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Abstract
Two novel methods of life expectancy estimation, applied to various annual reported
demographic datasets, are proposed. First, for datasets that fully recorded birth date
and death date of all dead individuals, we rely on the well-known Kaplan–Meier
estimation method to provide an accurate estimation framework of life expectancy.
Our proposed method can be used as a gold standard in the accuracy investigation of
other life expectancy estimation methods. The method can be applied for small areas,
where complete mortality data are regularly produced by routine annual surveys. The
second new createdmethod, called as local parametricmethod, based on the theoretical
background of survival process with local parametric Weibull distributions, estimates
life expectancy using abridged survival data. Experiments on real longitudinal datasets
show the new method provides very exact life expectancy estimations for 10 among
15 one-year datasets, whilst the method of Chiang often yields overestimations.

Keywords Chiang method of estimation · Kaplan–Meier estimation · Small areas ·
Survival analysis · Weibull distribution

1 Introduction

Life expectancy, usually understood as human average life time, has been used as a
measure of the health status of the population of England and Wales since the 1840’s.
For example, in 1841 life expectancy for men in Surrey was 44 years, compared to 25
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years for men in Liverpool (see HMSO 1843). At the same time, length of life was
used by William Farr to assess the health of populations and to make international
comparisons between countries health (see Eyler 1979). Life expectancy, nowadays
obtained using modern mathematical tools of statistics, is selected by researchers as
an indicator to examine geographic and socio-demographic inequalities in mortality
(see Griffiths and Fitzpatrick 2001, for instance).

Estimation of life expectancy requires to construct a life table to record the propor-
tion alive at each age. The true average lifespan would need to follow up for over 100
years and such cohort specific life tables would be impractical for routine purposes.
However, with a current demographic life table, we can define life expectancy at birth
as the average life length of a newborn child, if current age specific mortality rates
are or will be applied in the future. Life expectancy at birth in an area can therefore
be determined as an estimate of the average number of years a new-born baby would
survive, if he or she experienced the particular area connected to age-specificmortality
rates for that time period throughout his or her life. There have been a rich literature in
the area of current life tables (e.g. King 1914; Reed and Merrell 1932; Greville 1943;
Keyfitz 1966, 1970). However, statisticians have generally found these methods less
than satisfactory because of the lack of clear and direct theoretical motivation. Then,
(Chiang 1972, 1978, 1984) proposed a new method of current life tables creation
based on survival theory, which is quite simple and can be widely applicable (see
Manton et al. 1991; Griffiths and Fitzpatrick 2001; Cristia 2009; Kaplan et al. 2014;
OECD 2017).

The Chiang method provides abridged life tables that aggregate deaths and popu-
lation data into age groups under 1, 1–4, 5–9 ... 80–84, 85 and over. The aggregated
deaths and population data in the age groups yield age-specific mortality rates used
to calculate the probability of dying at each age interval. These probabilities are then
applied to a hypothetical population cohort of newborn babies, to create the formula
of life expectancy estimation. Nevertheless, it has been shown in the works Pollard
(1989), Hsieh (1991) and Wilmoth et al. (2007), that there are biases in Chiang’s
current life tables related to the estimations of age specific mortality rates Mx and of
the conditional probabilities of dying qx in age intervals [x; x + n). For instance, the
formula Mx = Dx/Px , where Dx and Px are the number of deaths and the population
in the age interval, might provide an incorrect estimation of age specific death rate.
This is because parts of Dx and of Px might belong to the (x+1) age group, not just to
the x age group. The above potential misplacement might impact the accuracy of the
Chiang life expectancy estimation. On the other hand, the ratio of the deaths’ amount
and population number in a 5-years age interval usually provides a bias estimation of
age-specific mortality rates Mx (see Golbeck 1986; Pollard 1989; Meulen 2012), even
when the above misplacement is absent. Consequently, the probability qx of dying
at the age interval calculated from Mx is also biased. Besides, as it is discussed in
many studies (see Silcocks et al. 2001; Toson and Baker 2003; Eayres and Williams
2004; Silcocks 2004), the Chiang method of life expectancy estimation has quite low
performance in small areas’ considerations.

Given the above, this article aims to develop novel estimation methods to address
the mentioned lacks in the Chiang method. We then evaluate the accuracy of the pro-
posed method and the method of Chiang by comparing their estimation results with
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those of theKaplan–Meier estimationmethod. The rest of the paper is organized as fol-
lows. Section 2 presents a method of life expectancy estimation based on the ordinary
Kaplan–Meier estimation method, that can be applied to fully observed longitudinal
data. The maximally extracted information with exact ages of all deaths from datasets
allows one to create a very exact estimation of life expectancy. The result of that esti-
mation method can be treated as a gold standard to investigate the accuracy of other
estimations that rely on abridged data containing only pairs of deaths number and pop-
ulation in each 5 years age interval. The Kaplan–Meier estimation method is a good
tool for mortality dataset of small areas, where death events dates were completely
recorded. Then the comparison between life expectancies of small areas can be done
by using the log—rank test for checking the difference between two Kaplan–Meier
survival functions.

In Sect. 3, we propose a novel method of life expectancy estimation based on
theoretical background of survival process with local parametricWeibull distributions.
Our newmethod, called ”Local parametricmethod” (LPM), can be applied to abridged
datasets instead of the Chiang method. In Sect. 4, we experiment the life expectancy
estimation on a longitudinal survival dataset of FilaBavi (see Nguyen and Vinod 2003)
using the Kaplan–Meier estimation method, the Chiang method, and our proposed
LPM method. We then compare the obtained results to study the accuracy of these
methods. In Sect. 5, a brief conclusion is presented summarizingmain results obtained
in the previous sections. Then we suggest to apply our proposed LPM method to
estimate life expectancy having an abridged demographic dataset.

2 Kaplan–Meier method of life expectancy estimation

In 1958, Kaplan and Meier have proposed a crucially important tool to estimate sur-
vival function when only an incompletely observed dataset is given. The well known
Kaplan–Meier method is very effective to estimate survival function and hence is
widely used in various theoretical as well as application studies.

Let T be a nonnegative random variable that represents the death time of an indi-
vidual from a homogeneous population P . The survivor function (also known as the
survival function) of T is defined as

S(t) := P{T > t} , t ∈ [0;∞) .

In other words, S(t) = 1−F(t), where F denotes the cumulative distribution function
of random variable T . The life expectancy (LE) of an individual from the population
P can be found equal to the expectation of the variable T , i.e. LE = E[T ]. It is clear
that

LE =
∞∫

0

t dF(t) =
∞∫

0

t
−dS(t)

dt
dt . (2.1)

123



590 Environmental and Ecological Statistics (2022) 29:587–606

Thus, life expectancy can be estimated indirectly by using an estimated survival func-
tion. In the sequel, we discuss on how to extend the Kaplan–Meier method to obtain
a good estimation of life expectancy according to the idea of formula (2.1). Inspired
by the original method of survival function estimation, we continue to use the term
”Kaplan–Meier estimation” for the case of life expectancy estimation.

2.1 Kaplan–Meier life expectancy estimation for cohort data

In a fully observed survival cohort dataset, each individual from a population of the
size N is fully observed from its birthday to the death moment at the age of tx ,
x = 1, 2, ..., N . Then the life expectancy of the population equals to the average life
span of all individuals in this population:

LE = t1 + t2 + ... + tN
N

. (2.2)

In a partially observed survival cohort dataset, where there are censors, we can
denote the ordered age times by t(1) < t(2) < ... < t(I ) when events (deaths or
censors) occur. Here I is the total number of separate age moments. Let dx and cx
denote the number of deaths and the number of censors occurred at the age moment
t(x). Let nx be the number of individuals remained in population just before the age
moment t(x). We then have n0 = N , nx = nx−1 − dx−1 − cx−1 for x = 1, 2, ..., I .
The Kaplan–Meier estimation (see Kaplan and Meier 1958) of survival function S(t)
is equal

Ŝ(t) =
∏
t(x)≤t

nx − dx
nx

.

It is clear that Ŝ(t) is a positive step-down function and the quantity px = Ŝ(t(x)) −
Ŝ(t(x+1)) equals the probability of death occurrence at the age moment t(x) for x =
1, 2, ..., I − 1. Meantime, pI = Ŝ(t(I )) is the probability of death occurrence at the
last age moment t(I ). If the last event is a death, dI > 0 and cI = 0, then (2.2) is
replaced by

LE = t(1) · p1 + t(2) · p2 + ... + t(I ) · pI . (2.3)

For case when the last event is a censor, dI = 0 and cI > 0, one can suppose assume
a death event would occur very shortly after the censor. The estimator can then be
suitably modified by changing status of the last event from ”censor” into ”death”
and then applying (2.3). This tactic provides an underestimation as it is discussed in
(Lee and Wang 2003, p. 74). However, the shortened estimation is very close to the
estimation obtained when the observation process would be prolonged till the last
death occurred.
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Note that (2.3) is the discrete form of (2.1) when the random variable T has a
discrete distribution. Therefore (2.3) yields the estimation of life expectancy as

LE =
I∑

x=1

t(x) · px =
I−1∑
x=1

t(x) · [Ŝ(t(x)) − Ŝ(t(x+1))] + t(I ) · Ŝ(t(I )) . (2.4)

This can be called as the Kaplan–Meier estimation of life expectancy.

2.2 Kaplan–Meier estimation for semi-cohort data

Usually in annually reported demographic data, persons are not observed along the
whole life time as in cohort data. In particular, due to the one calendar year duration of
observation, the information is concerning to only 1 year intervals in people’ life time.
Therefore, the original version of the Kaplan–Meier estimation method mentioned in
the previous subsection can not be applied directly to the whole population of data.
For that, we can split the population into age groups of people having age in the 1
year intervals [0; 1), [1; 2), ..., [L; L + 1), where L is the highest integer age in the
data. Then apply the aforementioned Kaplan–Meier estimation method to obtain the
piecewise local survival function Ŝ j for each age interval [ j; j + 1), j = 0, 1, ..., L .
Merging those local survival functions together, we obtain an estimation of the entire
survival function for the concerned data population. Finally, the estimation of entire
survival function can be combined with (2.4) to give an estimation of life expectancy.

To distinguish from the terminology ”cohort data”, we use the term ”semi-cohort
data” to refer a longitudinal dataset performed by following up a population during
some quite short time period, instead of the whole life time of the given population.
The corresponding procedure of the aforementionedKaplan estimationwhen applying
to the semi-semi-cohort data to obtain the life expectancy estimation is then named
as piecewise Kaplan–Meier estimation method. The more details of the procedure is
presented as follows. In each age interval [ j; j + 1), j = 0, 1, ..., L , let t j1 < t j2 <

... < t jI j be the ordered age times of deaths occurred insides the interval. Let d j
x

denote the number of deaths occurred at the age moment t jx and n j
x denote the number

of individuals remained in population just before the age moment t jx . We then can
obtain the estimation of the survival function over the interval [ j; j + 1) as:

Ŝ j (t) =
∏
t jx ≤t

n j
x − d j

x

n j
x

, (2.5)

for t ∈ [ j; j + 1). Having estimation of local survival functions Ŝ j (t) for all age
intervals, we get the entire survival function as follows:

Ŝ(t) =
{ Ŝ0(t) f or t ∈ [0; 1) ,[J−1∏

j=0
Ŝ j (t

j
I j

)
]
×ŜJ (t) f or t ∈ [J ; J + 1) , J = 1, 2, ..., L .
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With this entire survival function, we use (2.1) to have an estimation of life
expectancy

KMLE =
L−1∑
j=1

{I j−1∑
x=1

t jx · [Ŝ(t jx ) − Ŝ(t jx+1)] + t jI j · [Ŝ(t jI j ) − Ŝ(t j+1
1 )]

}
,

+
{IL−1∑
x=1

t Lx · [Ŝ(t Lx ) − Ŝ(t Lx+1)]
}
+t LI j · Ŝ(t LI j ) .

(2.6)

By leveraging asmuch information as possible from the concerned semi-cohort data
with exact ages of all deaths and censoring, with the partition of 1 year age intervals
coinciding to 1 year real observation time, the piecewise Kaplan–Meier estimation
can be considered as the most accurate estimation of life expectancy.

Besides, it is evident that surveys in small areas usually provide complete mortality
data with birth date and death date of every death person. Then the Kaplan–Meier
estimation method can be applied to get good estimations of life expectancy for those
areas. To compare the life expectancies of two areas, one can use the log - rank test
(see Koletsi and Pandis 2017, for instance) to check the equality of two Kaplan–Meier
survival functions. If the test is accepted, the two life expectancies can be considered
to be equal. Otherwise, one can conclude the two life expectancies are different when
the test is rejected and the two lines representing Kaplan–Meier survival functions on
graph are separate.

3 Local parametric method of life expectancy estimation

In practice, researchers rarely have real cohort dataset, even semi-cohort dataset.
Instead, routine reported dataset containing numbers pairs of deaths and of persons
grouped in 5-years age groups is usually used. The widely applied Chiang method of
life expectancy estimation is just based on such kind of abridged dataset, that is much
more popular than cohort dataset or semi-cohort dataset. In this section we propose a
novel method of life expectancy estimation for the abridged dataset with numbers of
deaths and of population are aggregated along age groups.

3.1 Local parameterization of survival process

Weibull distribution was first time described in 1951 (see Weibull 1951) and is widely
applied in modeling problems of various empirical research fields. Especially, Pinder
III et al. (1978), as well as Juckett and Rosenberg (1993), Wilson (1994) and Beb-
bington et al. (2006) pointed out that survivorship data can be well fit to the Weibull
distribution. For that, in this article we use theWeibull distribution tomodel the human
survival process and to build up a new tool of life expectancy estimation.

A Weibull distribution has density function of the general form

f (t) = kλ(λt)k−1e−λtk f or 0 ≤ t < ∞ ,
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and is completely defined by a positive scale parameter λ and positive shape parameter
k. In a survival model with theWeibull distribution, if k is less than 1, the instantaneous
hazard monotonically decreases with time. If k equals 1, the instantaneous hazard is
constant over time. If k is greater than 1, the instantaneous hazard increases with time.
Due to this property, aWeibull distribution with a single scale parameter λ and a single
shape parameter k can not be used to model the human survival time for his/her whole
life span. This is because of the fact that age specific mortality rate of man decreases
with time in first years of life, but stays constant over time in medium ages, and
increases with time toward the end of life (see Bebbington et al. 2006, for example).
Therefore this study deals with a survival model based on Weibull distribution with
local parameterization in each age band of [0; 1), [1; 5), [5; 10), ..., [80; 85), and
[85;∞).

Typically, data in population studies are comprised of follow-up reports over a
certain calendar year, from January 1 to December 31 of the year. Let Y be a random
variable that denotes the individual age counted at the last day (December 31) of
the current observation year. Then Y is used to classify the age groups [0; 1), [1; 5),
[5; 10), ..., [80; 85), and [85;∞) in abridged data. In this classification, except for the
final age band, which is an open ended interval, all the early age bands are of the form
[x; x + ox ), with o0 = 1; o1 = 4 and ox = 5 for all x = 5, 10, ..., 80. Besides, we
put o85 = ∞. Let’s recall that the random variable T indicates the time from birth to
death of an individual. Then we can split T into the sum of random variables, each is
defined on one of the age intervals [0; 1), [1; 5), ..., [80; 85), and [85;∞), by

T = T · 1[0;1)(Y ) + T · 1[1;5)(Y ) + ... + T · 1[80;85)(Y ) + T · 1[85;∞)(Y ) ,

(3.1)

where 1[b;c) denotes the indicator function of the interval [b; c),

1[b;c)(s) =
{1 i f s ∈ [b; c) ,

0 i f s /∈ [b; c) .

For x = 0, 1, 5, ..., 85, we model the random variable T ·1[x;x+ox )(Y ) to have local
Weibull distribution by formulas

T · 1[0;1)(Y ) = T0 · 1[0;1)(Y ) , T · 1[x;x+ox )(Y ) = (x − 1 + Tx ) · 1[x;x+ox )(Y )

for x = 1, 5, ..., 80, 85, with the random variable Tx is supposed to have the Weibull
density function

fx (t) = kxλx (λx t)
kx−1e−(λx t)kx f or 0 ≤ t < ∞ , (3.2)

with cumulative distribution function given by

Fx (t) =
t∫

0

kxλx (λxu)kx−1e−(λx u)kx du = 1 − e−(λx t)kx f or 0 ≤ t < ∞ . (3.3)
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We can see nx is the number of individuals with value of variable Y satisfying
the condition x ≤ Y < x + ox . Besides, dx is the number of deaths recorded in the
current observation year of persons belonging to the age group [x; x + ox ). It is worth
to note that for the first age group [0; 1), the number d0 of deaths corresponds to the
observations with the value of random variable T satisfying the condition 0 ≤ T ≤
Y < 1, the random variable T0 models the lifetime to death of a person born in the
observation year. For x = 1, 5, ..., 80, the random variable Tx is defined on the age
group [x; x+ox ) of persons with Y as the age at December 31 satisfying the condition
x ≤ Y < x + ox . It is evident that members of this age group may die before their
x-th birthday in the observation year, their age at death may take values in the interval
[x−1;∞). Therefore the number of deaths dx , x > 1 corresponds to the observations
of random variable T satisfying the condition x − 1 ≤ Y − 1 ≤ T ≤ Y < x + ox .
Then the random variable Tx models the remaining survival time of a member of the
age group [x; x + ox ), counted from his (x − 1)-th birthday. In the last age group
[85;∞), because the death event of a person may occur before his 85-th birthday in
the observation year, the age at death of an individual of this age group can take value
in the interval [84;∞), the death’s number d85 corresponds to the observations with
random variable T satisfying the condition 84 ≤ T ≤ Y . Then the random variable
T85 models the remaining lifetime counted from his 84-th birthday.

Because an abridged dataset contains only a pair of population number nx and
deaths number dx for each age band [x; x + ox ), the data can be used only to estimate
scale parameter λx , with a given reasonable value of the shape parameter kx . In this
study, we fix appropriate values less than 1 for k0, k1, k5 and other values greater than
or equal to 1 for kx , x = 10, 15, ..., 85, before using the data to estimate parameters
λx for all age groups. To facilitate for the estimation procedure of the scale parameters
λx , we define the truncated random variables Y0 and Yx , x = 1, 5, ..., 80, by

Y0 =
{Y i f 0 ≤ Y < 1 ,

0 i f Y /∈ [0; 1) ,
(3.4a)

Yx =
{Y − x i f x ≤ Y < x + ox + 1 ,

0 i f Y /∈ [x; x + ox + 1) ,
(3.4b)

which are assumed to be uniformly distributed with the density functions

g0(s) =
{1 f or s ∈ [0; 1) ,

0 otherwise.
(3.5a)

gx (s) =
{ 1

ox
f or s ∈ [0; ox + 1) ,

0 otherwise.
(3.5b)

For the last age group [85;∞), the truncated random variable Y85 := Y − 84 is
assumed to have an exponential distribution with a positive parameter μ and has the
density function g85(s) = μe−μs for s ≥ 0. In the next we deal with the procedure
to estimate the scale parameters λx , assuming the random variables Tx and Yx are
independent, x = 0, 1, 5, ..., 85. Note that although both Tx and Yx depend on x , they
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are independent as their joint distribution density function equals to the product of the
marginal distribution density functions, f(Tx ,Yx )(t, s) = fx (t)gx (s).

3.2 Estimate local scale parameter from abridged data

Typically, an abridged annual reported population dataset contains the pairs of the
population number popx and the death number deathx counted for the age group
[x; x+ox ), x = 0, 1, 5, 10, ..., 85, where o0 = 1, o1 = 4, ox = 5 for x = 5, 10, ..., 80
and a85 = ∞. In this dataset, deathx is the number of death events occurred at
the moment when the age of the death person had been in the interval [x; x + ox ).
Simultaneously, popx is the number of alive persons at themidyear day (July 1) whose
age taken at that day belonged to the same interval [x; x + ox ). We refer to this kind
of abridged data as midyear abridged data (MAD).

It is worth noticing that in MAD there is difference in age determination for death
persons (age at death) and for alive persons (midyear age). That may affect the con-
sistence of age-specific mortality rate calculation. Indeed, let’s consider the age group
[70; 75) and a person who died on April 1-st before his 70-th birthday on April 30-th.
It is clear that the death must be counted for the age group [65; 70), in spite of the fact
that the person should belong to the age group [70; 75)when at themidyear day of July
1-st he had completed 70 years old. Meantime, another person who died on October
30-th after his 75-th birthday in October 1-st should be of the age group [70; 75) in
the midyear, whilst his death was counted for the age group [75; 80). In that situation,
the numerator of any age-specific mortality rate might contain ”misplaced” deaths
and lack others that had been mis-allocated to neighboring age groups. Besides, MAD
might contain negative ages of new born babies with the birth day after July 1-st.

To avoid the aforementioned inconsistence, abridged data used in the LPM of life
expectancy estimation are organized differently from MAD. Specifically, the last day
(December 31) of the current observation year is used to get individual age. Then for
each x = 0, 1, 5, 10, ..., 85, the number nx is the amount of all persons whose age at
the last day of year was in the interval [x; x+ox ). Similarly, dx is the number of deaths
occurred in the current observation year among nx individuals of the x-th age groups.
We refer to this kind of abridged data as end-year abridged data (EAD). In practice,
EAD is less popular than MAD. Therefore, it needs to recompile the number pairs
(popx ; deathx ) in MAD, x = 0, 1, 5, 10, ..., 85, to estimate the new number pairs
(nx ; dx ) in EDA so that the local parametric method of life expectancy estimation can
be applied.

We use the Lexis diagram (Fig. 1) to describe death events in a calendar year (fixed
as the 2010 year to facilitate the interpreting), related to age groups [0; 1) and [1; 5)
(marked by black and gray dots). In this diagram, the horizontal axis represents the
calendar time, the vertical one indicates the individual age. The horizontal coordinate
of each dot informs the date of death, the vertical coordinate shows the age at death of
the concerned person. Meantime, the birth date of any death person is determined by
the intersection between the horizontal axis and the line parallel to the main diagonal
and passing through the dot marking the death. Comparing the numbers popx inMAD
and nx in EAD, we can get the following observations. First, pop0 is the number of
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Fig. 1 Mortality pattern in the age intervals [0;1) and [1;5)

babies born during the period from July 1 of the previous year (2009) to June 30
of the currently observation year (2010). Meantime n0 is the number of babies born
between January 1 and December 31 of the currently observation year. Since there
is only a half-year shift between those two periods, we can assume that the numbers
of babies born in the two one-year periods (01/07/2009–30/06/2010 and 01/01/2010–
31/12/2010) did not differ significantly. Thus, we can assume n0 = pop0. For the
same reason, we can let nx = popx for all x = 1, 5, 10, ..., 85.

Assumed the data fit the model given by (3.1), (3.2), and (3.3), we attempt to
estimate the scale parameters {λ0, λ1, λ5, ..., λ80} . In the Lexis diagram (Fig. 1), each
dot represents one death event. Let d0;1, d0;2, d1;1, and d1;2 be the numbers of deaths
occurred in the domains A, B, C, and D, respectively (by the same way we can extend
the Lexis diagram and define the numbers dx;1, dx;2, x = 5, 10, ..., 80). Concerning
death0, the number of deaths corresponding to the dots in the both domains A and B,
we see death0 = d0;1+d0;2. It is clear that the gray dots in the domain A representing
the deaths in 2010 of children born in the same year. For each of these cases, the age at
death is less than the age at December 31 of 2010, which is smaller than 1. Therefore,
the number d0;1 of the such deaths is approximately equal to n0 × q0;1, where due to
(3.2), (3.3), (3.4a), and (3.5a), the probability of death q0;1 is given by

P{0 ≤ T0 ≤ Y0 < 1} =
1∫
0

1∫
t
f0(t)g0(s)dsdt =

1∫
0
(1 − t) f0(t)dt

= 1 − e−λ
k0
0 −

1∫
0
k0λ

k0
0 tk0e−(λ0t)k0 dt .

(3.6a)

Whilst, the black dots in the domain B represent the deaths in 2010 of children born
in 2009, each of those cases has the age at December 31 of 2009 less than the age at
death, which is smaller than 1. These cases belong to the [0; 1) age group of the 2009
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observation year. However, the two close years 2009 and 2010 have proximate survival
models of [0; 1) age group, that implies d0;2, the number of the deaths occurred in the
domain B can be estimated by n0 × q0;2, where the probability of death q0;2 equals

P{0 ≤ Y − 1 ≤ T < 1} = P{1 ≤ Y0 ≤ T0 + 1 < 2}
=

2∫
1
(e−(λ0(s−1))k0 − e−λ

k0
0 )ds =

1∫
0
e−(λ0t)k0 dt − e−λ

k0
0 .

(3.7a)

From (3.6a) and (3.7a) we get

death0 ≈ n0 ×
{
1 − e−λ

k0
0 −

1∫

0

k0λ
k0
0 tk0e−(λ0t)k0 dt +

1∫

0

e−(λ0t)k0 dt − e−λ
k0
0

}
.

Consequently, we have k0
2k0+1λ

2k0
0 + λ

k0
0 − death0

n0
≈ 0. Then, we can estimate λ0

by solving the quadratic equation α(λ
k0
0 )2 + βλ

k0
0 + γ = 0 of unknown λ

k0
0 , with

α = k0
2k0+1 , β = 1 and γ = − death0

n0
. Since in the scale parameter must be positive,

we take the greater solution of the quadratic equation to estimate the parameter λ0,

λ0 ≈
{−1 +

√
1 + 4 · k0

2k0+1 · death0
n0

2k0
2k0+1

}1/k0

. (3.8a)

Consequently, we can use (3.7a) to approximate the value of d0;2 by

d0;2 = n0 × ( 1∫

0

e−λ
k0
0 tk0 dt − e−λ

k0
0

)≈ n0 × ( 1∫

0

[1 − λ
k0
0 tk0 + 1

2
λ
2k0
0 t2k0 ]dt − e−λ

k0
0

)
,

d0;2 ≈ n0 × (
1 − λ

k0
0

k0 + 1
+ λ

2k0
0

2(2k0 + 1)
− e−λ

k0
0

)
. (3.9a)

For the scale parameter λ1, we deal with the deaths corresponding to the dots in
the domains B, C and D. The dots in the two domains B and C represent the deaths
in 2010 of the children in the age group [1; 5), that of the persons born from 2006 to
2009. Therefore, the number d1 of the such deaths is approximately equal to n1 × q1.
Recalling (3.2), (3.3), (3.4b), and (3.5b), the probability of death q1 can be written as

q1 = P{0 ≤ Y1 ≤ T1 < Y1 + 1 < 5} =
4∫
0

t+1∫
t

f1(s)g1(t)dsdt

= 1
4

4∫
0
[e−(tλ1)k1 − e−((t+1)λ1)k1 )]dt .

(2.6b)

Simultaneously, the black dots in D represent the deaths in 2010 of persons born in
2005, those belong to the age group [1; 5) of the observation year 2009, but not to
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the age group [1; 5) of the observation year 2010. It is clear that the mortality models
of these two age groups are close each to other. We observe that the death cases in
the domain D had the age at death greater than Y − 1 and less than 5. Additionally,
recalling (3.2), (3.3), (3.4b), and (3.5b), the number d1;2 of the deaths occurred in
the domain D can be approximated by n1 × q1;2, where the probability of death q1;2
equals

P{4 ≤ Y1 ≤ T1 < 5} =
5∫

4

5∫

t

f1(s)g1(t)dsdt = 1

4

5∫

4

[e−(tλ1)k1 − e−(5λ1)k1 ]dt .

(2.7b)

We observe that death1 is the number of deaths occurred in the domains C and
D, while d1 is the number of deaths occurred in the domains C and B. That means
death1 = d1;1 + d1;2, d1 = d1;1 + d0;2 and death1 = d1 + d1;2 − d0;2. Then (2.6b)
and (2.7b) imply

death1 ≈ n1
4

{ 4∫

0

[e−(tλ1)k1 − e−((t+1)λ1)k1 ]dt +
5∫

4

[e−(tλ1)k1 − e−(5λ1)k1 ]dt
}
−d0;2 .

Consequently, we can use the Taylor expansion of exponential functions to have the
following approximation:

4(death1 + d0;2)
n1

≈
4∫

0

[−(tλ1)
k1 + ((t + 1)λ1)

k1 ]dt +
5∫

4

[−(tλ1)
k1 + (5λ1)

k1 ]dt ,

That yields

λ1 ≈
{4(k1 + 1)(death1 + d0;2)

n1 · [(k1 + 1)5k1 − 1]
}1/k1

. (2.8b)

Then from (2.7b) we get

d1;2 ≈ n1
4

×
(−5k1+1 + 4k1+1

k1 + 1
+ 5k1

)
λ
k1
1 . (2.9b)

For the scale parameter λ5, by the same argument as the above, it is clear that
death5 = d5;1 + d5;2, d5 = d5;1 + d1;2 and death5 = d5 + d5;2 − d1;2, we have the
approximations

death5 ≈ n5
5

{ 5∫

0

[e−(tλ5)k5 − e−((t+1)λ5)k5 ]dt +
6∫

5

[e−(tλ5)k5 − e−(6λ5)k5 ]dt
}
−d1;2
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and

λ5 ≈
{5(k5 + 1)(death5 + d1;2)

n5 · [(k5 + 1)6k5 − 1]
}1/k5

. (2.8c)

With the estimated parameter λ5, we approximate the value of d5;2 by

d5;2 ≈ n5
5

×
(−6k5+1 + 5k5+1

k5 + 1
+ 6k5

)
λ
k5
5 . (2.9c)

We continue the above argument with the extended Lexis diagram to see deathx =
dx;1 +dx;2, dx = dx;1 +dx−5;2 and deathx = dx +dx;2 −dx−5;2, x = 10, 15, ..., 80.
Then applying the approximation

deathx + dx−5;2
nx

≈

5∫
0
[e−(tλx )kx − e−((t+1)λx )kx ]dt +

6∫
5
[e−(tλx )kx − e−(6λx )kx ]dt

5

we obtain

λx ≈
{5(kx + 1)(deathx + dx−1;2)

nx · [(kx + 1)6kx − 1]
}1/kx

. (2.8d)

Having the estimated parameter λx , we approximate the value of dx;2 by

dx;2 ≈ nx
5

×
(−6kx+1 + 5kx+1

kx + 1
+ 6kx

)
λkxx . (2.9d)

Moreover, for the open-ended age group [85;+∞), we can conclude

d85 = death85 + d80;2 . (3.10)

3.3 Estimate life expectancy by hypothetical population

Working on a hypothetical population of N0 = 100000 individuals at birth, we use the
scale parameters λx estimated in (3.8a)–(2.8d) to calculate the probability of death qx
in each age band as follows.

q0 = 1 − e−λ
k0
0 , qx = 1 − e−λ

kx
x okxx , x = 1, 5, 10, ..., 80 .

This yields the number of deaths in each age groups D0 = N0q0 , Dx = Nxqx ,
x = 0, 1, 5, ..., 80. Then the numbers of alive individuals at the beginning of each age
band are completely determined as

N1 = N0 − N0q0 , N5 = N1 − N1q1 , . . . , N85 = N80 − N80q80 .
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It is evident that for each age interval [x; x + ox ), the total lifetime within the
interval of those without death equals (Nx − Dx ) × ox . At the same time, the density
function (3.1) can be used to determine the average remaining lifetime in the age band
of people with death event in the interval. In particular, for the age group [0; 1), the
average remaining lifetime (denoted by DRL0) in the age band of people with death
event in the interval is equal

E[0;1)[T0] =

1∫
0
s f0(s)ds

P{0 ≤ T0 < 1} =

1∫
0
k0λ

k0
0 sk0e−λ

k0
0 sk0 ds

1 − e−λ
k0
0

,

where E[0;1)[T0] is the expectation of random variable T0 restricted on the inter-
val [0; 1). In the above equation, to simplify the integration of exponential function

k0λ
k0
0 sk0e−λ

k0
0 sk0 , we can approximate the power series by finite sum up to the 1-st

order:

1∫

0

k0λ
k0
0 sk0e−λ

k0
0 sk0 ds =

1∫

0

k0λ
k0
0 sk0

[ ∞∑
j=0

(−λ
k0
0 sk0) j

j !
]
ds ≈ k0λ

k0
0

k0 + 1
− k0[λk00 ]2

2k0 + 1
.

That yields DRL0 ≈ 1

1−e−λ
k0
0

·
[
k0λ

k0
0

k0+1 − k0[λk00 ]2
2k0+1

]
. Then the total remaining lifetime in

the age band (denoted by TRL0) is equal to

(N0 − D0) + D0 · E[0;1)[T0] = N0 − D0 + D0

1 − e−λ0
·
[ k0λ

k0
0

k0 + 1
− k0[λk00 ]2

2k0 + 1

]
.

(3.11a)

For the age group [x; x + ox ), x = 1, 5, 10, ..., 80, the average remaining lifetime
in the age band of people with death in the interval is given by

DRLx := E[0;ox )[Tx ] =

ox∫
0
s fx (s)ds

P{0 ≤ Tx < ox } =

ox∫
0
kxλ

kx
x skx e−λ

kx
x skx ds

1 − e−λ
kx
x okxx

,

where E[0;ox )[Tx ] denotes the expectation of random variable Tx restricted on the

interval [0; ox ). To simplify the integration of exponential function kxλ
kx
x skx e−λ

kx
x skx ,

we approximate the power series up to the 1-st order:

ox∫

0

kxλ
kx
x skx e−λ

kx
x skx ds ≈ kxλ

kx
x okx+1

x

kx + 1
− kx [λkxx ]2o2kx+1

x

2kx + 1
.
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Then DRLx ≈ kxλ
kx
x

1−e−λ
kx
x okxx

×
{
okx+1
x
kx+1 − λ

kx
x o2kx+1

x
2kx+1

}
. That implies the total remaining

lifetime in the age band equals

TRLx = (Nx − Dx ) × ox + Dx · kxλkxx
1 − e−λ

kx
x okxx

×
{ okx+1

x

kx + 1
− λ

kx
x o2kx+1

x

2kx + 1

}
. (3.11b)

For the last age interval [85;∞), the random variable T85 := T − 84 has Weibull
distribution with density function f85(t) = λ85e−λ85t for 0 ≤ t < ∞. We also assume
that random variable Y85 := Y − 84 has an exponential distribution with parameter
μ, that means g85(t) = μe−μt for 0 ≤ t < ∞. Then, for a person from the age group
[85;∞), the probability of death occurred in the current follow-up year is equal

q85c = P{Y85 − 1 ≤ T85 < Y85 < ∞} =
∞∫

0

t∫

t−1

f85(s)g85(t)dsdt

= μ[eλ85 − 1] ·
∞∫

0

e−(λ85+μ)t dt = μ(eλ85 − 1)

λ85 + μ
.

Similarly, the probability of death occurred in future after the end of the current follow-
up year, for a person of the age group [85;∞), is equal

q85 f = P{Y85 ≤ T85 < ∞} =
∞∫

0

∞∫

t

f85(s)g85(t)dsdt

= μ

∞∫

0

e−(λ85+μ)t dt = μ

λ85 + μ
.

It is clear that q85c + q85 f = 1, therefore 1 = μ(eλ85−1)
λ85+μ

+ μ
λ85+μ

= μ
λ85+μ

· eλ85 .

Thus, μ
λ85+μ

= e−λ85 , λ85 = − ln(1 − p85c). Taking the ratio d85/n85 as an estimate

of q85c, the last equality yields λ85 = − ln
(
1− d85

n85

)
= ln

(
n85

n85−d85

)
. Therefore, due to

T85 = T − 84, the average remaining lifetime (remaining life expectancy) of persons
in the age group [85;∞) equals

RLE85 = E[T85] − 1 = 1

λ85
− 1 = 1

ln
( n85
n85−d85

) − 1 .
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Consequently, the total remaining lifetime of all persons in the age group [85;∞)

from the age of 85 years is summed as

TRL85 = N85 · RLE85 = N85 · {
E[T85] − 1

}= N85 ·
{

1

ln
( n85
n85−d85

) − 1

}
,

(3.11c)

where d85 = death85 + d80;2 by virtue of (3.10).
Now summing total remaining lifetimes of age bands given in (3.11a), (3.11b) and

(3.11c), dividing by the number N0 = 100000 of the hypothetical population, we get
the desired estimation of life expectancy:

LE = TRL0 + TRL1 + TRL5 + ... + TRL80 + TRL85

N0
.

The results presented above in this section can be used to create an Excel worksheet
for life expectancy estimation by local parametric method.

4 Validation of life expectancy estimationmethods

In this section a longitudinal survival dataset created by FilaBavi (see Nguyen and
Vinod 2003) is used to verify the validity of our proposed LPM method of life
expectancy estimation, comparing to Chiang method.

4.1 FilaBavi longitudinal dataset

FilaBavi, an epidemiological field laboratory sited in the Bavi District, was created by
Vietnam Health Strategy and Policy Institute in 1999, with the assistance of Swedish
Sida/SAREC, and conducted by Hanoi Medical University (see Nguyen and Vinod
2003). Bavi is a district in northern Vietnam, 60 km west of Hanoi. The District con-
tains approximately 235,000 people. A random sampling of villages, with probability
proportional to population size in each unit, was performed. This sample consists of
67 population clusters selected with a reported population size of 51,024 inhabitants
in 11,089 households, achieved with approximately 20% of the total population of the
district.

The data were collected through quarterly demographic surveillance of vital events
among the study population subsequently. The quarterly surveys have been carried
out at the beginning of 1999, including data on marital status changes, migrations,
pregnancy follow-ups, births, and deaths. The strictly management of data collection
process ensures a high quality of obtained data, allowed to track almost all vital events,
including births and deaths, occurred any when in the research setting.

The dataset of FilaBavi includes first interviews in 1999,March, and last interviews
in 2015,October. Thatmeans there are 15 years (2000 to 2014) of complete observation
recoded in this dataset. Extracting from the dataset , this study uses the data file that
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Table 1 Life expectancy estimations and residuals

Year K-M Est Chiang Est Chiang Res LPM Est LPM Res

2000 76.02 76.33 0.31 75.56 −0.47

2001 76.03 76.30 0.28 75.54 −0.49

2002 75.65 76.09 0.44 75.15 −0.50

2003 77.43 77.47 0.04 76.54 −0.89

2004 76.58 77.26 0.68 76.57 −0.01

2005 75.69 76.08 0.39 75.73 0.03

2006 76.44 77.30 0.86 76.61 0.17

2007 77.98 78.74 0.76 78.27 0.30

2008 76.20 76.96 0.75 76.47 0.27

2009 76.88 77.15 0.27 76.86 −0.01

2010 77.05 77.61 0.56 77.43 0.38

2011 76.86 76.79 −0.06 76.89 0.03

2012 77.26 77.32 0.07 77.21 −0.05

2013 78.94 79.52 0.58 79.10 0.16

2014 80.05 80.09 0.04 80.30 0.25

Average 77.00 77.40 0.40 76.95 −0.06

has been reorganized by splitting into 15 one-year observation semi-cohort data files,
each of them is related to one specific year among the 2000 to 2014 years. In the sequel
the 1-year observation semi-cohort data files are used to calculate life expectancy of
the Kaplan–Meier method, serving as the gold standard for validation of other life
expectancy estimation methods.

4.2 Validate life expectancy estimationmethods

To evaluate the accuracy of life expectancy estimation methods, we use 15 one-year
semi-cohort datasets described in Sect. 4.1 to get Kaplan–Meier gold standards of
life expectancy estimation determined by (2.6). In Table 1, the gold standards are
given in the column ”K-M Est” representing Kaplan–Meier method life expectancy
estimations of 15 years (2000 - 2014). Each 1-year semi-cohort dataset is used to make
the respective MAD as entry to estimate the life expectancy by Chiang method. The
estimations are recorded in the ”Chiang Est” column of Table 1. Then, differences
between the Chiang estimations and the Kaplan–Meier gold standards are taken as
estimation residuals in the ”Chiang Res” column of the table. From these residuals,
we observe that in most of the cases, Chiang method gives over-estimated results.
In particular, Chiang life expectancy estimations differ from corresponding Kaplan–
Meier life expectancy estimations less than 0.3 of a year time (approximated 110
days) only at 6 among 15 years of observation. Moreover, the average of the residuals
equals to 0.4 of one year time (about 146 days), that confirms the overestimation of
the method on life expectancy.
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The abovementionedMAD’s are also used as input datasets for the excel worksheet
constructed to compute life expectancy estimation according to the LPM repre-
sented in Sect. 3. To do that, the local Weibull distribution shape parameters kx ,
x = 0, 1, 5, ..., 80, 85, must be determined in ahead and used consistently unchanged
for any dataset. To find out an appropriate sequence of shape parameters’ values,
initially we used the dataset described in Sect. 4.1 to estimate the shape parameters,
getting

{kx } ≈ {0.151; 0.157; 0.56; 1.02; 1.35; 1.36; 0.89; 1.06; 0.97; 0.82;
0.87; 0.95; 1.00; 1.01; 1.02; 0.98; 1.1; 0.97; 0.97} .

(4.1)

However, this series applied directly to the excel worksheet does not make good
estimation of life expectancy. This may be caused by the fact that, for each age group,
the shape parameter in (4.1) was estimated based on the data with onlymortality events
occurred within the respective age interval, without death events happened in higher
ages, consequently the estimate is biased. To solve the problem, we try to estimate
by the LPM, but the sequence of the local shape parameters kx in (4.1) is replaced
by other combinations of local shape parameter values. One of those combinations is
presented in the following series:

{kx } = {0.1; 0.2; 0.9; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 1} , (4.2)

where k0 = 0.1; k1 = 0.2; k5 = 0.9; kx = 1 for the medium age groups with
x = 10, ..., 65; kx = 2 for three older age groups with x = 70, 75, 80; and k85 = 1.
The column ”LPM Est” of Table 1 contains the estimation results yielded by applying
the LPM with local shape parameters kx listed in (4.2). The corresponding residuals
in the next by column ”LPM Res” demonstrate the accuracy of the LPM, as distances
from 10 estimated values to the corresponding values of Kaplan–Meier estimation are
less than 0.3 of one year time. Besides, the average of the residuals counted equal 0.06
(with minus sign) of 1 year time (about 22 days), that ensures once more the exactness
of this life expectancy estimation method.

5 Discussion and conclusion

The studyproposed twonovelmethods of life expectancy estimation that are applicable
to various annual reported demographic datasets. The first one, named as Kaplan–
Meier estimation method, extracting complete information from data fully recorded
birth date and death date of all death individuals, provided themost accurate estimation
of life expectancy. Therefore, that method can be adopted as a gold standard in the
accuracy investigation of other life expectancy estimations. Especially, the Kaplan–
Meier estimation method can be applied to get good estimations of life expectancy for
small areas,where completemortality data can be regularly produced by routine annual
surveys. The life expectancy estimates can be used to track the ongoing population
health in the areas. To compare the life expectancies between two areas, or between

123



Environmental and Ecological Statistics (2022) 29:587–606 605

two years, one can use the log—rank test to check the equality of two Kaplan–Meier
survival functions.

The second method called as local parametric method, tailored according to the
theoretical background of survival process with local parametricWeibull distributions,
can be applied to abridged datasets containing only a pair of number of deaths and
number of persons in each age group. The validation by using the gold standard of
Kaplan–Meier estimationmethod showed that the local parametricmethod can provide
very exact life expectancy estimations for 10 among 15 one-year semi-cohort datasets.
Simultaneously, the validation also pointed out that the ordinary method of Chiang is
an overestimation method.

However, some theoretical details should be clarified to strengthen the advantages
of the local parametric estimation method. The first point is related to the series (4.2)
of local shape parameters’ values that were chosen somewhat heuristically. It would be
interesting to verify if the parameters in (4.2) can be used as universal shape parameters
applied in the here proposed method to estimate life expectancy for all other abridged
datasets.

Besides, the assumption of person age evenly distributed within each age band,
modeled by the uniform density functions in (3.5a) and (3.5b), can be adapted only
for populations of stable age structure with population pyramid of U—inverted shape
(that of the developed countries). This assumption may not be appropriate for many
low - income countries with population pyramids of triangular shape. Therefore, it
needs to investigate a modified version of the local parametric estimation method, that
is free of that assumption.

Moreover, the local parameterization model, which contains a large number of
parameters, could potentially lead to overfitting problems. Besides, when the sample
size is small, the localization might lead to inefficient estimation. Therefore, advanced
investigations should be proceeded to get more knowledge on those topics.

Another open problem is to determine the variance of the life expectancy estimated
by the local parametric estimation method. Usually, the variance is taken to create the
confidence interval of the estimate, that is necessary to use in comparison between
different life expectancy values. This problem should be put for further investigations.
Although the need of improvement, the proposed local parametric method of life
expectancy estimation can be applied to abridged datasets instead of the ordinary
method of Chiang, because of the mentioned advantages of the new method.
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