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Abstract
Accompanying China’s rapid industrialization, a vast area of the country, particularly
the Beijing–Tianjin–Hebei (BTH) region, has significantly experienced concerning
levels of air pollution over the past decade. Exposure to severe particulatematter (PM),
PM2.5 in particular, it raises a crucial public health concern, but quantifying PM2.5
accurately across large geographic areas and across time poses a great challenge.
To investigate PM2.5 concentration in the BTH region, we utilize a spatio-temporal
mixed effectsmodel that includes geographic information system-based time-invariant
spatial variables and time-varying meteorological covariates. Our kriging results find
that PM2.5 concentration is hazardous in the North China Plain (NCP), where major
iron, steel, and cement industries are located. More importantly, our analysis of the
impact of wind finds that the severity of air pollution highly depends on the direction
of the wind. That is, a northerly wind can considerably reduce the level of PM2.5 in the
NCP, while a southerly wind generally does not alleviate air pollution and sometimes
even increases it. Using prediction error as a proxy for the level of local emissions,
we find that Shijiazhuang and Tangshan produce the most significant local emissions,
which coincides with a heavier industry in these two cities. During the winter heating
period, we find that the two densely populated cities of Beijing and Tianjin have
dramatic increases in local emissions because of the massive coal consumption during
this period.
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1 Introduction

During the period of rapid industrialization over the past decade, a vast area of China
has experienced severe and chronic air pollution. The main pollutants are fine par-
ticulate matter (PM), PM2.5 in particular, which consists of airborne particles with
aerodynamic diameters of less than 2.5 μm. Research has demonstrated that exposure
to PM2.5 can create severe public health concerns (Pope et al. 2009). Such exposure
can cause lung morbidity, serious respiratory diseases, and even death (Donaldson
et al. 1998). It can also negatively affect the climate, agriculture, ecosystems, and
many other aspects of society (Zhao et al. 2013a).

The Beijing–Tianjin–Hebei (BTH) region is a region of North China where eco-
nomic development is most active. It consists of two municipalities, Beijing and
Tianjin, and other 11 cities in Hebei province. The North China Plain (NCP) that
surrounds the BTH region has experienced China’s most severe air pollution, with
excessive PM2.5 concentration recorded. According to China’s Ministry of Environ-
mental Protection, eight of the tenmost polluted cities inChinawere in theBTH region,
including Xingtai, Shijiazhuang, Baoding, Handan, Langfang, Hengshui, Tangshan,
and Beijing (Wang et al. 2013). On average, 6.6 cities from the BTH region repre-
sented the 10 most polluted cities every month from 2013 to 2016. Considering that
a large population in Beijing and in many other cities in Hebei has been exposed to a
high level of PM2.5 for a long period, it is vital to measure the severity of the PM2.5
concentration in this region.

Extensive studies have been conducted to investigate the composition, characteris-
tics, and sources of air pollutants in BTH (Zhao et al. 2013b; Li et al. 2017). As stated
in Chen et al. (2018), the extremely high level of PM2.5 concentration is widely con-
sidered to be causing the excessive local emission of pollutants from heavy industries,
ranging from iron, steel, and cement production to the rapidly increasing number of
motor vehicles being used on the roads. Apart from local emissions, the meteorolog-
ical conditions, including temperature, relative humidity, and wind, can also strongly
impact the level of PM2.5 concentration (Wang et al. 2014; Liang et al. 2015; Yin
et al. 2016). For example, Wang et al. (2014) stated that high humidity can contribute
to aerosols and secondary transformation under high emissions, and resulted in severe
PM2.5 episodes in Beijing in January 2013. In addition, Liang et al. (2015) stated that
the south and east of Beijing on the NCP are densely populated with heavy industries,
which produce enormous amounts of air pollutants. These air pollutants originating in
the NCP are likely to be transported to the north and influence the level of PM2.5 in
its downwind areas. Therefore, it is also crucial to evaluate the effect of the air quality
in the neighboring areas of the NCP.

To capture both spatial and temporal effects, many spatio-temporal models for ana-
lyzing air pollution data have been developed under a hierarchicalmodeling framework
over the last decade (Sahu et al. 2006; McMillan et al. 2010; Fassò 2013; Shaddick
et al. 2013). For example, Sahu et al. (2006) proposed a random effect model for
PM2.5 concentration which introduces two random effects components to account for
urban and rural differences in respect of both mean levels and variability. Shaddick
et al. (2013) utilized a Bayesian hierarchical model to examine the effects of human
activity on pollution in urban areas by isolating global effects on pollution concen-
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trations. Moreover, Calculli et al. (2015) introduced a multivariate generalization of a
well-known univariate hidden dynamic geostatistical (HDG) model and implemented
the expectation maximization (EM) algorithm to obtain the parameter estimates (see
Finazzi and Fassò (2014) for details of the algorithm). Fassò et al. (2016) further
utilized this model to estimate the distribution of European population exposure to
airborne pollutants. To study the level of PM2.5 concentration in BTH region, we uti-
lize a univariate spatio-temporal mixed effects model (Cressie and Wikle 2015) that
includes both geographic information system (GIS)-based time-invariant variables
and time-varying meteorological covariates to investigate and quantify the severity of
PM2.5 pollution in BTH. More specifically, using kriging results, we examine which
areas of BTH on a particular day are heavily polluted and can be unhealthy to live in.
We further analyze the impact of meteorological conditions (e.g., wind from differ-
ent directions) based on universal kriging. By performing several quasi-experiments,
we examine how the wind from different directions interacting with the location of
mountains affects the level of PM2.5 in BTH.

Importantly, our spatio-temporal model can provide greater insight into the local
emissions produced in each city in BTH. The level of local emissions strongly influ-
ences the level of PM2.5 but data for the level of local emissions are generally not
publicly available. After removing the effect of geographic and meteorological con-
ditions, the prediction error produced from the model can serve as a good proxy for
the level of local emissions. We then perform an analysis of the impact of winter
heating on local emissions. Our results reveal that two heavily industrialized cities—
Shijiazhuang and Tangshan—produce the highest level in BTH of local emissions
before the winter heating period, but during the winter heating period, we find that
two densely populated cities—Beijing and Tianjin—have a dramatic increase in local
emissions because of the massive coal consumption for winter heating.

2 Data

2.1 Data description

The BTH region is a coastal region that consists of 13 cities located in North China.
Their locations are shown in Fig. 1. We collect PM2.5 data from 90 monitoring sites
located in the BTH region (see Fig. 2). The time-invariant geographic variables con-
sidered in this study are longitude (Lon), latitude (Lat), altitude (Alt), and distance to
mountain (Dm).We add “distance to mountain” in our investigation given that “moun-
tain” may play a very important role in blocking pollution transportation. We define
“mountain” as areas with altitudes exceeding 500. The altitude of the BTH region and
the locations of “mountain” in the region are presented in Fig. 3. This figure, along
with Fig. 2, demonstrates that Beijing is surrounded bymountains: TaihangMountains
to the west and YanMountain to the north. The yellow area without mountains belongs
to NCP. NCP is a quite large area that consists of some parts of Shandong province,
Henan province, and most of Hebei province. We restrict this study to analyzing the
Hebei region.
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Fig. 1 Location of BTH region in China (Mainland) and location of cities in BTH region

Fig. 2 Locations of the monitoring sites in the BTH region
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Fig. 3 The altitude of the BTH region (left). Areas with altitudes exceeding 500 are defined as “moun-
tain”(right)

Many previous studies have found that meteorological conditions have a signifi-
cant impact on the levels of PM2.5 (Paciorek et al. 2009; Liang et al. 2015, 2016;
Zhang et al. 2017). Similar to past studies on Beijing’s PM2.5 (Liang et al. 2015), the
time-varying meteorological variables included in this study are air pressure (Pres),
temperature (Temp), dewpoint (Dewp), andwind—north-west (NW), north-east (NE),
south-east (SE), south-west (SW), and calm and variable (CV), where CV is a category
of the wind such that the wind direction is not well-established or the wind speed is
less than 0.5 meter per second (0.5m/s). Following Alduchov and Eskridge (1996)
and Liang et al. (2015), we do not consider relative humidity in our model because
it can be determined by temperature and dew point based on a physical relationship.
The original wind data are given as wind speed and direction. To ease the analysis, we
create five variables (NW, NE, SE, SW, CV) based on the direction of wind, with the
associated variable values being wind speed.

2.2 Data aggregation and data overview

The original data of the PM2.5 and othermeteorological variables are collected hourly.
However, the hourly data are too noisy and difficult to predict. Given the variability
of the hourly data, we aggregate hourly data into daily data in our analysis. It is
also beneficial to investigate daily data given the issue of missing data. Figure 4
demonstrates that if we aggregate hourly data into daily data, there will be no missing
explanatory variables, and the proportion of “missings” for PM2.5 drops from 6%
to 3%. After our preliminary investigation, we find that the way of missing is not
related to the levels of PM2.5, and there is no evidence of any patterns in the missing
values. Thus we believe that the missing values can be considered missing at random.
For simplicity, we impute the missing data using multivariate imputation by chained
equations built in R package mice.
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Fig. 4 Proportion and combinations of missings for hourly (top) and daily (bottom) data from October 1,
2016 to December 31, 2016
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We analyze the period with a high level of PM2.5 from October 2016 to December
2016. We are more interested in pollution episodes because these can be harmful to
human health. A brief discussion on the choice of the period in this study, along with
a graph showing the PM2.5 concentration over the whole year of 2016, is provided in
Sect. 1 of online supplementary materials. To facilitate visualization of the data, we
averaged PM2.5 observed at multiple monitoring sites for each city. Figure 5 presents
daily PM2.5 from October 1, 2016 to December 31, 2016 for all 13 cities in the
BTH region. We observe that towards the end of year 2016, PM2.5 can reach 600
μg/m3 for some cities such as Shijiazhuang and Handan. According to the standard
of the United States Environmental Protection Agency (EPA), PM2.5 concentration of
approximately 35 μg/m3 is considered moderately polluted or acceptable air quality,
and levels exceeding 150 μg/m3 are considered very unhealthy and even hazardous.
The boxplot of PM2.5 for each city demonstrates that formost of the cities in this study,
PM2.5 is above the moderate pollution level most of the time. PM2.5 in Shijiazhuang
is even above the unhealthy level half of the time. These results indicate very severe
air pollution in the BTH region.

3 Methodology

3.1 Spatio-temporal mixed effects model

To investigate PM2.5 concentration in the BTH region, we consider a real-valued
spatio-temporal process (Cressie and Wikle 2015, p. 125):

Z(s, t) = Y (s, t) + ε(s, t), (1)

where Z(s, t) is the data process
{
Z(s, t) : s ∈ D ⊂ R

2, t ∈ {1, 2, . . . , }}, which is
the sum of a hidden process Y (s, t) and a measurement error process ε(s, t). The error
ε(s, t) is assumed to be a white-noise Gaussian process with mean 0 and variance σ 2

ε .
We further assume that cov(ε(s1, t1), ε(s2, t2)) = 0, unless s1 = s2 and t1 = t2. That
is, ε(s, t) is both spatially and temporally uncorrelated.

The hidden process is modelled as:

Y (s, t) = μ(s, t) + ν(s, t). (2)

where themean, or trend,μ(s, t)models large-scale variation and is assumed to follow
the linear structure μ(s, t) = x(s, t)Tβ, where x(s, t) is a p× 1 vector that represents
p different known covariates at location s and time t . In this study, x(s, t) include
spatio-temporal covariates (e.g., meteorological variables) and geographic covariates
(e.g., longitude, latitude, altitude, distance to mountain). The regression coefficient
β is a p × 1 vector that is generally unknown. ν(s, t) is a spatio-temporal random
effect that captures small-scale behavior, which is assumed to be a Gaussian process
with mean 0 and covariance function cov {ν(s1, t1), ν(s2, t2)} = C(s1 − s2, t1 − t2) .
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Fig. 5 Daily PM2.5 (μg/m
3) from October 1, 2016 to December 31, 2016 for each city in the BTH region.

Some extremely large values are truncated in the boxplot
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Therefore, the covariance between two responses from the hidden process is

cov {Y (s1, t1),Y (s2, t2)} = C(s1 − s2, t1 − t2), (3)

and the covariance between two responses from the data process is defined by

cov {Z(s1, t1), Z(s2, t2)} = C(s1 − s2, t1 − t2) + σ 2
ε I (s1 − s2, t1 − t2), (4)

where I is an indicator function that returns 1 when s1 = s2 and t1 = t2, and 0
otherwise.

In this work, we utilize an isotropic spatio-temporal covariance function with a
separable form to model C(s1 − s2, t1 − t2). More detailed discussion on the choice
of the covariance function is provided in Sect. 4 of online supplementary materials.
Consider

C(s1 − s2, t1 − t2) = σ 2
ν

21−θ

Γ (θ)

(‖s1 − s2‖
φ

)θ

Kθ

(‖s1 − s2‖
φ

)
ρ|t1−t2|

+σ 2
0 I (s1 − s2, t1 − t2), (5)

where σ 2
ν is the variance parameter, θ measures the smoothness, Kθ is a modified

Bessel function of the second kind of order θ , ‖ · ‖ denotes the Euclidean spatial dis-
tance,φ and ρ determine the strength of spatial and temporal dependence, respectively,
and σ 2

0 is microscale variance of the hidden process. That is, the covariance function is
constructed by multiplying the Matérn covariance function (Cressie and Wikle 2015,
p. 126) of a spatial process and the correlation function of an AR(1) temporal process.
Consequently, we have

var (Z(s, t)) = var (Y (s, t)) + σ 2
ε = σ 2

ν + σ 2
0 + σ 2

ε , (6)

which is referred to as the “sill” in a great deal of geostatistics literature. In addition,
the term σ 2

0 + σ 2
ε is also known as the nugget effect. Because we cannot identify both

parameters σ 2
0 and σ 2

ε , without loss of generality, we set σ
2
0 = 0 in this study and the

nugget effect is simply the measurement error variance σ 2
ε .

3.2 Universal kriging

We are interested in making inferences on the hidden process Y (s, t) over a set of
prediction regions. Kriging, or spatial best linear unbiased prediction (BLUP), is a
predominant approach to spatial prediction in the spatial statistics literature. When the
mean function μ(s, t) is unknown, the regression parameter β must be estimated. In
this situation, the unbiased linear predictor of Y (s, t) that minimizes mean squared
prediction error is termed the “universal kriging predictor”. In this study, we wish to
make point prediction of Y (s, t) at a location s0, s0 ∈ D (regardless of whether s0 is
an observation location) and at a future time t0.
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Suppose the data process Z(s, t) is observed at a set of locations s1, . . . , sn and time
t1, . . . , tT . Let the observed data z = {Z(s1, t1), . . . , Z(sn, tT )}, an nT × 1 vector.
Let X define the nT × p covariates matrix at observed locations and time, x0 denote
the p× 1 vector of spatio-temporal covariates at location s0 and time t0, Σ denote the
nT × nT covariance matrix for the observed data z, and define

c0z = {C(s0 − s1, t0 − t1), . . . ,C(s0 − sn, t0 − tT )}T

the nT × 1 vector of covariances between Y (s0, t0) and the observed process z. The
universal kriging predictor for Y (s0, t0) is given by the following formula (Cressie
2015; Cressie and Wikle 2015):

Ŷ (s0, t0) = xT0 β̂gls + cT0zΣ
−1 (

z − Xβ̂gls
)
, (7)

where β̂gls = (
XTΣ−1X

)−1
XTΣ−1z is known as the generalized least squares

estimator of β. The corresponding universal kriging variance is the mean squared
prediction error of Ŷ (s0, t0), which is shown to be

σ 2
uk(s0, t0) = E

[
Y (s0, t0) − Ŷ (s0, t0)

]2

= σ 2
ν − cT0zΣ

−1c0z

+ (x0 − cT0zΣ
−1X)(XTΣ−1X)−1(x0 − cT0zΣ

−1X)T . (8)

Recall that σ 2
ν = var (Y (s0, t0)).

In this study, the covariance parameters are unknown. To find the kriging predic-
tor and kriging variance, we must first estimate the covariance parameters. Define
the covariance parameter as Ψ = {σ 2

ε , σ 2
ν , θ, φ, ρ}. We first estimate the covariance

parameter Ψ using the restricted maximum likelihood (REML). Then, assuming Ψ is
known, we estimate the regression parameter β according to the formula for β̂gls .

Generally, our prediction task is to investigate the behavior of the hidden process
of Y (s, t) over a continuous region DP at a given time tP . This can be achieved by
discretizing the region DP into M adequately constructed finite grids or basic areal
unit (BAU) as discussed in Nguyen et al. (2012). Define {̃s1, . . . , s̃M } a set of centers
for these M grids. Then, the kriging predictors and kriging variances at the locations
s̃1, . . . , s̃M and time tP can be computed by equations (7) and (8), respectively.

3.3 Lognormal kriging

Lognormal transformation of data is commonly used to model many variables that
take only positive values and have positively skewed distributions. This method has
been widely employed to analyze air-pollution data (e.g., PM2.5, NOx ; see Fan-
shawe et al. (2008); Paciorek et al. (2009); Sampson et al. (2011)). In particular,
the associated spatial statistical method for prediction in lognormal random fields
is known as “lognormal kriging”. Given that our response of interest is PM2.5,
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which takes only positive values, we assume it follows a lognormal random pro-
cess

{
W (s, t) : s ∈ D ⊂ R

2, t ∈ {1, 2, . . . , }}, such that Z(s, t) = logW (s, t), where
Z(s, t) is a Gaussian random process as in (1). In this study, the actual observed
response is defined as w, such that w = exp(z).

Providing the kriging predictor for the log scale according to equation (7), the
predicted value can simply be exponentiated to predict on the original scale. However,
it is widely known that the back-transformed value exp Ŷ (s0, t0) is a biased predictor
(Cressie 2006; De Oliveira 2006; Paciorek et al. 2009). Define U (s, t) the hidden
process of W (s, t), and m0Y the Lagrange multiplier corresponding to the kriging
predictor in equation (7)

m0Y = (x0 − cT0zΣ
−1X)(XTΣ−1X)−1xT0 . (9)

It is not difficult to demonstrate that under the normal assumption on Z(s0, t0), the
unbiased predictor for U (s0, t0) for the case with unknown mean function (Cressie
2006; De Oliveira 2006) is given by

Û (s0, t0) = exp

{
Ŷ (s0, t0) + 1

2
σ 2
uk(s0, t0) − m0Y

}
. (10)

The case with a known mean function is also discussed in De Oliveira (2006) and
Cressie (2015). Combining the calculations in equations (7), (8) and (9), the lognormal
kriging predictors at locations s̃1, . . . , s̃M and time tP can be computed by equation
(10).

4 Analyzing PM2.5 in the North China Plain

4.1 Kriging results

In this study, the response of interest, PM2.5 concentration, is assumed to be lognormal
distributed and its log transformation Z(s, t) follows a spatio-temporal process as in
(1).

We investigate the PM2.5 readings at the beginning of the winter of 2016. Data at
each observation location fromNovember 19, 2016 toNovember 25, 2016were used to
estimate the covariance and the regression parameters. Therefore, the total number of
observations is 90×7 = 630. We then perform the kriging on the next day, November
26, 2016. We find that one week of data is sufficient to capture the temporal structure
and that using data with a longer period may not improve the prediction accuracy (see
Sect. 2 of online supplementary materials for more details). The reason we analyze
the PM2.5 readings over this period is that the winter heating period usually runs from
the middle of November in North China. The massive amount of fuel used to generate
heating generally leads to poor air quality, and we are more interested in examining the
period that has levels of PM2.5 that are high enough to be harmful to human health.

According to the range of longitude and latitude of Hebei province, we construct a
spatial bounding box forHebei and discretize it into a 100×100 grid of pixels. The unit
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measure of each grid is 0.07 degree of longitude times 0.07 degree of latitude (or 7.77
kilometers× 7.77 kilometers). Thereafter, the spatial domain of interest is constructed
by the set of pixels for which the center points fall in the spatial polygon of Hebei.
It then results in a spatial domain with 4620 grids. When we perform the kriging,
we require the covariates at the center of each of these 4620 grids. The geographic
covariates can be easily obtained according to the location (longitude and latitude)
of the pixel center. However, the meteorological variables are not known at the grid
of interest, but only observed at the monitoring sites. Considering the difficulty of
collecting the meteorological data at each grid, we define them by the corresponding
ones at the nearest monitoring site from that grid. The distance is simply measured
under the two-dimensional domain of interest D. Finally, kriging is performed at
each of these 4160 locations to produce a continuous map of PM2.5 concentration on
November 26, 2016, following (7) and (10), as presented in Fig. 6.

Figure 6(top) clearly demonstrates that the northern area of Hebei province has a
much lower level of predicted PM2.5 than the NCP, which coincides with what we
actually observe. Within the NCP, the northern area, including the south of Beijing,
seems to have the highest predicted and observed PM2.5 concentration. It is widely
known that major iron, steel, and cement industries are located in the south of Hebei
province, but not in Beijing. The high level of PM2.5 in the south of Beijing is widely
attributed to pollutant transportation through wind blow from the industrial Hebei
province. A further investigation into the impact of the wind on PM2.5 concentration
will be presented in the following section. Overall, Fig. 6(top) demonstrates that the
kriging mainly agrees with the observed level of PM2.5 in Hebei on November 26,
2016, apart from several locations in the south of Beijing with extremely high PM2.5
concentrations. More discussion on the model assessment can be found in Sect. 3 of
online supplementary materials.

It is widely known that exposure to a high level of PM2.5 can be very harmful
for human health and cause serious respiratory diseases. As discussed in Liang et al.
(2015, 2016) and Zhang et al. (2017), PM2.5 levels reaching 150 μg/m3 are widely
considered very harmful and even hazardous to human health. Regions with krigings
of PM2.5 greater than 35 μg/m3 (moderately polluted) and 150 μg/m3 (unhealthy)
are plotted in Fig. 6(bottom). The region in orange color in the north of the NCP
indicates the area where the kriging predictor of PM2.5 exceeds 150 μg/m3. People
living in this region should avoid prolonged outdoor activities at this high level of
PM2.5. The grey coloring indicates the region where the kriging of the PM2.5 level
is below 35 μg/m3, which coincides with the locations of “mountain” as presented
in Fig. 3. Therefore, we can clearly see that “mountain” plays a very important role
in blocking pollution transportation from the south of Hebei. Based on this finding,
people should seek to conduct outdoor exercises in the mountainous north of Hebei
to avoid high levels of PM2.5 on November 26, 2016.

4.2 The impact of wind

It is widely accepted by the residents of Hebei that strong wind tends to alleviate the
air pollution. Studies on air quality in Beijing (Liang et al. 2015; Zhang et al. 2017)
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Fig. 6 Predicted (grid) and
observed (circle) PM2.5
concentration (top) and regions
with krigings of PM2.5 greater
than 50 μg/m3 and 150 μg/m3

(botton) in Hebei province on
November 26, 2016

have also found that a lack of wind contributes to high levels of PM2.5 more often than
anthropogenic activities. In this section, we examine the impact of wind on PM2.5
concentration in Hebei province.

We first investigate the predicted and the observed PM2.5 concentration in Hebei
province on November 25, 2016 and November 26, 2016, as presented in Fig. 7. The
kriging on November 25, 2016 is performed by using the training data fromNovember
17, 2016 to November 24, 2016. Figure 7 reveals that south-west of the NCP (Shiji-
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Fig. 7 Predicted (grid) and
observed (circle) PM2.5
concentration in Hebei province
on November 25, 2016 (top) and
November 26, 2016 (bottom)

azhuang, Xintai, and Handan) is the region with the most severe predicted (observed)
PM2.5 concentration on November 25, 2016. However, on November 26, 2016, the
highest predicted (observed) PM2.5 concentration appears in north of the NCP (Bei-
jing, Baoding, and Tangshan), while on this date, the PM2.5 level is substantially
reduced in the south-west of the NCP. Figure 7 clearly reveals a transmission of
PM2.5 concentration from the south-west of the NCP to the north of the NCP. As
presented in Fig. 8a, the wind in Hebei on November 26, 2016 is predominantly SW
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Fig. 8 Hourly wind speed (ms−1) and wind frequency (%) of five grouped directions (SW, SE, NW, NE,
CV) at all observation locations on four different days. aNovember 26, 2016, dominated by SW,bDecember
2, 2015, dominated by NW, c November 19, 2015, dominated by SE, d November 6, 2015, dominated by
NE

wind. As a consequence, it is reasonable to believe that the SW wind blew the high
level of PM2.5 concentration from the south-west of the NCP to the north of the NCP
on November 26, 2016.

By controlling the other meteorological variables, we now perform three quasi-
experiments to further examine the impact of wind on PM2.5 concentration in Hebei.
We consider three different days with wind conditions that are dominated by NW, SE,
andNEwinds, respectively. For illustrative purposes, hourlywind speed and frequency
on these days (note that daily wind data are still used to fit the model) are shown in
8 (b), (c), and (d). Days at the beginning of winter in 2015 are chosen so that their
correspondingwind conditions are likely to occur onNovember 26, 2016 because each
season usually has a homogeneous wind condition. The wind data on November 26,
2016 are then replaced with the wind data on these three days and kriging is performed
under each of these three wind conditions. The kriging-based contour plots of PM2.5
concentration using the wind data on November 26, 2016 and the three quasi-wind
data are presented in Fig. 9.

Figure 8b demonstrates the scenario under whichmore than 50% of the wind comes
from the north-west in all the observation locations. In addition, a certain percentage
of NWwind achieves a wind speed that reaches 10 ms−1. Along with Fig. 9b, we note
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Fig. 9 Kriging-based contour plots of PM2.5 concentration in Hebei province on November 26, 2016 using
the wind data on November 26, 2016 and the quasi-wind data on three different days in 2015. a November
26, 2016, dominated by SW, b December 2, 2015, dominated by NW, c November 19, 2015, dominated by
SE, d November 6, 2015, dominated by NE

that strong wind from the north-west substantially reduces the PM2.5 concentration
in the entire NCP. In the absence of high-polluting industries in the region to the north
of the NCP, the wind from the north-west of Hebei does not travel with high PM2.5
concentration, but rather blows PM2.5 away from the NCP. In contrast, in Figs. 8c and
9c, we observe that wind at a moderate speed from the south-east does not alleviate
the PM2.5 concentration; interestingly, it even slightly increases the level of PM2.5 in
north-west of the NCP. The north-west of the NCP is bordered by Taihang Mountains
to the west and Yan Mountain to the north. Seeing that the mountains block the wind
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Fig. 10 Regions with krigings of PM2.5 greater than 50 μg/m3 and 150 μg/m3 on November 26, 2016
using the wind data on November 26, 2016 and the quasi-wind data

that travels to the north-west, the polluted air from the south of the NCP tends to
accumulate in the north-west of the NCP, which explains the slight increase of PM2.5
revealed in Fig. 9 (c). In addition, the wind from the north-east also greatly reduces
the PM2.5 concentration in the NCP, as demonstrated in Figs. 8d and 9d. It is also
worth noting that PM2.5 in the northern area of Hebei (i.e., the areas with mountains)
remains at a low level under all wind conditions, and thus, is not affected by the wind.
Figure 10 presents the regions with krigings of PM2.5 greater than 35 μg/m3 and
150 μg/m3 on November 26, 2016 using the wind data on November 26, 2016 and
the quasi-wind data. We observe that when there is a northerly wind, people living in
Hebei are relatively safe, but if there is a southerly wind, the people living in the north
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Table 1 Estimated regression
coefficients for wind from NE,
NW, SE and SW, with their
associated p-values (less than
5% p-values are in bold)

Coef p-value

NE −0.064 0.021

NW −0.054 0.025

SE −0.002 0.964

SW 0.050 0.394

of NCP face a health risk harmed and should avoid outdoor activities, as demonstrated
by the orange areas in Fig. 10a and c).

To conclude, our results demonstrate that a northerly wind can considerably reduce
the level of PM2.5 in the NCP, while a southerly wind generally does not alleviate
the air pollution and sometimes even increases it. To confirm this finding, we also
report the estimated regression coefficients for wind from NE, NW, SE and SW, with
their associated p-values in Table 1. We observe that the northerly wind (NE and NW)
has a negative coefficient that is significantly different from zero at 5%, implying that
increasing the wind strength in this direction can reduce the level of PM2.5. On the
other hand, the estimated coefficient for the southerly wind (SE and SW) has a large
p-value and SW even has a positive coefficient.

This finding is consistent with the finding for Beijing discussed in Liang et al.
(2015). In addition, neither southerly nor northerly winds have a substantial impact on
the level of PM2.5 in the mountainous north of Hebei. In practice, the wind direction is
difficult to predict and is unknown in advance. Given that the severity of air pollution
greatly depends on the wind, it is worth presenting predicted PM2.5 concentration in
Hebei under different wind conditions.

4.3 Prediction errors and local emissions

As Fig. 7 demonstrates, predicted PM2.5 can mainly capture the level of observed
PM2.5 in most areas of Hebei. However, extremely high levels of observed PM2.5 in
some areas tend to be underestimated (e.g., PM2.5 in Beijing on November 26, 2016).
The formation of PM2.5 is generally caused by both meteorological conditions and
the emission of pollutants. Given that our model has already considered the impact
of meteorological and geographic variables on PM2.5, local emissions can be a main
factor in themeasurement error ε(s, t) as in (1).More specifically, the kriging predictor
for a known location s1 and a future time t0 can also be written as a weighted sum of
observed values, where the weights are determined by the covariance function:

Ŷ (s1, t0) = k(s1, t0) +
T∑

j=1

N∑

i �=1

wi j z(si , t j ) +
T∑

j=1

w1 j z(s1, t j ),

where k(s1, t0) = xT0 β̂gls−cT0zΣ
−1Xβ̂gls andw1 = cT0zΣ

−1. From this formalization,
we observe that the kriging predictor for a location s considers local meteorological
conditions in the mean term, along with the impact from other locations in past times
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and the impact of itself on past dates. Therefore, we reasonably believe that the pre-
diction error or what is left unexplained, Z(s, t0) − Ŷ (s, t0), can serve as a proxy for
the increment of the level of daily local emissions. Although the local emission data
are generally not publicly available in China, the magnitude of prediction errors from
our model may reveal the level of local emissions in different areas.

We investigate the PM2.5 in early winter 2016, from October 1 to December 31.
We produce one-step ahead forecast of log PM2.5 at each monitoring site on a rolling-
window basis using a fixed window size of one week. That is, the training dataset shift
towards with the passage of time (with the first set from October 1 to October 7) and
one-step ahead forecast is performed until we obtain the predicted log PM2.5 as in
(7) from October 8 to December 31 at each monitoring site. The prediction errors are
then computed as the difference between the observed log PM2.5 and the predicted
log PM2.5. As presented in Fig. 2, the locations of the monitoring sites in each city
tend to be clustered together. Hence, we perform our analysis on a city level by simply
averaging the prediction errors in each city so that we obtain 13 (which is the number
of cities in the BTH region) prediction errors on each day fromOctober 8 to December
31.

As stated, thewinter heating period inChina usually begins in themiddle ofNovem-
ber. Aside from the pollutants from heavy industries, the excessive coal burned to
generate heating during the winter heating period greatly contributes to the local emis-
sions. Considering this, we split the period under study into “before winter heating”
and “after winter heating”. According to Fig. 11, there is a dramatic temperature drop
around November 22 in the cities in Hebei. Consequently, “before winter heating” and
“after winter heating” are defined as the study period before and after November 22,
respectively.

We compute the average prediction errors before November 22 and after November
22 (inclusive) for each city inHebei (see Table 2).We aim to test whether the prediction
errors for each city separately are significantly different from zero before and after the
winter heating period. To consider the serial correlation of the prediction errors, the
corresponding p-value for each city presented in Table 2 is calculated based on a test
statistic constructed as follows:

Z = ē
√

σ̂ 2∞/T

d−−→ N (0, 1), (11)

where ē is the average of the prediction errors, T is the number of days, and σ̂ 2∞ is a
consistent estimator of the long-run covariance. Details of obtaining σ̂ 2∞ can be found
in Andrews (1991) and Newey and West (1986).

In Table 2, we observe that Shijiazhuang and Tangshan achieve exceedingly large
average prediction errors before the winter heating period, indicating significant daily
local emissions produced from heavy industries in these two cities. This can be
expected because these two cities are densely populated with iron, steel, and cement
industries that consume enormous amounts of coal and other fuels. In contrast, after
winter heating period begins, the densely populated cities of Beijing, Langfang (a city
very close to Beijing), and Tianjin show an increase in average prediction errors, which
is probably because of the massive level of coal consumption by residents for winter
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Fig. 11 Temperatures for different cities in Hebei from October 2016 to December 2016

Table 2 Average out-of-sample prediction errors before and after the winter heating period with associated
p-values (less than 5% p-values are in bold)

City Before p-value After p-value No.

1 Baoding 0.061 0.379 0.083 0.162 6

2 Beijing 0.091 0.208 0.144 0.023 36

3 Cangzhou 0.064 0.211 0.033 0.084 3

4 Chengde 0.041 0.511 0.033 0.323 5

5 Handan -0.036 0.481 -0.083 0.137 4

6 Hengshui 0.052 0.262 -0.033 0.411 3

7 Langfang 0.034 0.506 0.112 0.041 4

8 Qinhuangdao 0.044 0.508 0.025 0.736 5

9 Shijiazhuang 0.159 0.014 0.126 0.037 6

10 Tangshan 0.177 0.001 0.099 0.119 6

11 Tianjin 0.077 0.173 0.082 0.098 5

12 Xingtai 0.057 0.347 -0.096 0.129 4

13 Zhangjiakou 0.003 0.962 -0.051 0.137 3

heating. In particular, we observe that in the before winter heating period, Beijing and
Langfang have a large p-value, but a p-value smaller than 5% after the winter heating
period, implying that the winter heating period affects the level of PM2.5 for densely
populated cities.
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5 Conclusion

Utilizing our spatio-temporal mixed effects model, we found that PM2.5 can be haz-
ardous in many cities in BTH, where major iron, steel, and cement industries are
located. Our analysis of the impact of wind supports that the mountains block the
wind traveling to the north-west, such that the polluted air from the south of the
NCP tends to accumulate in the north-west of the NCP under certain meteorological
conditions. This results in the interesting phenomenon that a northerly wind can con-
siderably reduce the level of PM2.5 in the NCP, while a southerly wind generally does
not alleviate air pollution and sometimes even increases it. Note that such a conclu-
sion might be limited to the winter season due to some seasonal variations in wind
and emission patterns as discussed in Liang et al. (2015). The quasi-wind analysis on
other seasons can be performed in a similar fashion and it is left to future research.
Additionally, in our current analysis, we define the meteorological variables at each
grid by the corresponding ones at the nearest monitoring site from that grid. In our
future work, we will seek for some satellite atmospheric data to improve the quality
and resolution of the meteorological data to be used in our analysis.

Moreover, we find that the prediction errors produced from the model can serve as a
good proxy for the level of local emissions. By analyzing the prediction errors before
and after the winter heating period separately, we discover that the coal burning that
occurs during thewinter heating period substantially contributes to the local emissions,
particularly in densely populated cities.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10651-021-00521-4.

Acknowledgements This research was undertaken with the assistance of data resources provided by Pro-
fessor Song Xi Chen’s research group based at Peking University (https://www.songxichen.com).

References

Alduchov OA, Eskridge RE (1996) Improved magnus form approximation of saturation vapor pressure. J
Appl Meteorol 35(4):601–609

Andrews D (1991) Heteroskedasticity and autocorrelation consistent covariant matrix estimation. Econo-
metrica 59(3):817–858

Calculli C, FassòA, Finazzi F, PolliceA, TurnoneA (2015)Maximum likelihood estimation of themultivari-
ate hidden dynamic geostatistical model with application to air quality in apulia, italy. Environmetrics
26(6):406–417

Chen L, Guo B, Huang J, He J, Wang H, Zhang S, Chen SX (2018) Assessing air-quality in beijing-tianjin-
hebei region: The method and mixed tales of pm2. 5 and o3. Atmos Environ 193:290–301

Cressie N (2006) Block kriging for lognormal spatial processes. Math Geol 38(4):413–443
Cressie N (2015) Statistics for spatial data. Wiley, New York
Cressie N, Wikle CK (2015) Statistics for spatio-temporal data. Wiley, New York
De Oliveira V (2006) On optimal point and block prediction in log-gaussian random fields. Scand J Stat

33(3):523–540
Donaldson K, Li X, MacNee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci

29(5–6):553–560

123

https://doi.org/10.1007/s10651-021-00521-4
https://doi.org/10.1007/s10651-021-00521-4
https://www.songxichen.com


292 Environmental and Ecological Statistics (2022) 29:271–293

Fanshawe TR, Diggle PJ, Rushton S, Sanderson R, Lurz P, Glinianaia SV, Pearce MS, Parker L, Charlton
M, Pless-Mulloli T (2008) Modelling spatio-temporal variation in exposure to particulate matter: a
two-stage approach. Environmetrics 19(6):549–566

Fassò A (2013) Statistical assessment of air quality interventions. Stoch Environ Res Risk Assess
27(7):1651–1660

Fassò A, Finazzi F, Ndongo F (2016) European population exposure to airborne pollutants based on a
multivariate spatio-temporal model. J Agric Biol Environ Stat 21(3):492–511

Finazzi F, Fassò A (2014) D-stem: a software for the analysis and mapping of environmental space-time
variables. J Stat Softw 62(1):1–29

Li H, Zhang Q, Zhang Q, Chen C, Wang L, Wei Z, Zhou S, Parworth C, Zheng B, Canonaco F et al (2017)
Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the north china plain:
significant contribution from coal and biomass combustion. Atmos Chem Phys 17(7):4751–4768

Liang X, Zou T, Guo B, Li S, Zhang H, Zhang S, Huang H, Chen SX (2015) Assessing beijing’s pm2. 5
pollution: severity, weather impact, APECandwinter heating. In: Proc. R. Soc.A, vol 471, p 20150257.
The Royal Society

Liang X, Li S, Zhang S, Huang H, Chen SX (2016) Pm2. 5 data reliability, consistency, and air quality
assessment in five chinese cities. J Geophys Res 121 (17)

McMillan NJ, Holland DM, Morara M, Feng J (2010) Combining numerical model output and particulate
data using bayesian space-time modeling. Environmetrics 21(1):48–65

Newey WK, West KD (1986) A simple, positive semi-definite, heteroskedasticity and autocorrelationcon-
sistent covariance matrix

Nguyen H, Cressie N, Braverman A (2012) Spatial statistical data fusion for remote sensing applications.
J Am Stat Assoc 107(499):1004–1018

Paciorek CJ, Yanosky JD, Puett RC, Laden F, SuhHH (2009) Practical large-scale spatio-temporalmodeling
of particulate matter concentrations. Ann Appl Stat 370–397

Pope CA, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the united
states. N Engl J Med 360(4):376–386

Sahu SK, Gelfand AE, Holland DM (2006) Spatio-temporal modeling of fine particulate matter. J Agric
Biol Environ Stat 11(1):61–86

Sampson PD, Szpiro AA, Sheppard L, Lindström J, Kaufman JD (2011) Pragmatic estimation of a spatio-
temporal air quality model with irregular monitoring data. Atmos Environ 45(36):6593–6606

Shaddick G, Yan H, Vienneau D (2013) A bayesian hierarchical model for assessing the impact of human
activity on nitrogen dioxide concentrations in Europe. Environ Ecol Stat 20(4):553–570

Wang L, Wei Z, Yang J, Zhang Y, Zhang F, Su J, Meng C, Zhang Q (2013) The 2013 severe haze over
the southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmos
Chem Phys Discuss 13(11)

Wang L, Zhang N, Liu Z, Sun Y, Ji D, Wang Y (2014) The influence of climate factors, meteorological
conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei region
during January 2013. Adv Meteorol

Yin Q, Wang J, Hu M, Wong H (2016) Estimation of daily pm2. 5 concentration and its relationship with
meteorological conditions in Beijing. J Environ Sci 48:161–168

Zhang S, Guo B, Dong A, He J, Xu Z, Chen SX (2017). In: In Proc R, Soc A (eds) Cautionary tales on
air-quality improvement in Beijing, vol 473, p 20170457. The Royal Society

Zhao H, Che H, Zhang X, Ma Y, Wang Y, Wang H, Wang Y (2013a) Characteristics of visibility and
particulate matter (pm) in an urban area of northeast china. Atmos Pollut Res 4(4):427–434

Zhao X, Zhao P, Xu J, Meng W, Pu W, Dong F, He D, Shi Q (2013b) Analysis of a winter regional haze
event and its formation mechanism in the north china plain. Atmos Chem Phys 13(11):5685–5696

123



Environmental and Ecological Statistics (2022) 29:271–293 293

Le Chang Research School of Finance, Acturial Studies and Statistics, College of Business and Eco-
nomics, the Australia National University, Australia.

Tao Zou Research School of Finance, Acturial Studies and Statistics, College of Business and Economics,
the Australia National University, Australia.

123


	Spatio-temporal analysis of air pollution in North China Plain
	Abstract
	1 Introduction
	2 Data
	2.1 Data description
	2.2 Data aggregation and data overview

	3 Methodology
	3.1 Spatio-temporal mixed effects model
	3.2 Universal kriging
	3.3 Lognormal kriging

	4 Analyzing PM2.5 in the North China Plain
	4.1 Kriging results
	4.2 The impact of wind
	4.3 Prediction errors and local emissions

	5 Conclusion
	Acknowledgements
	References




