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Abstract
Tracking individual animals through time using mark-recapture methods is the gold
standard for understanding how environmental conditions influence demographic
rates, but applying such tags is often infeasible due to the difficulty of catching animals
or attaching marks/tags without influencing behavior or survival. Due to the logistical
challenges and emerging ethical concerns with flipper banding penguins, relatively
little is known about spatial variation in demographic rates, spatial variation in demo-
graphic stochasticity, or the role that stochasticity may play in penguin population
dynamics. Here we describe how adaptive importance sampling can be used to fit age-
structured population models to time series of point counts. While some demographic
parameters are difficult to learn through point counts alone, others can be estimated,
even in the face of missing data. Here we demonstrate the application of adaptive
importance sampling using two case studies, one in which we permit immigration and
another permitting regime switching in reproductive success. We apply these methods
to extract demographic information from several time series of observed abundance in
gentoo and Adélie penguins in Antarctica. Our method is broadly applicable to time
series of abundance and provides a feasible means of fitting age-structured models
without marking individuals.
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1 Introduction

Understanding the survival and reproduction of organisms has traditionally required
the tracking of individuals through time, usually through bands, tags, or the addition of
distinguishing marks that persist through time (e.g., marks on turtle scutes) (Lebreton
et al. 1992; Williams et al. 2002). Mark-recapture methods are often challenging or
infeasible, either because capturing animals is difficult or because the marks them-
selves negatively impact fitness.Methods that allow for the estimation of demographic
parameters, such as age-structured survival and reproduction, without the need tomark
(or track by anymeans) individual animalswould greatly expand our capacity to under-
stand the population biology of many organisms. Point count data (e.g., abundance) of
key life stages (e.g., adults, chicks/pups) are often available over large spatial scales
and can be collected more cheaply than mark-recapture data. This has led to a growing
interest in using this kind of data to extract more detailed demographic information.

Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins breed throughout
the Antarctic continent and associated sub-Antarctic islands. Despite their remote-
ness, Adélie and gentoo penguins are among the world’s most well-studied seabirds
(see Borboroglu and Boersma 2013 and references therein), and researchers have stud-
ied their population dynamics, behavior, foraging, breeding success, as well as the
impacts of tourism and other human activities, fishing and climate change. Despite
this intense focus over the last 40 years, our understanding of age-structured survival
and reproduction is unavoidably limited to a small number of locations where long-
term banding or tagging has been permitted (e.g., Lescroël et al. 2009 and Dugger
et al. 2010). Mark-recapture data are extraordinarily valuable and provide the basis
for much of our understanding of penguin life history, but the intense logistics required
for banding, combinedwith concerns that flipper bands increase drag and thus decrease
survival (Culik et al. 1993; Putman 1995; Dugger et al. 2010; Dann et al. 2014), have
sharply limited its use.

On the other hand, time series of abundance arewidely available. Penguin biologists
have been recording abundance data since the earliest days of Antarctic exploration,
and compilations of such data (e.g., (Croxall and Kirkwood 1979; Woehler and Crox-
all 1997; Lynch et al. 2013) have been critical to our current understanding of how
populations have changed over time. Abundance can now be estimated indirectly from
satellite imagery of penguin guano stains (Lynch et al. 2012b; LaRue et al. 2014) and
directly from unmanned aerial drones (Shah et al. 2020). Such abundance data are
relatively inexpensive to obtain and compilations of count data can be assembled from
multiple research teams working independently across the continent (Humphries et al.
2017). Here we report on a method to infer age- or stage-structured demographic rates
from time series of abundance, a method illustrated here in the context of Antarctic
penguins but widely applicable to other animals with annual reproduction.

One way to model state-structured penguin abundance is to use a state-space model
(SSM) (Patterson et al. 2008). SSMs represent the relationship between time-varying
latent states (e.g., true abundance) and observed time-series (e.g., collected point count
data). SSMscanbedescribed using probability distributions and are parameterized by a
set ofmodel parameters representing demographic rates. In an inference task involving
SSMs, the goal is to jointly infer the unknown latent states and the parameters of the
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model (see Kantas et al. 2015 for a survey of approaches). Among the set of available
approaches, particle Markov chain Monte Carlo (PMCMC) sampling is one that can
be used for the Bayesian learning of the unknowns in an SSM (Andrieu et al. 2010),
which involves inferring the joint posterior distribution of the latent states and model
parameters. In this work, our focus will be on Bayesian learning for SSMs using
importance sampling (IS)-based methods (Tokdar and Kass 2010; Robert and Casella
2013) for the purposes of identifying those demographic rates that can be successfully
learned from time series of abundance.

Our inverse modeling efforts are similar in spirit to the efforts by Gonzales et al.
(2016) to jointly estimate the size structure and abundance of a population without
individual-level demographic information.Whereas Gonzales et al. (2016) considered
a population structured by size (a continuous variable) and assumed prior information
on the size structure of the population, here we focus on estimating demographic rates
in a discrete age-structured population with no auxiliary information on the population
age structure. We explore two case studies to illustrate the approach, one involving
immigration and the other involving regime switching in reproductive success, in order
to evaluate which demographic parameters are strongly informed by data (rather than
the prior) and the sensitivity of these estimates to the amount of missing data in each
time series.

2 Methods

2.1 State-spacemodels (SSMs)

SSMs describe how a latent state xt ∈ R
dx is related to an observation yt ∈ R

dy at a
time instant t over a fixed time horizon T . More specifically, SSMs are described by
a set of probability distributions,

x0 ∼ p(x0) (1)

xt ∼ p(xt |xt−1, θ),t = 1, . . . , T , (2)

yt ∼ p(yt |xt , θ), t = 1, . . . , T , (3)

where p(x0) is the distribution of the initial state x0, p(xt |xt−1, θ) is the state transi-
tion distribution describing how the latent states evolve from one time instant to the
next, p(yt |xt , θ) is the observation distribution describing how observations yt are
distributed with respect to the true abundance xt , and θ ∈ R

dθ is a vector of model
parameters that parameterize both the state transition distribution and the observation
distribution. The goal is to infer the unknown states x0:T = {x0, x1, . . . , xT } and the
model parameters θ of the SSM using the observations y1:T = {y1, . . . , yT } under the
Bayesian paradigm. In other words, we aim to estimate p(x0:T , θ |y1:T ), the posterior
distribution of x0:T and θ given y1:T .

This joint distribution can be written as the following product:

p(x0:T , θ |y1:T ) = p(x0:T |y1:T , θ)p(θ |y1:T ), (4)
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where p(x0:T |y1:T , θ) is the conditional posterior of the latent states given the model
parameters, and p(θ |y1:T ) is the marginal posterior of the model parameters.

Under the assumption that the model parameters are known, the conditional pos-
terior distribution of the states x0:T given y1:T and θ can be determined by Bayes’
theorem as

p(x0:T |y1:T , θ) = p(x0:T , y1:T |θ)

p(y1:T |θ)
∝ p(x0:T , y1:T |θ). (5)

The structure of SSMs allows us to easily obtain an expression for the joint distri-
bution p(x0:T , y1:T |θ)

p(x0:T , y1:T |θ) = p(x0)
T∏

t=1

p(yt |xt , θ)p(xt |xt−1, θ). (6)

Furthermore, the marginal likelihood p(y1:T |θ) can be obtained by integrating out
the states from the joint distribution

p(y1:T |θ) =
∫

· · ·
∫ (

p(x0)
T∏

t=1

p(yt |xt , θ)p(xt |xt−1, θ)

)
dx0 · · · dxT . (7)

If the interest is solely in the parameters of the SSM, then the goal is to obtain
the marginal posterior distribution of θ given y1:T . This can also be determined by
applying Bayes’ rule:

p(θ |y1:T ) = p(y1:T |θ)p(θ)

p(y1:T )
. (8)

Unfortunately, a tractable solution to (7) only exists for certain classes of SSMs
(e.g., linear and Gaussian SSMs Carter and Kohn 1994) and hence, the conditional
posterior p(x0:T |y1:T , θ) and the marginal posterior p(θ |y1:T ) cannot generally be
analytically computed. In the following, we discuss a class of numerical integration
techniques that use importance sampling (IS) (Robert and Casella 2013) to obtain a
sample-based approximation to the posterior distribution of interest.

2.2 Importance sampling

Under the assumption that the likelihood can be analytically computed (e.g., linear
Gaussian case), IS techniques are sufficient for approximation of the marginal poste-
rior ϕ(θ) � p(θ |y1:T ), also called the target distribution. IS is aMonte Carlo sampling
method that can be used to approximate expectation values with respect to the distri-
bution ϕ(θ), i.e.,

Eϕ[ f (θ)] =
∫

ϕ(θ) f (θ)dθ (9)

without the need to draw samples from ϕ(θ) directly. In IS, samples {θ (m)}Mm=1 are
drawn from a proposal distribution q(θ;λ), where λ denotes the parameters of that
proposal. Samples are then weighted according to
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w̃(m) = ϕ̃(θ (m))

q(θ (m);λ)
, m = 1, . . . , M, (10)

where ϕ̃(θ) � p(y1:T |θ)p(θ). The collection of samples and importance weights can
be used to obtain a numerical approximation to integrals of the form in (9) as

Eϕ [ f (θ)] ≈
M∑

m=1

w(m) f (θ (m)), (11)

where w(m) denotes the normalized weight of the mth sample θ (m) determined as

w(m) = w̃(m)

∑M
j=1 w̃( j)

. (12)

A nice property of the estimator in Eq. (11) is that it converges to the true value of
Eϕ [ f (θ)] as the number of samples M tends to infinity (Tokdar and Kass 2010). The
variance of the estimator depends on how “close” the proposal distribution is to the
target distribution, and so a poorly chosen proposal (far from the target) can lead to
high variance estimators (Owen and Zhou 2000). When the dimension of θ is large, it
is difficult to choose the proposal parameters λ to obtain a good fit to the target. In these
scenarios, it is often beneficial to use adaptive IS (AIS) methods (see Bugallo et al.
(2017) for a review), which can iteratively adapt the proposal parameters to construct a
better fit to the target distribution ϕ(θ). At the i th iteration of an AIS method, samples
are drawn from a proposal q(θ;λi ), i.e.,

θ
(m)
i ∼ q(θ;λi ), m = 1, . . . , M, (13)

which are then weighted accordingly

w̃
(m)
i = ϕ̃(θ

(m)
i )

q(θ
(m)
i ;λi )

, m = 1, . . . , M . (14)

After the samples are drawn and weighted, the proposal parameter λi are adapted
using some rule. For example, if the proposal parameters λi refer to themean vectorμi
and the covariance matrix �i of the proposal, then one possible method for updating
μi and �i is to use the following rule:

μi+1 = η1,iμi + (1 − η1,i )

M∑

m=1

w
(m)
i θ

(m)
i , (15)

�i+1 = η2,i�i + (1 − η2,i )

M∑

m=1

w
(m)
i (θ

(m)
i − μi+1)(θ

(m)
i − μi+1)

�, (16)
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where 0 < η1,i , η2,i < 1 and w
(m)
i denotes the normalized importance weight of

the mth sample drawn in the i th iteration.

2.3 Particle adaptive importance sampling

If the marginal likelihood in Eq. (7) cannot computed analytically, then it is impos-
sible to evaluate the importance weights in an AIS scheme, and the use of standard
AIS techniques to approximate the marginal posterior p(θ |y1:T ) becomes impractical.
Alternatively, one can consider using unbiased estimates of the marginal likelihood
obtained through some numerical approach. For SSMs, a straightforwardway to obtain
an unbiased estimate of Eq. (7) is to use particle filtering (PF) methods (Djuric et al.
2003), which are sometimes more generally referred to as sequential Monte Carlo
(SMC) methods (Doucet et al. 2001). With PF methods, one can obtain an IS-based
approximation to p(x0:T |y1:T , θ) in a recursive manner. Given this approximation of
p(x0:T |y1:T , θ), one can use the collected importance weights to obtain an unbiased
estimator of the marginal likelihood as (Doucet and Johansen 2009):

p(y1:T |θ) ≈ Ẑ =
T∏

t=1

(
1

N

N∑

n=1

ṽ
(n)
t

)
, (17)

where ṽ
(n)
t is the unnormalized importance weight of the nth sampled particle stream

and N is total number of samples in the PF algorithm. Furthermore, one can obtain a
sample of the trajectory x0:T from the conditional posterior distribution p(x0:T |y1:T , θ)

using PF, i.e.,
x(m)
0:T ,i ∼ p̂(x0:T |y1:T , θ

(m)
i ), (18)

Additional details on the PF method, how the marginal likelihood estimator is
derived, and how latent state trajectories are sampled are provided in the Supplemen-
tary Materials.

Algorithm 1 shows a general implementation of the particle AIS (PAIS) method
used in this work to estimate the joint posterior distribution of the unknown states
x0:T and the model parameters θ . The main differences between Algorithm 1 and
a standard AIS algorithm are in the sampling and weighting steps. In the sampling
step, M model parameters {θ (m)

i }Mm=1 are drawn from a proposal distribution q(θ;λi ).

Then, for each of the sampled model parameters θ
(m)
i , a PF scheme is employed to

sample a corresponding state trajectory x(m)
0:T ,i and obtain an unbiased estimate of the

marginal likelihood Z (m)
i . In the weighting step, instead of evaluating ϕ̃(θ

(m)
i ), one

uses an unbiased approximation of ϕ̃(θ
(m)
i ) given by γ

(m)
i = Ẑ (m)

i p(θ (m)
i ), where

Ẑ (m)
i is the unbiased marginal likelihood estimate obtained from running a PF scheme
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Algorithm 1 Particle Adaptive Importance Sampling (PAIS)
1: Initialization: Set the initial proposal parameters λ1.
2: for i = 1, . . . , I do
3: Draw M samples from the proposal distribution,

θ
(m)
i ∼ q(θ; λi ), m = 1, . . . , M .

4: for m = 1, . . . , M do in parallel
5: Sample x(m)

0:T ,i conditioned on θ
(m)
i using a PF method,

x(m)
0:T ,i ∼ p̂(x0:T |θ (m)

i , y1:T ).

6: Set γ (m)
i = Ẑ (m)

i p(θ (m)
i ).

7: end for
8: Compute the approximated importance weights as

w̃
(m)
i = γ

(m)
i

q(θ
(m)
i ; λi )

.

9: Adapt the proposal parameters, λi+1 ← λi using some update rule.
10: end for

conditioned on θ
(m)
i . Indeed, since E[Ẑ (m)

i ] = p(y1:T |θ (m)
i ), then

E[γ (m)
i ] = E[Ẑ (m)

i p(θ (m)
i )]

= E[Ẑ (m)
i ]p(θ (m)

i )

= p(y1:T |θ (m)
i )p(θ (m)

i )

= ϕ̃(θ
(m)
i ).

A flow diagram summarizing the basic steps of a PAIS method is shown in Fig. 1.

2.3.1 Computational complexity

Here, we briefly discuss the computational complexity of Algorithm 1. At each itera-
tion of the algorithm, M samples are drawn from the proposal distribution. For each
of these samples, a particle filter is run to compute the marginal likelihood, where for
simplicity we assume N particles are used in each particle filter. For each run of the
particle filters, N particles are drawn at each time step for (T +1) total time steps. This
sampling process is repeated for I iterations of the algorithm. In summary, the number
of samples drawn in the algorithm is Mtotal = MN (T + 1)I . Given the per-sample
complexity of the AIS method and the PF method (which varies by method), we can
get a sense of the total computational complexity of the overall PAIS algorithm. A
more complete discussion of the computational complexity of AIS and PF methods
may be found in Bugallo et al. (2017) and Doucet and Johansen (2009), respectively.

Depending on the chosen AIS and PF schemes, PAIS can become too computa-
tionally expensive to run in practice. To address this, we exploit the embarrassingly
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Fig. 1 Schematic of particle adaptive importance sampling

parallel nature of the PF step of the algorithm. At each PAIS iteration, since the M
runs of the PF scheme are independent of one another, one can easily parallelize this
process across computing resources. To that end, we utilize a computational clus-
ter to efficiently sample the states, which allows the algorithm to become practically
feasible.

2.4 Population data

We apply our model to data on gentoo and Adélie penguin population dynamics
(Humphries et al. 2017; original data plotted in SupplementaryMaterials Figures 1 and
2). These time series include counts on the number of nests (equivalent to the number
of breeding pairs) and chicks at nine breeding colonies spread across Antarctica. The
available time series are highly patchy, and there are relatively few instances in which
both a nest count and a chick count are available in the same year. In many years,
there is no information on either nests or chicks. While observation error for each
count is often estimated by the researchers collecting the data, we found that using
this information made model convergence more difficult (see Discussion) and so we
assumed a 20% observation error for all nests and chick counts.
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Fig. 2 Basic life cycle diagram with J = 5 stages, excluding any immigration. There are two non-breeding
stages before penguins mature into the S3 stage, and penguins are assumed to follow a juvenile survival
rate (ψ juv) in the first year and an adult survival rate (ψadu ) in all following years. Breeding success pr
is allowed to vary by stage. Counts of abundance are agnostic to the age of breeders and therefore counts
of nests represent the sum of S3 through S5 (lower blue box) and counts of chicks represent the sum of C3
through C5 (upper blue box)

2.4.1 Gentoo population dynamics with immigration

At each breeding population in year t , the observations yt reflect the total number of
adult breeding penguins and chicks, denoted S̃b,t and C̃t , respectively. To illustrate
the estimation of demographic rates in a realistic scenario, we fit the model described
in Fig. 2 with the addition of immigration to the S3 stage. This model tracks female
breeders only and therefore we divide the total number of chicks in year t − 1 by 2
to calculate the number of S1 females in year t (Eq. 19). We assume that immigration
in year t is a function of the total number of breeding females in year t − 1 (Eq. 21)
and that immigrants arrive at the S3 stage and are therefore added to the number of
individuals aging into the S3 stage from the local population (Eq. 22). We assume that
reproductive success is related to penguin age (Eq. 25), consistent with observation,
and that each breeding female lays two eggs and therefore has an upper bound of two
chicks (Eq. 26). We assume that the year-specific observation error for both nests and
chicks is Normally distributed with the standard deviation being some fraction of the
counted abundance (Eq. 27, 28). While, in principle, the observation error could be
fit as an additional free parameter, here we constrain observation error to ±20%. The
model is described by the following equations

S1,t ∼ Binomial

(
Ct−1

2
, ψ juv

)
, (19)

S2,t ∼ Binomial
(
S1,t−1, ψadu

)
, (20)

Sim,t ∼ Poisson(αim + βim × St−1) , (21)

S3,t = S̄3,t + Sim,t , S̄3,t ∼ Binomial
(
S2,t−1, ψadu

)
, (22)

S j,t ∼ Binomial
(
S j−1,t−1, ψadu

)
, j = 4, . . . , J − 1 (23)

SJ ,t ∼ Binomial
(
SJ−1,t−1 + SJ ,t−1, ψadu

)
, (24)

pr , j = InvLogit(αrs + βrs × j), j = 1, . . . , J − 2, (25)

C j,t ∼ Binomial
(
2S j+2,t , pr , j

)
, j = 1, . . . , J − 2, (26)
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S̃t ∼ N
(
St , (σs,t St )

2
)

, St =
J∑

j=3

S j,t , (27)

C̃t ∼ N
(
Ct , (σc,tCt )

2
)

, Ct =
J−2∑

j=1

C j,t , (28)

where the latent states are xt = [Sim,t , S1,t , . . . , SJ ,t ,C1,t , . . . ,CJ−2,t ]ᵀ. S j,t denotes
the number of stage j female penguins, C j,t the number of chicks from stage j + 2
female penguins, Sim,t denotes the number of females immigrating into the third stage,
and J denotes the total number of non-chick age classes (here J = 5). The unknown
model parameters are θ = [ψ juv, ψadu, αim, βim, αrs, βrs]ᵀ, where ψ juv denotes the
juvenile survivorship, ψadu denotes the adult survivorship, αim and βim denote the
intercept and slope of a linear model for the number of immigrants, respectively, and
αrs and βrs denote the slope and intercept of a logistic model for the stage-structured
reproductive success, respectively.We note that the stage-structured reproductive rates
pr , j can be extracted from the model using the inverse logit (i.e., sigmoid) transfor-
mation.

2.4.2 Adélie population dynamics with regime switching

As a second illustration of thesemethods, we expand our basic (no immigration)model
(Fig. 2) to permit switching between two regimes. This represents one manifestation
of regime-switching state-space models (RS-SSM) that have been explored in other
contexts (Ghahramani and Hinton 1996; Kim and Nelson 1999). RS-SSMs augment
a discrete-valued latent state (called a regime) to an SSM and allows for parameters
to switch from one time-instant to another depending on the regime state. In the
Adélie model, the intercept of the reproductive rate (αrs) switches between two values,
depending on the state of the regime in year t (rt ) as follows:

rt ∼ Bernoulli(1 − γ ), rt ∈ {0, 1}, (29)

prs, j,t = InvLogit(αrs,rt + βrs × j), j = 1, . . . , J − 2 (30)

where the parameter γ = P(rt = 0) denotes the probability of being in the rt = 0
regime governed by intercept αrs,0.

2.4.3 Model priors and prior-posterior overlap

Prior distributions for model parameters are summarized in Table 1. For switching
reproductive success parameters in the Adélie model (αrs,0 and αrs,1), we define the
prior of the smaller reproductive rate αrs,0 and the difference between the larger one
and the smaller one as φ = αrs,1 −αrs,0. This parameterization, along with the choice
of prior on φrestricting it to positive values, adds a monotonicity constraint in the
reproductive success parameters and ensures that the parameters are identifiable.
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Table 1 Prior distributions for
each unknown parameter in the
gentoo and Adélie models

Gentoo Adélie

ψ juv Beta(43, 57) Beta(3, 3)

ψadu Beta(82, 18) Beta(3, 3)

αim Uniform(0, 50) –

βim Uniform(−0.5, 0.5) –

αrs/αrs,0 Normal(0, 10) Normal(0, 10)

φ – Uniform(0, 3)

βrs Normal(0.5, 0.04) Normal(0.5, 0.04)

γ – Beta(1, 9)

Our prior distributions were only weakly informative and based on the
species’ life history (e.g., known clutch size). The only prior distri-
butions that are more strongly constrained are for juvenile and adult
survival of the gentoo penguin and the rate of increase for reproductive
success with age (βrs ), and these priors were selected consistent with
published literature

To assess how much the parameter posteriors are informed by the data (as opposed
to simply reflecting the prior), we use ametric called the prior-posterior overlap (PPO),
which reflects the percentage of overlap between the prior and posterior distributions
for each parameter (Gimenez et al. 2009). If the PPO is large (close to 1), then the
posterior is nearly identical to the prior and the parameter is considered uninformed
by the data (either because the parameter is structurally unidentifiable or because the
data are insufficient). If the PPO is small, then the posterior is very different from the
prior and we consider the parameter ‘learnable’.

3 Results

For the gentoo time-series, the PPO is generally larger for the survivorship param-
eters and the slope of reproductive success (Table 2). Indeed, strong priors based on
Ainley (2002) and Hinke (2012) were assumed for both juvenile and adult survivor-
ship, and the PPO was larger than 0.90 for each dataset run (including the synthetic
data). In contrast, the PPOs for the immigration-related parameters (αim and βim)
were quite small, implying that they can be learned even with such short and patchy
time-series. The intercept of reproductive success was also a learnable parameter in
the model and, unsurprisingly, its estimation is sensitive to the amount of chick data
available. For example, there was only a single chick count at Vernadsky Station and
since this chick count was quite low (relative to the number of nests), our estimate
of average reproductive success was also low. While this could reflect increased risk
of egg and chick predation at smaller colonies, more chick data would allow us to
estimate reproductive success with more confidence.

Unlike the gentoo model, the PPO for the survivorship parameters in the Adélie
model are quite small (Table 3). Because this model does not include immigration,
fluctuations in the nest time-series are more informative of survivorship. The intercept
of reproductive success (for regime rt = 0) is also a learnable parameter, as the
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PPO for that parameter was small (< 0.3) for all sites. We also can extract some
information about the difference between the reproductive success of the two regimes
(i.e., φ = αrs,1 −αrs,0), as we obtain moderate values for PPO for that site. Litchfield
Island’s small PPO may reflect the comprehensiveness of the time series available.
Similar to the gentoo model, the slope of reproductive success had high PPO (>
0.9) for all sites, meaning that inference on that parameter heavily relies on prior
information. Regarding the regime-switching probability γ , the PPO is quite large for
that parameter, especially when there is a lot of missing chick data (e.g., Port Charcot,
which has 78% missing chick data). In contrast, sites with a lot of chick data, such as
Litchfield Island, Cormorant Island, and Bechervaise Island, which have a moderate
amounts of chick data, have a smaller PPO for γ .

We provide additional results for both the gentoo and Adélie models in the Sup-
plementary Material, including results regarding the predictive performance of each
model, the estimated average reproductive success for each site, and posterior his-
tograms for a subset of the parameters. We also provide results on the stochasitic
sensitivity of the PAIS algorithm over multiple realizations.

4 Discussion

Despite the challenge of estimating demographic parameters from point counts of
total abundance, especially in the face of missing data, several demographic param-
eters were informed by the data. The immigration component of the gentoo penguin
time series was estimable from the data but the addition of immigration made it dif-
ficult to estimate either juvenile or adult survival. In contrast, with no assumption of
immigration, the model for Adélie penguins did permit an estimation of both juvenile
and adult survival even with the inclusion of two reproductive regimes. As would
be expected for a long-lived seabird like the Adélie, our estimates suggest greater
variation among sites for juvenile survival than for adult survival. Bechervaise Island
had the highest estimated juvenile survival among the sites included in the study. In
this context, its worth noting that Bechervaise Island specifically (and the surrounding
region of Eastern Antarctica more generally) has an increasing Adélie population in
contrast to the other sites, all located on the Antarctic Peninsula, where persistent
population declines are well documented (Lynch et al. 2012a).

Regarding the sampler, we encountered several challenges. In particular, the con-
vergence of the sampling algorithm was sensitive to the initial values of the latent
states (i.e., the penguin abundances). This was not an issue for modeling gentoo pen-
guins, since those time series involved increasing populations starting from a very
small numbers of penguins. For the Adélie time series, initial values needed to be
well-calibrated for the algorithm to converge. This is especially difficult for sites with
large populations, as there was a correspondingly large range of possible initial values.
In order to overcome this issue, we opted to calibrate the initial values using the data
in the first year. In particular, under the assumption that the relative distribution of
abundance (across stages) is known a priori, one can use the observations of total
abundance in the first year (i.e., S̃1 and C̃1) to select appropriate priors for the initial
latent states. To clarify this procedure, let us consider an example. If it is known that
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the ratio between stage 4 penguins and all breeding penguins is 1:10, then one can
approximate an initial value as Ŝ4,0 = 0.1S̃1 and add some noise to it before feed-
ing it to the PF algorithm. In our implementation, we added noise that perturbed the
approximated initial value up to 10% using a uniform distribution, i.e., each particle
for stage 4 penguins would be initialized as,

S(n)
4,0 ∼ Uniform(0.9Ŝ4,0, 1.1Ŝ4,0), n = 1, . . . , N . (31)

Therefore, for initial value calibration, one needs to rely on domain expert knowl-
edge of stage distribution, which can be assumed prior to running the analysis. Model
convergence required a larger uncertainty in the observations (20% error in both the
nest and chick counts) than was recorded alongside the initial abundance counts,
because more precise abundance estimates led to an insufficient number of particles
with non-trivial weight. Model convergence was assessed using the Pareto smoothed
importance sampling (PSIS) diagnostic (Vehtari et al. 2021). The PSIS diagnostic
provides a means to assess the degeneracy in the importance sampling weights by
fitting them to the shape parameter of a generalized Pareto distribution. Theoretical
findings in Vehtari et al. (2021) suggest that if the PSIS diagnostic is less than 0.7,
then the importance sampling algorithm produces reliable estimates. In the case of
our experiments, we were only able to achieve PSIS diagnostics less than 0.7 if we
assumed the observation error was at least 20%, which is larger (in almost all cases)
than the nominal observation error.

The time series used for this analysis were relatively short and the missing data,
while an unavoidable feature of many Antarctic time series, had a major impact on our
ability to estimate our model’s parameters. Additional data collected over time will
generate longer time series from which even more precise estimates of demographic
parameters can be extracted, and efforts to estimate abundance using archived satellite
imagery may reduce the amount of missing data in the existing time series. One of
the advantages of using this approach is that it permits the inclusion of environmental
conditions (e.g., sea ice concentration) as covariates on specific demographic tran-
sitions, which will allow for a more direct and biologically-interpretable approach
than linking environmental conditions to changes in population growth rates. More-
over, this approach provides a natural link to Integrated Population Models and the
explicit inclusion of auxiliary data on demographic parameters such as reproductive
success (Besbeas et al. 2002).

While aggregated point count data have been used to infer regional patterns of popu-
lation change (e.g., Che-Castaldo et al. 2017), such data have not been used to estimate
demographic rates such as survivorship and reproduction. The use of advanced com-
putational methods allow us to learn something about the underlying demographic
rates using simple point counts of breeding animals and, in doing so, greatly expand
our capacity for linking environmental conditions to population dynamics in a way
that is both highly cost-effective and scalable.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10651-022-00538-3.
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