study present at time t in the domain
of interest is

m(t)=
∫ h

0
C(t, z)dz, (4)

a variable that, for simplicity, will be termed “mass”. Integrating equation
(1) over the mixed-layer, using the boundary conditions (2) and (3), it is
readily seen that the mass decreases monotonically as follows:

d
dt

m(t)=−wC(t,0). (5)

Time t is the residence time of the mass leaving the domain during the
time interval [t, t +�t ], with �t →0. The amount of mass that has left dur-
ing this period is −[m(t +�t)−m(t)]. Then, the mean residence time of the
material that was present in the mixed layer at time t = 0 is given by the
mass-weighted average of the elemental residence times [14], i.e.

Θ =− 1
m(0)

∫ 0

m(0)

t dm. (6)

This expression may be transformed to (e.g. [13])

Θ = 1
m(0)

∫ ∞

0
m(t)dt. (7)

Without any loss of generality, it may be assumed that m(0)=1. Then,
substituting (4) into (7) yields

Θ =
∫ ∞

0

∫ h

0
C(t, z)dz dt. (8)

If the Peclet number tends to zero, i.e. if mixing occurs much faster than
sinking, then the initial profile of concentration is of negligible importance,
since the concentration becomes almost homogeneous over the mixed layer
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in an arbitrarily short time – and remains approximately homogeneous as
time progresses. This implies

m(t)∼hC(t), P e→0. (9)

Then, substituting the latter expression into the mass budget (5) leads to

d
dt

C(t)∼−w

h
C(t), P e→0. (10)

As a result, the concentration of the sinking material under consideration
decreases exponentially

C(t)∼ e−wt/h

h
, P e→0. (11)

By combining (8) and (11), the residence time is readily obtained:

Θ ∼ h

w
, Pe→0. (12)

So, as the Peclet number tends to zero, the residence time is asymptotically
independent of the eddy diffusivity and the initial concentration profile [13–
16].

If vertical diffusion is negligible (P e→∞), then, as time progresses, the
initial concentration profile is shifted downward at velocity w, so that the
concentration satisfies

C(t, z)=
{

0 for h−wt <z,

C(0, z+wt) for z≤h−wt.
(13)

As a result, the residence time is

Θ =
∫ h/w

0

∫ h−wt

0
C(0, z+wt)dz dt, (14)

implying that, in contrast to the limit Pe→0, the residence time critically
depends on the initial concentration C(0, z).

Except when the Peclet number is very small, the residence time signifi-
cantly depends on the initial concentration profile. However, it is readily
seen that the residence time Θ of particles whose initial concentration is
C(0, z) may be expressed as

Θ =
∫ h

0
C(0, ξ)θ(ξ)dξ, (15)

where θ(z0) is the residence time of material that is initially concentrated at
the distance z0 to the pycnocline. In other words, θ(z0) is the residence time
ensuing from the initial concentration C(0, z)= δ(z− z0), where δ(z− z0) is
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a Dirac impulse located at z0. From here on, as in [17] or [13], the math-
ematical developments will aim at determining θ(z0), from which the gen-
eral residence time � may be obtained, for any initial concentration profile.
Although θ(z0) is a timescale of a specific nature that may be regarded as
a function of the position rather than the initial concentration, it will be
termed hereinafter “residence time” for the sake of simplicity. In the limit
Pe → 0, θ and � tend to be equal to h/w, and, when sinking is domi-
nant (P e→∞), θ is asymptotic to an expression considerably simpler than
(14), i.e. θ(z0) ∼ z0/w. Rewriting the latter as a function of coordinate z,
the asymptotic results established so far may be summarized as follows:

θ(z)∼
{

h/w, P e→0,

z/w, P e→∞.
(16)

One cannot be satisfied with only the asymptotic limits for large and
small values of the Peclet number. It is desirable to obtain θ(z) for any
eddy viscosity profile and Peclet number. However, even for a constant
viscosity and an initial condition as simple as a Dirac impulse, the con-
centration C(t, z) cannot be obtained easily. Thus, determining first the
concentration at any time and position and, then, the residence time from
formula (8) is not the most convenient method. Nonetheless, as is shown
in the Appendix, this “direct” or “forward” approach (Table I) to deter-
mining the residence time may be somewhat modified so as to yield a gen-
eral expression of the residence time. The latter may also be obtained in an
easier way by resorting to the adjoint model method suggested by Delhez
et al. [13], which is part of the Constituent-oriented Age and Residence
time Theory (CART) (e.g. [13, 18, 19]). A brief description of CART and
some of its applications is available on the World Wide Web (www.cli-
mate.be/CART).

Table I. The equations of the direct/forward and adjoint problems, and the solution of
the latter.

Direct/forward problem Adjoint problem

Unknown Concentration: C(t, z) Residence time: θ(z)

Governing equation ∂C

∂t
= ∂

∂z

(
wC +κ ∂C

∂z

)
d
dz

(
wθ −κ dθ

dz

)=1
Initial condition C(0, z)= δ(z− z0) Not applicable

Boundary conditions

[
wC +κ ∂C

∂z

]
z=h

=0[
κ ∂C

∂z

]
z=0

=0

[
κ dθ

dz

]
z=h

=0

[
wθ −κ dθ

dz

]
z=0

=0

Solution C(t, z)= ? θ(z)= z

w
+ 1

w

h∫
z

exp

⎡
⎣−w

ξ∫
z

dζ

κ(ζ )

⎤
⎦dξ
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4. An Adjoint Model Approach

In accordance with the adjoint model approach of Delhez et al. [13], the
residence time θ(z) satisfies the following differential problem (Table I):

d
dz

(
wθ −κ

dθ

dz

)
=1, (17)

[
κ

dθ

dz

]
z=h

=0, (18)
[
wθ −κ

dθ

dz

]
z=0

=0. (19)

Integrating relation (17) over the vertical coordinate is straightforward.
Then, taking into account the boundary condition (19), the following first-
order differential equation is obtained:

wθ −κ
dθ

dz
= z. (20)

The solution of the latter that satisfies (18) is

θ(z)= z

w
+ 1

w

∫ h

z

exp
[
−w

∫ ξ

z

dζ

κ(ζ )

]
dξ. (21)

It is immediately seen that at the top of the mixed layer, z=h, the residence
time is equal to h/w, no matter the eddy diffusivity profile and magnitude!

If the settling velocity, eddy diffusivity and depth of the pycnocline are
known, the residence time profile may be obtained by means of the above
relation. In accordance with physical intuition, expression (21) indicates
that the residence time decreases if the settling velocity increases. On the
other hand, if the eddy diffusivity is increased, the residence time also
increases, a property that could not have been inferred from elementary
physical reasoning. In the non-diffusive limit (P e → ∞), the argument of
the exponential tends to zero, so that the residence time tends to z/w. On
the other hand, if vertical mixing is “infinitely” efficient (Pe→0), the expo-
nential tends to unity, so that

∫ h

z

exp
[
−w

∫ ξ

z

dζ

κ(ζ )

]
dξ ∼h− z,

wh

K
→0, (22)

which implies that the residence time tends to the constant w/h. These two
limiting case results are similar to those obtained by means of a different
approach in the preceding Section. This is reassuring as to the relevance of
general solution (21).
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The argument of the exponential in (21) is negative, implying that
∫ h

z

exp
[
−w

∫ ξ

z

dζ

κ(ζ )

]
dξ ≤h− z. (23)

As a consequence, the residence time is comprised between the non-diffusive
limit, z/w, and the infinite-mixing limit, h/w,

z

w
<θ(z)<

h

w
, (24)

implying that the average of the residence time over the height of the tur-
bulent layer,

θ̄ = 1
h

∫ h

0
θ(z)dz (25)

belongs to a rather narrow timescale interval (Figure 2),

1
2

h

w
<θ̄ <

h

w
. (26)

So, if the parameters of the processes under study are varied in such a
way that the Peclet number increases from arbitrarily-large to arbitrarily-
small values, the depth-averaged residence time increases by a factor of two
only. Here, it is worth underscoring an important property of θ̄ : comparing
(25) with (15), it is immediately understood that the depth-averaged resi-
dence time is the residence time of particles which are uniformly distributed
throughout the domain of interest at the initial time, i.e. particles whose
initial concentration is C(0, z)=1.
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of the mixed layer of the residence time. The minimum and maximum values are
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5. Illustration

The properties of the residence time established above may be illustrated by
considering a series of profiles of the eddy diffusivity. To do so, it is con-
venient to introduce dimensionless variables:

z′ = z

h
, κ ′ = κ

κ̄
, θ ′ = θ

h/w
, (27)

where κ is the average over the mixed layer of the eddy diffusivity, i.e.

κ = 1
h

∫ h

0
κ(z)dz. (28)

Using the latter, the Peclet number is naturally defined to be

Pe= wh

κ
. (29)

From now on, unless otherwise stated, only dimensionless variables will
be used, so that it is appropriate to drop the primes. Accordingly, the res-
idence time formula (21) transforms to

θ(z)= z+
∫ 1

z

exp
[
−Pe

∫ ξ

z

dζ

κ(ζ )

]
dξ, (30)

and it is readily seen that ∂θ/∂P e<0, z<θ(z)<1, and 1/2<θ <1.
If the eddy diffusivity is constant, κ =1, the residence time is (Figures 3

and 4)

θ(z)= z+ 1− e−Pe(1−z)

P e
, (31)

respectively. As mentioned earlier, selecting a constant eddy diffusivity is
not entirely consistent with the main features of turbulent processes in the
upper mixed layer. It is desirable that κ tend to zero as the bottom of the
mixed layer is approached so as to take into account the inhibition of tur-
bulence in the pycnocline. In addition, the maximum of the eddy diffusivity
should not occur at the surface; in the vicinity of the latter, κ may well be
rather small. A simple expression that satisfies these constraints is the fol-
lowing parabolic profile (Figure 3)

κ(z)=λz(1−αz), (32)

with 1/2 < α ≤ 1. The constant α is likely to be very close to unity, say
0.95 ≤α ≤ 1 (Burchard, personal communication, 2005), but smaller values
cannot be ruled out a priori. On the other hand, the constant1

λ= 6
3−2α

(33)
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Figure 3. The eddy diffusivity profiles for which the residence time is estimated
explicitly. All variables are dimensionless.
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is such that the depth-averaged eddy diffusivity is equal to unity, κ =1. If

µ= 3−2α

6
Pe, (34)

the residence time corresponding to eddy diffusivity (32) is (Figure 4)

θ(z)= z+ 1
α

(
αz

1−αz

)µ

B1−α,1−αz(1+µ,1−µ), (35)

where B1−α,1−αz(1+µ,1−µ) is a generalised incomplete beta function, i.e.

B1−α,1−αz(1+µ,1−µ)=
∫ 1−αz

1−α

σµ(1−σ)−µ dσ . (36)

For κ =1, the average over the mixed-layer thickness of the residence time
is (Figure 5)

θ = 1
2

+ 1
Pe

− 1− e−Pe

P e2
. (37)

Unfortunately, it seems that no closed-form expression of θ can be obtained
for quadratic eddy diffusivity profiles. Nonetheless, this variable can be esti-
mated numerically. The depth-averaged residence times corresponding to
all the eddy diffusivity profiles displayed in Figure 3 are so close to each
other that expression (37) may be regarded as an excellent approximation
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Figure 5. The average over the depth of the mixed layer of the residence time for
various eddy diffusivity profiles. All variables are dimensionless.
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of them all (Figure 5). On the other hand, for the linear eddy diffusivity
profile κ(z)=2z, the residence time and its depth-average are

θ(z)=
⎧⎨
⎩ z+ zPe/2 − z

1−Pe/2
if Pe �=2,

z− z log z if Pe=2
(38)

and

θ = 1
2

+ 1
2+Pe

, (39)

respectively. As is seen in Figure 5, the latter expression is also very close
to (37). Needless to say, neither constant nor linear diffusivity profiles are
physically acceptable and, yet, they seem to lead to approximate values of
θ that might be fairly reliable. Then, one may conjecture that the average
over the thickness of the mixed layer of the residence time is almost inde-
pendent of the diffusivity profile and is essentially a function of the Peclet
number, the simplest form of which might be (39). The profound reason
thereof is not known. It is worth pointing out, however, that the proper-
ties established above indicate that θ is independent of the eddy diffusivity
profile in the limits Pe → 0,∞, which probably diminishes the number of
degrees of freedom of the behaviour of the function θ(P e) between these
limits.

6. The Neighbourhood of the Pycnocline

The residence time associated with the quadratic eddy diffusivity (32) tends
to zero as the distance to the pycnocline decreases. By contrast, the resi-
dence time associated with a constant eddy diffusivity exhibits a different
behaviour in the vicinity on the lower boundary of the domain of inter-
est. For instance, at z=0, the residence time (31) is (1− e−Pe)/P e, a value
larger than zero. To gain some insight into the cause of this discrepancy, it
is useful to first examine the timescales characterising settling and mixing
near the bottom of the mixed layer. If the eddy diffusivity is asymptotic to
za (a ≥ 0) in the limit z → 0, then the time needed to mix the constituent
under consideration over a height of order z may be estimated as

τm ∼ z2

κ(z)/P e
∼ z2

za/P e
∼Pez2−a, z→0. (40)

The time needed to travel a distance z with a unit velocity is a relevant set-
tling timescale:

τs ∼ z, z→0. (41)
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The ratio τs/τm, which may be regarded as a local Peclet number, is then

τs

τm

∼ za−1

Pe
, z→0. (42)

If a >1, the ratio τs/τm tends to zero as z→0, implying that the particles
sink into the pycnocline so fast that turbulent mixing cannot have any sig-
nificant influence. Therefore, the residence time must tend to zero as the
bottom of the domain is approached. On the other hand, if 0≤a <1, tur-
bulent diffusion is more efficient than settling so that particles are likely to
disperse before they can all leave the domain by entering the pycnocline. As
a consequence, the residence time should tend to a finite, non-zero value in
the limit z→0. There is no clear answer, however, if a =1.

It is possible to develop a mathematically rigorous – though less phys-
ically appealing – approach to the behaviour of the residence time in the
limit z→0 that is valid for any a ≥0 and is consistent with the above rea-
soning based on the comparison of local timescales. If η(z) is the indefinite
integral of −1/κ(z), then expression (30) may be transformed to

θ(z)= z+ e−Peη(z)

∫ 1

z

ePeη(ξ)dξ. (43)

It is again assumed that κ(z)∼za, so that η(z)∼z1−a/(a−1) provided a �=1,
and η(z)∼− log z if a =1. This immediately leads to the value of the resi-
dence time at the lower boundary of the domain:

lim
z→0

θ(z)=
{

0 if a ≥1,

>0 if a <1.
(44)

So, the residence time in the vicinity of the pycnocline crucially depends on
how “fast” the diffusivity tends to zero.

7. Conclusion

Using the adjoint model approach of Delhez et al. [13], an expression was
derived from which the residence time at any point of the mixed layer may
be obtained. This formula is valid for steady-state hydrodynamics. If the
latter hypothesis does not hold true, the theory of Delhez et al. [13] may
again be resorted to. However, such a generalisation, though technically
straightforward, is likely to provide neither analytical solutions nor clear
conclusions, especially if particles that sank into the pycnocline can be re-
entrained back into the mixed layer as the latter deepens.

A detailed sensitivity analysis was carried out, showing that the resi-
dence time decreases as the Peclet number increases. At the top of the
mixed layer, the residence time was seen to be independent of the eddy
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diffusivity, whereas the profile of the latter is of a critical importance in the
neighbourhood of the pycnocline. Finally, it is conjectured that the aver-
age of the residence time over the thickness of the mixed layer, θ , is largely
independent of the space dependency of the eddy diffusivity and is given to
a good degree of accuracy by

θ ≈ h

w

κ +wh/4
κ +wh/2

, (45)

an expression in which only dimensional quantitie are employed, making it
ready for use once the relevant physical parameters are known.2 It must be
stressed that relation (45) is the dimensional counterpart of expression (39).
In other words, (39) and (45) are equivalent, but dimensionless variables
are used in the former while the latter resorts to dimensional quantities.

The present theory may be applied to particles that tend to float out
of the bottom mixed layer. No significant modifications are needed, except
that the vertical coordinate would then measure the distance to the top
of mixed layer and increase downward. In addition, the vertical velocity w
would denote the floating velocity rather than the settling one.

As is well known, Lagrangian transport models must include a term
taking into account the space variations of the eddy diffusivity (e.g. [20,
21]). Such models are not easy to validate for want of relevant analytical
solutions. However, an indirect validation may be possible: the residence
time of Lagrangian particles would be computed and compared with that
ensuing from the theory developed herein, for the latter is applicable to any
type of eddy diffusivity profile.

Appendix

Upon assuming that C(0, z) = δ(z − z0), the residence time θ(z0) may, in
principle, be obtained from integral (8). However, the latter requires the
knowledge of the concentration C(t, z) at any time t and position z. This is
generally impossible. This difficulty may be circumvented by first inverting
the time integration and space integration in expression (8), allowing the
latter to be transformed to

θ(z0)=
∫ h

0

∫ ∞

0
C(t, z)dz dt (A1)

Upon introducing the variable

C̃(z)=
∫ ∞

0
C(t, z)dt, (A2)

relation (A1) may be rewritten as follows:
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θ(z0)=
∫ h

0
C̃(z)dz. (A3)

No particle of the constituent under study remains in the domain of inter-
est in the limit t →∞, i.e. C(∞, z)=0. Taking this end value into account,
bearing in mind the initial value C(0, z) = δ(z − z0), Equations (A1)–(A3)
are integrated in time, yielding the following ordinary differential problem:

−δ(z− z0)= d
dz

(
wC̃ +κ

dC̃

dz

)
, (A4)

[
wC̃ +κ

dC̃

dz

]
z=h

=0, (A5)

[
κ

dC̃

dz

]
z=0

=0. (A6)

Lengthy calculations are necessary to derive the solution to (A4)–(A6).
Substituting the latter into (A3) eventually leads to

θ(z0)= z0

w
+ 1

w

∫ h

z0

exp
[
−w

∫ ξ

z0

dζ

κ(ζ )

]
dξ, (A7)

which may be rewritten as a function of z that is equivalent to the general
expression of the residence time provided in Section 4, i.e. formula (21).
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Notes

1. It is appropriate to bear in mind that dimensionless variables are being dealt with: the constant λ is
necessary for the average over the height of the mixed layer of the – dimensionless – eddy diffusivity
to be equal to unity, as is required by (27).
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2. In general, the eddy diffusivity cannot be estimated directly from in situ measurements. An estimate
that is hopefully acceptable and consistent with (32), assuming α = 1, is as follows: κ(z) = γ u∗z
(1−z/h), where γ ≈0.4 and u∗ are the von Karman constant and the surface friction velocity, i.e. the
square root of the ratio of the wind stress norm to the water density. Then, the depth-averaged eddy
diffusivity reads κ =γ u∗h/6, a value that can be substituted into (45), yielding

θ̄ ≈ h

w

2γ u∗ +3w

2γ u∗ +6w
.
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