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Abstract
The procedures to discover proper new models in probability theory for different
data collections are highly prevalent these days among the researchers of this area
whenever existing literature models are not appropriate. Before delivering a product,
manufacturers of raw materials or finished materials must follow some compliance
standards in various engineering disciplines to avoid severe losses. Materials of high
strength are necessary to ensure the safety of human lives along with infrastructures to
elude the significant obligations linked with the provisions of non-compliant products.
Using probability theory,we introduce theweighted version of invertedKumaraswamy
Distribution, which could be considered a better model than some other sub-models
used to model Carbon fiber’s strength data. We derive various statistical properties of
this distribution such as cumulative distribution, moments, mean residual life, reversed
residual life functions, moment generating function, characteristic function, harmonic
mean, and geometricmean. Parameters are estimated through themaximum likelihood
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method and ordinary moments. Simulation studies are carried out to illustrate the
theoretical results of these two approaches. Furthermore, two real data sets of Carbon
fibers strength are utilized to contrast the proposed model and its sub-models like
inverted Kumaraswamy distribution and Kumaraswamy Sushila distribution through
different goodness of fit criteria such as Akaike Information Criterion (AIC), corrected
Akaike information criterion, and the Bayesian Information Criterion (BIC). Results
reveal the outperformance of the proposed model compared to other models, which
render it a proper interchange of the current sub-models.

Keywords Kumaraswamy distribution · Moments · Order statistics · Statistical
inference · Stochastic ordering · Weighted distribution

1 Introduction

In the present time, a special consideration is given to find new probability models
in probability theory to facilitate the practitioners and applied researchers for model
specification and investigation of the real-life data sets. This urge implies that there
is a powerful desire for presenting suitable probability models for better data explo-
ration. Due to high-level computational facilities’ availability, the methods in defining
probability models are different from the previous models depicted before 1997 (see
Tahir and Cordeiro 2016; Hussain et al. 2018). The main focus in developing prob-
ability models is to fulfill various requirements arising from diverse fields such as
environmental sciences, medical sciences, engineering sciences, and many more.

In order to circumvent the inadaptability and inadequacy for some of the very
well-known probability models such as Rayleigh, Weibull, exponential gamma, Lind-
ley, among others, several authors have investigated the problem of finding new
distributions. For instance, we cite the distribution of Kumaraswamy introduced by
Kumaraswamy and Krishnamurthy (1980) as an alternative to the Beta distribution
with more important advantages. The latter is usually used to model several phenom-
ena such as atmospheric temperature or daily rainfall, daily streamflow in hydrological
data. In theory as well as in practice, this distribution has received a lot of attention;
see, for instance, Sundar and Subbiah (1989), Fletcher and Ponnambalam (1996), Seifi
et al. (2000), Ponnambalam et al. (2001)), and Ganji et al. (2006) for previous works
and Jones (2009), Golizadeh et al. (2011), Sindhu et al. (2013) and Sharaf EL-Deen
et al. (2014) for recent advances and references. We refer to Lemonte et al. (2013)
for the exponentiated Kumaraswamy (EK) distribution and its log-transform. They
proved some mathematical properties of both distributions as well as the maximum
likelihood estimators of theirs parameters. More recently, Shawki and Elgarhy (2017)
presented a new class of distribution called Kumaraswamy Sushila distribution, and
they stated the theoretical properties, but they have not applied it to any real data.
Although these distributions have some interest in dealing with real data applications,
authors have been focused more on the notion of weighted distribution introduced
by Fisher (1934). Since this pioneering work, the weighted distribution has been the
subject of many works in the probability and statistical literature. For instance, Rao
(1965) gave a general formula for this concept of weighted distribution, which can
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be used to analyze statistical data when the standard distributions are failed. We cite
Zelen (1974) for the length-biased sample’s modelization using weighted distributions
ideas. From a practical perspective, weighted distributions are usually used to model
data from the reliability domain (materials strength data), bio-medicine, or ecology
and branching processes. We refer to Patil and Rao (1978), Gupta and Keating (1986),
Gupta and Kirmani (1990), Oluyede (1999), among others) for some real data exam-
ples. Castillo and Pérez-Casany (1998) defined new exponential families based on the
notion of the weighted distribution, and Priyadarshani (2011) introduced the weighted
distribution of the generalized gamma distribution. In contrast, Abd El-Monsef and
Ghoneim (2015) studied the weighted Kumaraswamy distribution. Later, Abd AL-
Fattah et al. (2017) introduced the inverted Kumaraswamy distribution (IKD), studied
some of its properties, and showed its performance on real data.

In this paper, we use the weighted technique to develop a new model to measure
the strength of materials strength data, mainly modeling the strength of Carbon fiber
data. The newly developed probability model constitutes the weighted version of the
inverted Kumaraswamy distribution obtained by Abd AL-Fattah et al. (2017). We
will use WIKD as an abbreviation for this new distribution, i.e., Weighted Inverted
Kumaraswamy Distribution. The constructed distribution plays a vital role to fit the
fiber strength, which is very important in the industries allowing to guarantee the safety
of material used in the aero industry and construction of bridges. To the best of our
knowledge, our proposed model has not been studied theoretically or dealt with it in a
practice way. On the other hand, the statistical analysis of the variability in the strength
of the composite is promoter subject in the micromechanical area. At this stage, the
WIKDmodel is significantly more efficient than the classical probability models. The
superiority of the WIKD model was confirmed by the different measures of goodness
of fit, including AIC, CAIC, BIC rules.

The current paper is organized as follows. We devote Sect. 2 to the methodology.
Section 3 derives in detail the statistical properties of theWIKD such as the probability
density function, the cumulative distribution function, reliability measures including
survival, hazard, the reverse hazard, Mills ratio rate functions, and mean residual.
For completeness, we also present some further properties, include the moments and
related measures (such as harmonic mean, moment generating function and character-
istic function), stochastic ordering, order statistics, measures of skewness and kurtosis
and information-theoretic measures. Section 4 gives statistical inferences and deals
with the parameter estimation methods of the WIKD. Simulation studies and applica-
tions of theWIKD and discussions are given in Sect. 5. This section contains two parts.
The first part considers the simulation studies to investigate the efficiency of both the
maximum likelihood and the moment estimators of the WIKD. Then, we present the
performance and comparison of the WIKDmodel with the existing models. Second, a
strength of carbon fiber data is shown and modeled by the proposed model. Also, the
performance and comparison of the WIKD model with the existing sub-models are
discussed based on the given real data sets. Finally, we conclude our study in Sect. 6.
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2 Method

As discussed in the first section, our main purpose is to study the WIKD distribution
and its statistical properties. From a theoretical point of view, the present contribution
completes previous studies in Kumaraswamy distribution. Motivated by its flexibil-
ity to fit some natural phenomena whose outcomes are bounded from both sides,
namely, the climatological data and daily hydrological data of rainfall, the family
of Kumaraswamy distribution has received growing interest. For example, Abd AL-
Fattah et al. (2017) have studied by inverted Kumaraswamy distribution. The latter is

built as the transformation of the Kumaraswamy distribution using the function
1

x
−1.

This transformation is defined analogously to the inverted beta distribution. It allows
to explicit the probability density of the Inverted Kumaraswamy Distribution (IKD)
by

f I K D(x, α, β) = αβ(1 + x)−(α+1) [
1 − (1 + x)−α

]β−1
, x > 0, α, β > 0. (1)

Unlike the classical Kumaraswamy distribution, the (IKD) has a large domain that
is in (0,+∞). For the statistical properties of the IKD distribution, we may refer the
readers to Mansour et al. (2018), who estimated the unknown parameters of IKD.
In particular, they studied the maximum likelihood and Bayesian estimators. The
applicability of the constructed estimators under censoring is illustrated in simulated
data.We return to Zafar et al. (2017) for theGeneralized IKDdistribution (GIKD). The
latter is constructed by using the power transformation xγ . Therefore, the probability
density function of the GIKD is

fG I K D(x, α, β, γ ) = αβγ xγ−1(1 + xγ )−(α+1) [
1 − (1 + xγ )−α

]β−1
,

where x > 0, α, β >, γ > 0.
The novelty of this paper is to study another version of the IKD distribution that

is the weighted version. We focus on its statistical properties such as cumulative
distribution, moments, mean residual life, reversed residual life functions, moment
generating function, characteristic function, harmonicmean, and geometricmean. The
maximum likelihood and the moment estimators of the parameters are determined.
Numerical studies are carried out to investigate and illustrate the theoretical results
of both estimators. From a practical point of view, we also applied this distribution
to Carbon fiber data. The material scientist constantly searches for the most suitable
model that could fit the sample data better and can be mathematically improved and
recognized.

3 Results

We study and derive the mathematical and statistical properties of WIKD.
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3.1 The density function ofWIKD

In the following, we suppose that X is a random variable (r.v.) and takes non-negative
values, follows IKD (Abd AL-Fattah et al. 2017). The weighted probability density
function (pdf) of (1) is determined by

fw(x) = W (X) f (x)

E(W (X))
= W (X) f (x)

∫ ∞
−∞ W (X) f (x)dx

. (2)

In (2), assume that W (X) = xk , k > 0 is the weight of the distribution. Then use (2)
to get

E(W (X)) =
∫ ∞

0
xk f (x)dx

=αβ

∫ ∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

dx (3)

Using the variable change

z = (1 + x)−α ⇒ dz = −α(1 + x)−(α+1)dt and x = z−1/α − 1,

We obtain

E(W (X)) = −β

∫ 0

1
(z−1/α − 1)k(1 − z)β−1dz

= β

∫ 1

0

k∑

i=0

(
k

i

)
(−1)i z−(k−i)1/α(1 − z)β−1dz

= β

k∑

i=0

(
k

i

)
(−1)i

∫ 1

0
z−(k−i)/α(1 − z)β−1dz

= β

k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)
.

Here, the B(., .) represents Beta-function. Hence, the pdf ofWIKD is explicitly given
by

fW I K D(x) = α

W (α, β, k)
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

(4)

with

W (α, β, k) =
k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)
, for α > k > 0 β > 0.
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Fig. 1 Some examples of WIKD densities

It is clear that

lim
x→0

fW I K D(x, α, β, k) = 0 and lim
x→∞ fW I K D(x, α, β, k) = 0

The latter is obtained as the ratio of two polynomial functions. It appears clearly
that this limits and the integrability of fW I K D require α > k > 0. Graphically, the
shapes of this density are varied with respect to the values of (α, k, β); see plots in
Fig. 1. Note that if k = 1, we get size-biased WIKD. if k = 2, we get area biased
WIKD.
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3.2 Cumulative distribution function ofWIKD

Now, consider a random variable X which follows WIKD with parameters α, β and
k. The cumulative distribution function is derived as follows.

G(x) =
∫ x

0
fW I K (t, α, β)dt

= α
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
∫ x

0
tk(1 + t)−(α+1)(1 − (1 + t)−α)β−1dt

Then, use the same previous variables change to write that

G(x) = −1
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
∫ ν

1
(z−1/α − 1)k(1 − z)β−1dz

= 1
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
∫ 1

ν

k∑

i=0

(
k

i

)
(−1)i z−(k−i)1/α(1 − z)β−1dz

= 1
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
k∑

i=0

(
k

i

)
(−1)i

∫ 1

ν

z−(k−i)/α(1 − z)β−1dz

= 1
∑k

i=0 (
k
i)(−1)i B

(
α−k+i

α
,β

)
∑k

i=0

(k
i

)
(−1)i

B
(

α−k+i
α

,β
)

B
(

α−k+i
α

,β
)

∫ 1
ν
z−(k−i)/α(1 − z)β−1dz

= 1
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)

×
[

1 − 1

B
(

α−k+i
α

, β
)

∫ ν

0
z−(k−i)/α(1 − z)β−1dt

]

where ν = (1 + x)−α . It follows that, the corresponding cumulative distribution
function (cdf) is defined by:

G(x) =1 − 1
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)

× B

(
(1 + x)−α,

α − k + i

α
, β

)
. (5)

where B(x, a, b) is the incomplete beta function. Fig. 2 shows various plots for the
cdf.
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Fig. 2 Some examples of the cumulative function of WIKD

3.3 Reliability measures

In the current section, we study the reliability characteristics of the WIKD, including
the functions of reliability, hazard, and reversed hazard. Also, we derive the central
tendency, dispersion measures, graphical and order statistics for such distribution.

3.3.1 Reliability function

Suppose that X is an r.v. follows WIKD with parameters α, β and k. The distribution
survival function is determined by

S(x) = 1 − G(x)

Thus, from (5) we get

S(x) = 1
∑k

i=0

(k
i

)
(−1)iβ

(
α−k+i

α
, β

)
k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)

× B

(
(1 + x)−α,

α − k + i

α
, β

)
. (6)
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Fig. 3 Some examples of WIKD Hazard functions

3.3.2 Hazard, reversed hazard andmills ratio rate functions

Recall that the hazard function is expressed by

H1(x) = f (x)

S(x)
.

Therefore, having that the X follows WIKD, the hazard function is deduced by com-
bining (4) and (6) to get the expression

H1(x) = αxk(1 + x)−(α+1)
[
1 − (1 + x)−α

]β−1

∑k
i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
B

(
(1 + x)−α, α−k+i

α
, β

) .

The reversed hazard function is defined by

H2(x) = f (x)

F(x)
.

Now, by (4) and (5) we get

H2(x) = αxk (1+x)−(α+1)[1−(1+x)−α]β−1

∑k
i=0 (

k
i)(−1)i B

(
α−k+i

α
,β

)
−∑k

i=0 (
k
i)(−1)i B

(
α−k+i

α
,β

)
B

(
(1+x)−α, α−k+i

α
,β

) .

Both functions H1(x) and H2(x) are graphically shown in Fig. 3.
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On the other hand, we express the Mills ratio function, which is denoted by m(t)
where

m(t) = 1

H1(t)
.

It suffices to replace H1(t) by its expression to prove that the WIKD has a Mills ratio
function defined by

m(t) =
∑k

i=0

(k
i

)
(−1)i B(α−k+i

α
, β)B((1 + x)−α, α−k+i

α
, β)

αxk(1 + x)−(α+1)
[
1 − (1 + x)−α

]β−1

3.3.3 Mean residual life (MRL)

The MRL function is defined by

M(x) = E [(X − x |X > x] =
∫ ∞
x y f (y)dy

S(x)
− x .

Now, having that the X followsWIKD, we obtain by some analytical arguments, used
on the determination of fW I K D , G and S, the MRL of WIKD. Thus, the MRL can be
expressed by

M(x) =
∑k+1

i=0

(k+1
i

)
(−1)iB((1 + x)−α, α−k+i

α
, β)

∑k
i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
B((1 + x)−α, α−k+i

α
, β)

− x .

3.4 Stochastic ordering

Assume that the correspondingdistributions to the randomvariables X andY are FX (x)
and FY (y) respectively. Then, if FY (x) ≤ FX (x), we say that X is stochastically larger
than Y . We use st to represent the stochastic relationship between variables. In our
case, we write that X ≥st Y if FX (x) ≥ FY (x). This stochastic property can also be
held if we compare the two random variables in terms of hazard rate order and mean
residual life order. In terms of likelihood ratio order, we can say that (Y ≤lr X) if
fX (x)
fY (x) is an increasing function of X .

Theorem 1 If X andY are independent r.v.s and followWIKDwhere their distributions
parameters are (α1, β1, k1) and (α2, β2, k2), respectively, then, Y ≤lr X if k1 > k2,
α2 > α1, β1 > β2 and α1 α2, β1, β2 > 1.

Proof Let X ∼ W I K D(k1, α1, β1) and Y ∼ W I K D(k2, α2, β2). Denote by φ(x)
the likelihood ratio where

φ(x) = fX (x)

fY (x)
. (7)
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The fX (x) and fY (x) are:

fX (x) = α1

W (α1, β1, k1)
xk1(1 + x)−(α+1) [

1 − (1 + x)−α1
]β1−1

fY (x) = α2

W (α2, β2, k2)
xk2(1 + x)−(α2+1) [

1 − (1 + x)−α2
]β2−1

Rewrite (7) as

φ(x) = R xk1−k2(1 + x)(α2+1)−(α+1)

[
1 − (1 + x)−α1

]β1−1

[
1 − (1 + x)−α2

]β2−1 ,

where

R = α1W (α2, β2, k2)

α2W (α1, β1, k1)
.

Take the logarithm to get

logφ(x) = log R + (k1 − k2) log x + (α2 + 1) log(1 + x) + (β1 − 1)

× log
[
1 − (1 + x)−α1

]
b + (β2 − 1) log

[
1 − (1 + x)−α2

]
.

Now, (Y ≤lr X) if d
dx logφ(x) > 0. Then, differentiate logφ(x) to get

d

dx
logφ(x) = k1 − k2

x
+ α2 − α1

1 + x
+ (β1 − 1)α1

(1 + x)α1+1 − (1 + x)
− (β2 − 1)α2

(1+x)α2+1 − (1+x)

It is clearly that d
dx logφ(x) > 0 if k1 < k2, α2 > α1, β1 > β2 and α1 α2, β1, β2 >

1. Hence, for k1 < k2, α2 > α1, β1 > β2 and α1 α2, β1, β2 > 1, Shaked and
Shanthikumar (1994) showed stochastic ordering implications of a distribution as:
Y ≤lr X → Y ≤hr X → Y ≤mrl X or Y ≤lr X → Y ≤st X → Y ≤mrl X .

3.5 Order statistics

Consider the sample X1, X2, . . . Xn of a random variable X which follows theWIKD.
It is well known that the cumulative function of the lth order statistics, denoted by X(l)

(such that (X(1) < X(2) < X(l) < X(l+1) . . . < X(n))), is determined by

FX(l) (t) =
n∑

j=l

(
n

j

)
(1 − FX (t))n− j F j

X (t).

It follows that the density of X(l) is expressed by

fX(l)(t) = n

(
n − 1

l − 1

)
(1 − FX (t))n−l F j−1

X (t) fX (t).
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Thus, the expression for the pdf of X(l) is

fX(l) (t) = α n
(n−1
l−1

)

(W (α, β, k))2

(
k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)
B

(
(1 + t)−α,

α − k + i

α
, β

))n−l

(

1 −
k∑

i=0

(
k

i

)
(−1)i B

(
α − k + i

α
, β

)
B

(
(1 + t)−α,

α − k + i

α
, β

)) j−1

× tk(1 + t)−(α+1) [
1 − (1 + t)−α

]β−1

3.5.1 Shannon entropy

Assume that X is a non-negative continuous r.v. with the f (x) as a pdf. The uncertainty
classical measure for the r.v. X is the derivative of entropy; this also gives the well
known Shannon entropy (see Shannon 1948) and is determined by

HShan(X) = −E[log( f (x))] =
∫ +∞

−∞
f (x) log[ f (x)] dx .

Hence, the HShan is derived as follows.

HShan(X) = −
∫ +∞

0
( fW I K (x, α, β)) log ( fW I K (x, α, β)) dx

= − α

W (α, β, k)

∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

(
k log(x) − (α + 1) log(1 + x) + (β − 1) log

(
1 − (1 + x)−α

))
dx

= − α

W (α, β, k)

(
k

∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log(x)dx

− (α + 1)
∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log(1 + x)dx

+ (β − 1)
∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log
(
1 − (1 + x)−α

)
)
dx

= − α

W (α, β, k)

(
k

∂

∂k

∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

dx

+ (α + 1)
∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log(1 + x)dx

− (β − 1)
∂

∂β

∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

)
dx

= − 1

W (α, β, k)

(
k

∂

∂k
W (α, β, k)

)
+ 1

W (α, β, k)

×
(

(α + 1)
∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log(1 + x)

)
dx
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−
(

(β − 1)
1

W (α, β, k)

∂

∂β
W (α, β, k)

)

= −k
∂

∂k
log (W (α, β, k)) − (β − 1)

∂

∂β
log(W (α, β, k)) + α

W (α, β, k)

×
(

(α + 1)
∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log(1 + x)

)
dx .

Now, we treat

I = α

W (α, β, k)

(
(α + 1)

∫ +∞

0
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

log(1 + x)

)

(8)

by using the same variable change, as in the determination of fW I K D , as follows.

I = (α + 1)

αW (α, β, k)

∫ 0

1
(z−1/α − 1)k(1 − z)β−1 log(z)dz

= (α + 1)

αW (α, β, k)

∫ 1

0

k∑

i=0

(
k

i

)
(−1)i z−(k−i)/α(1 − z)β−1 log(z)dz

= (α + 1)

αW (α, β, k)

k∑

i=0

(
k

i

)
(−1)i

∫ 1

0
z−(k−i)/α(1 − z)β−1 log(z)

= − (α + 1)

W (α, β, k)

(
k∑

i=0

(
k

i

)
(−1)i

∂

∂k
B

(
α − k + i

α
, β

))

.

Thus,

HShan(X) = −k
∂

∂k
log (W (α, β, k)) − (β − 1)

∂

∂β
log(W (α, β, k))

− (α + 1)

W (α, β, k)

(
k∑

i=0

(
k

i

)
(−1)i

∂

∂k
B

(
α − k + i

α
, β

))

.

3.6 Renyi entropy

The Renyi Entropy is defined by

Ha(X) = 1

a − 1
log

[∫ +∞

0
( fW I K (x, α, β))a

]
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Firstly, we calculate

∫ +∞
0

( fW I K (x, α, β))a =
∫ +∞
0

( fW I K (x, α, β))a dx

= αa

Wa(α, β, k)

∫ +∞
0

xak(1 + x)−a(α+1) [
1 − (1 + x)−α

]a(β−1)

= αa

Wa(α, β, k)

∫ +∞
0

xak(1 + x)−(aα−a)
[
1 − (1 + x)−α

](aβ−a)

Use the same variables changes, as in the prove of (2), to prove that

∫ +∞

0
xak(1 + x)−(aα−a)

[
1 − (1 + x)−α

](aβ−a)

=
∫ 0

1
(z−1/α − 1)ak z−((1−a)(α+1))/α(1 − z)β−1dz

=
∫ 1

0

ak∑

i=0

(
ak

i

)
(−1)i z−((ak−i)+((1−a)(α+1)))/α(1 − z)β−1dz

=
ak∑

i=0

(
ak

i

)
(−1)i B

(
α − (ak − i) − ((1 − a)(α + 1)))

α
, β

)

Finally,

Ha(X) = 1
a−1 log

[
αa

Wa(α,β,k)

∑ak
i=0

(ak
i

)
(−1)i B

(
α−(ak−i)−((1−a)(α+1))

α
, β

)]

4 Statistical inferences

We devote this section to the estimation of the parameters ofWIKD.We construct two
estimators in which the maximum likelihood obtains the first one and the second one
is constructed by the moment methods. All estimators can be obtained by a numerical
procedure.

4.1 Maximum likelihood estimators

Consider a size n, X1, . . . Xn , a random sample drawn from a r.v. X with the pdf

fW I K D(x, α, β, k) = α

W (α, β, k)
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

Based on the above pdf, the function of the likelihoodis determined by
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L(x1, . . . xn, α, β, k) =
(

α

W (α, β, k)

)n
(

n∏

i=1

xi

)k (
n∏

i=1

(1 + xi )
−(α+1)

)

×
(

n∏

i=1

(
1 − (1 + xi )

−(α+1)
))β−1

,

and the corresponding log-likelihood is determined by

log L(x1, . . . xn, α, β, k) = −n log(W (α, β, k)) + nlog(α) + k
n∑

i=1

log(xi ) − (α + 1)

×
n∑

i=1

log(1 + xi ) + (β − 1)
n∑

i=1

log
(
1 − (1 + xi )

−(α+1)
)

.

It follows that the estimates α̂, β̂ and k̂ are the maximum likelihood estimators (MLE)
which are the solutions of the following set equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−n ∂
∂α

log(W (α, β, k)) + nα−1 − ∑n
i=1 log(1 + xi )

−(β − 1)
∑n

i=1 log(1 + xi )
(1+xi )−(α+1)

(1−(1+xi )−(α+1))
= 0

−n ∂
∂β

log(W (α, β, k)) + ∑n
i=1 log

(
1 − (1 + xi )−(α+1)

) = 0.

−n ∂
∂k log (W (α, β, k)) + ∑n

i=1 log(xi ) = 0

The estimators are computed by using the code-routine goodness.fit of the R-
packageAdequacyMode. The latter is based on the Particle SwarmOptimization (PSO)
algorithm,whichprovides greater control of the optimizationprocess, allowing to over-
come the effects of the presence of flat regions or the independence to the choice of
the initial values. The initial values are automatically chosen. Of course, the solution
of these equations require the positive-definite of the Hussein matrix on the solution
(α̂, β̂, k̂). The Hussein matrix is defined by

∑
(α, β, k) =

⎛

⎝
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎞

⎠

−1

,

where

I11= −n
∂2

∂α2 log(W (α, β, k)) − nα−2 − (β − 1)
n∑

i=1

(log(1 + xi ))
2 (1 + xi )−(α+1)

(1 − (1 + xi )−(α+1))2
,

I12 = −n
∂2

∂α∂β
log(W (α, β, k)) −

n∑

i=1

log(1 + xi )
(1 + xi )−(α+1)

(1 − (1 + xi )−(α+1))
,

I13 = −n
∂2

∂α∂k
log(W (α, β, k)), I22 = −n

∂2

∂β2 log(W (α, β, k)),
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I21 = −n
∂2

∂β∂α
log(W (α, β, k)) −

n∑

i=1

log(1 + xi )
(1 + xi )−(α+1)

(1 − (1 + xi )−(α+1))
,

I23 = −n
∂2

∂β∂k
log(W (α, β, k)), I31 = −n

∂2

∂k∂α
log(W (α, β, k)),

I32 = −n
∂2

∂k∂β
log(W (α, β, k)), I33 = −n

∂2

∂k2
log(W (α, β, k)).

The matrix
∑

is used to evaluate the asymptotic variance-covariance matrix of
maximum likelihood estimators (MLE). The latter is the inverse of the observed Fisher
information matrix. Empirically, by the maximum likelihood method and the fisher
information given by

∑
, it suffices to replace (α, β, k) by α̂, β̂, k̂ to get the variance

asymptotic of the maximum likelihood estimator.

4.2 Estimation by themoments’method

Now, we construct theMoment Method Estimator (MME) of the parameters (α, β, k).
To do that, we consider a size n, X1, . . . Xn , of a random sample drawn from a r.v. X
with the pdf

fW I K D(x, α, β, k) = α

W (α, β, k)
xk(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

Then, the estimates α̃, β̃, k̃ are the solutions of the below set of equations:

⎧
⎪⎨

⎪⎩

W (α, β, k + 1) − W (α, β, k)n−1
∑

Xi = 0

W (α, β, k + 2) − W (α, β, k)n−1
∑

X2
i = 0

W (α, β, k + 3) − W (α, β, k)n−1 ∑
X3
i = 0

The solution is obtained by using the R-code nleqslvwith the initial values (10, 5, 6).

5 Performance and discussion

In this section, we test the performance of our introduced model using simulation
studies and real data and discuss its superiority by comparing it to the comparative
models.

5.1 Simulation studies

In the first illustration, a comparative study between both estimation methods is devel-
oped to show both estimators’ applicability (MLE and MME). For this purpose,
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Table 1 Simulation studies: parameter estimates for WIKD based on maximum likelihood and moment
methods

Estimator Parameters n Bias(α) MSE(α) Bias(β) MSE(β) Bias(k) MSE(k)

MLE (2,1,3)

10 0.82 0.93 −0.69 0.84 0.92 0.97

30 −0.74 0.77 −0.62 0.73 0.87 0.95

50 −0.67 0.74 0.56 0.61 −0.72 0.84

70 0.55 0.68 0.44 0.52 0.63 0.71

90 0.51 0.43 −0.29 0.38 0.42 0.49

100 −0.42 0.54 0.19 0.25 −0.22 0.34

(10,9,10)

10 2.88 3.12 −1.89 2.33 −2.02 3.18

30 −2.42 3.04 1.69 2.24 −1.92 2.54

50 1.76 2.65 −1.37 1.95 1.65 2.05

70 1.54 1.93 1.26 1.78 −1.52 1.69

90 −1.25 1.51 −1.09 1.29 1.37 1.61

100 −1.20 1.35 −0.89 1.05 1.12 1.41

MME (2,1,3)

10 −1.03 1.17 1.05 1.21 0.97 1.04

30 −0.78 0.92 0.95 1.09 0.81 0.99

50 0.63 0.71 0.59 0.69 0.83 0.95

70 0.78 0.85 0.51 0.68 0.53 0.69

90 0.51 0.58 −0.29 0.39 0.47 0.54

100 −0.52 0.61 0.28 0.34 0.40 0.52

(10,9,10)

10 3.64 4.12 2.59 3.49 2.92 3.69

30 2.92 3.76 2.19 2.94 −2.42 3.19

50 1.57 1.98 2.03 2.64 2.15 2.56

70 0.92 1.52 1.02 1.64 −1.72 2.05

90 −0.87 1.23 0.94 1.78 −1.47 2.05

100 −0.83 1.16 0.80 1.34 −1.42 1.68

we generate n random variables from the weighted inverted Kumaraswamy distri-
bution by inverting the cumulative distribution function over the uniform distribution,
using the R-code inverse. The simulation experiment is performed over two cases
(α, k, β) = (2, 1, 3) and (α, k, β) = (10, 9, 10). The bias and the mean square errors
(MSE) are summarized in Table 1. The bias for an estimator is calculated as the differ-
ence between the expected and the true values. The MSE is non-negative and is used
to measure the estimator quality; a better estimator is that with an MSE value closer
to zero.

Comparing the results of MLE and MME of the first case to the second case of the
experiment, based on the bias values, we see that the precision for the MLE is very
high for a very small sample size. But, when the sample size is increased, there are
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some differences between both methods. In addition, and based on the MSE values,
we see that for each n, the MSE values for the MLE method are smaller than those for
the MMEmethod. In what follows, we will carry our analysis and investigation based
on the MLE method.

In the second illustration, we use Monte Carlo data to test the efficiency of the pro-
posed probability model compared to the known model that is the Kumaraswamy
Sushila distribution (KSD) (Shawki and Elgarhy 2017). To do that, we consider
two simulated models that are very close to realistic situations. Precisely, we
use some observations drawn by the absolute variable of the Laplace Distribution
(Laplace(μ, b)) which cover the nonhomogeneous data, and the second one is con-
structed from the absolute variable of the mixture model ρN (0, .1)+ (1−ρ)N (0, 1).
Recall that our main aim in this second illustration is to test the quality of WIKD
over these usual models. In fact, there are many measures for the model selection
and the goodness of fit in probability theory. The AIC and BIC are two of the most
used measures. These criteria permit the quantification of the information loss in this
simulated data. Indeed, the best model is the model with smaller values of the AIC
and BIC. The Monte Carlo study is carried out over several values of the parameters
μ, b, ρ, m, and p. Table 2 displays the results.

It apparats clearly that the WIKD is significantly better than the IKD and KSD.
Of course, this gain is varied with respect to the generated data and the choice of the
parameters. In particular, the best result of the WIKD corresponds to the Laplace
distribution with μ = 0 and b = 0.5. Meanwhile, for the IKD and KSD, there is a
significant loss of information, mainly when using the BICmeasure. The border range
for IKD (respectively for KSD) is between 175.61 and 507.42 (respectively, 504.98
and 618.78) versus 91.82 and 450.93 for the WIKD.

5.2 A real life application

Two real data sets of Carbon fiber data are used to compare the efficiency and flexibility
of the WIKD with existing sub-models. Carbon fibers distinct lightness and strength
make it a viable, versatile, and useful commercial product for awide variety ofmarkets.
Carbon fiber is commonly used to reinforce composite materials to make them strong
and reliable. It is typically two times stronger, six times harder, and half time heavier
than fiberglass. Accurate and reliable modeling of this important material is of great
importance in a variety of fields. Noting that, in survival analysis, practitioners are
usually interested in choosing the distribution providing the best fit for the underlying
data. This is the principal motivation to build new distributions. For this purpose, we
highlight the feasibility of the WIKD using the two data sets evaluating the strength
of carbon fiber. The first one contains (n = 63) observations. Such data is frequently
used in this kind of study. It was initially reported and studied by Badar and Priest
(1982) and then byMead et al. (2017) as an application for the beta exponential Frechet
distribution. The data is measured in GPA and represents the strength of single carbon
fibers and impregnated 1000-carbon fiber tows. More examples of this kind of data
are available in the R-package AdequacyMode. In the first part of this computational
study, we use the following observations:
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Table 3 Performance of
distributions for the Dataset I:
WIKD, IKD and KSD

Distributions AIC AICC BIC

WIKD 243.166 243.536 249.869

IKD 267.066 267.248 271.535

KSD 312.253 312.943 320.826

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474,
2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738,
2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145,
3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435,
3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,
4.225, 4.395, 5.020.

This data is fitted using three models; WIKD and its sub-models, i.e., IKD and
KSD. Recall that the fit of this data is performed by R-code goodness.fit based on the
PSO algorithm. As we mentioned before, this algorithm provides greater control of
the optimization process and overcomes the effects of flat regions or the independence
to the choice of the initial values.

For comparing theWIKDwith its sub-models, criteria such as theAIC, BIC, and the
corrected Akaike information criterion (AICC) are used. A distribution with smaller
AIC, AICC, and BIC values is judged to be the best fit compared with its existing
models. The estimation of the parameters of theWIKDand its sub-models are achieved
with the help of R-code goodness.fit; Table 3 displays the results.

It is evident from Table 3 that the WIKD gives a superior fit when contrasted with
other sub-models since it has the most minimal estimations of AIC, AICC, and BIC.

The second illustration also concerns another example of carbon fiber data. Recall
that this data’s popularity is motivated by the fact that carbon fiber is essential to
measure the benefit of a material in strength and stiffness. In particular, obtaining
carbon fiber materials with high stiffness and strength is possible through specialized
heat treatment processes with very expansive and costs much higher values. In this
sense, the devolvement of new distributions allowing to fit these characteristics is
extremely important. To confirm the superiority of the WIKD over its competitive
models, we evaluate its performance over other celebrated data that represent the
tensile strength of carbon fibers. The considered data was initially reported and studied
by Badar and Priest (1982) and then by Shanker et al. (2016) as an application for
weighted Lindley distribution. It contains (n = 69) observations. It gives the GPA
measures of the tensile strength of carbon fibers. The data observations are:

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997,
2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253,2.270,
2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490,
2.511,2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697,
2.726, 2.770,2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084,
3.090, 3.096, 3.128,3.233, 3.433, 3.585, 3.585.
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Table 4 Performance of
distributions for the Dataset II:
WIKD, IKD and KSD

Distributions AIC AICC BIC

WIKD 228.951 229.320 235.653

IKD 253.372 253.554 257.840

KSD 348.157 348.782 357.094

The WIKD estimates and its sub-models parameters, AIC, AICC and BIC for
dataset II, are also obtained with the help of R-code goodness.fit; Table 4 displays the
results.

FromTable 4, it is again apparent that theWIKDgives a superior fitwhen contrasted
with other sub-models since it has the lowest estimations of AIC, AICC, and BIC.

6 Conclusion

Materials of high strength are always necessary to ensure the safety of human lives and
infrastructures to elude the significant obligations linked with the provisions of non-
compliant products. In this paper, we introduced the weighted inverted Kumaraswamy
distribution. We provide explicit expressions for the model properties: the moments,
mgf, hazard rate function, mean residual function, stochastic ordering, and measure
of uncertainty for WIKD. Parameters of the proposed model are achieved using the
maximum likelihood andmomentsmethod.Also, comparative studies of bothmethods
based on simulation studies are conducted to show the applicability of both estimators
and test the performance of WIKD over that KSD. The results show that the WIKD
performance better than KSD. Finally, we present an illustration that endorses the
applicability of the WIKD for modeling real-life data over their existing sub-models.
Two real carbon fiber data are used, and again the results show the superiority of the
WIKD in fitting the data better than IKD and KSD.
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AMoments and relatedmeasures

It is well known that the moments of a r.v. are fundamental characteristics. They
allow studying skewness and kurtosis of a variable following a certain distribution and
permits to construct an estimator of the parameters. Here, we focus on the different
moments of the WIKD.
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A.0.1 The central and non-central moments

A.1 The central and non-central moments

Let X be a random variable has WIK distribution with parameters α, β and k . The
non central moment of order r ,

E[Xr ] =
∫ ∞

0
xr fW I K (x, α, β)dx

= α
∑k

i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)
∫ ∞

0
xr+k(1 + x)−(α+1) [

1 − (1 + x)−α
]β−1

dx

=
∑k+r

i=0

(k+r
i

)
(−1)i B

(
α−k−r+i

α
, β

)

∑k
i=0

(k
i

)
(−1)i B

(
α−k+i

α
, β

)

Finally, the non-central moment, of order r , E[Xr ] is defined by

μr = W (α, β, k + r)

W (α, β, k)

Hence, the variance is

σ 2 = (W (α, β, k) ∗ W (α, β, k + 2)) − (W (α, β, k + 1))2

(W (α, β, k)))2
(9)

Similarly, for the central moments E[X − μ]r , we have

E[X − μ]r =
r∑

j=0

(
r

j

)
(−μ)r− j E[X j ]

Then,

μCentral
r =

∑r
j=0

(r
j

)
(−1)r− jW (α, β, k + 1))r− jW (α, β, k + j)

(W (α, β, k + 2))r
(10)

Using the moment definition of WIKD, the harmonic mean of the r.v. X is defined by

Hm(X) = 1

E[X−1] = W (α, β, k)

W (α, β, k − 1)
.
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A.1.1 Moment generating function and characteristic function

Assume that the X follows WIKD. Then, The moment generating function and char-
acteristic function are respectively defined by

ψ(t) = 1
∑k

i=0
(k
i
)
(−1)i B

(
α−k+i

α , β
)

⎛

⎝
∞∑

n=0

k+n∑

i=0

(
k + n

i

)
(−1)i B

(
α − n − k + i

α
, β

)
tn

n!

⎞

⎠

and

φ(t) = 1
∑k

i=0
(k
i
)
(−1)i B

(
α−k+i

α , β
)

⎛

⎝
∞∑

n=0

k∑

i=0

(
k + n

i

)
(−1)i B

(
α − n − k + i

α
, β

)
(i t)n

n!

⎞

⎠ .

We conclude that

ψ(t) = 1

W (α, β, k)

( ∞∑

n=0

W (α, β, k + n)
tn

n!

)

and

φ(t) = 1

W (α, β, k)

( ∞∑

n=0

W (α, β, k + n)
(i t)n

n!

)

A.2 Measures of skewness and kurtosis

The skewness and kurtosis coefficients are usually used to judge, respectively, the
asymmetry and flatness of a distribution. The skewness coefficient is determined by

γ1 = E

[
X − μ

σ

]3
.

Using (9)and (10), it follows, for the WIKD, that

γ1 = (W (α, β, k))2W (α, β, k + 3) − 3W (α, β, k)W (α, β, k + 1)W (α, β, k + 2) + 2(W (α, β, k + 1))3
(
W (α, β, k + 2) − (W (α, β, k + 1)2)

)3

Also, the Kurtosis coefficient is

γ2 = E

[
X − μ

σ

]4
.
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Thus, for WIKD and using (9)and (10), it is

γ2 = (W (α, β, k))3W (α, β, k + 4) − 4(W (α, β, k))2W (α, β, k + 3)W (α, β, k + 1)
(
W (α, β, k + 2) − (W (α, β, k + 1)2)

)2

+6(W (α, β, k))W (α, β, k + 2)(W (α, β, k + 1))2 − 4(W (α, β, k + 1)4)
(
W (α, β, k + 2) − (W (α, β, k + 1)2)

)2
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