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Abstract
From a statistical viewpoint, characteristics such as ignition time, location and dura-
tion are relevant components for wildfire modeling. The observed ignition sites and
starting times constitute a space-time point pattern, and a natural framework to model
this type of data is via point processes. In this work, we propose a marked Poisson
process to model fire patterns in space-time, considering durations as marks. The col-
lected data correspond to fires observed in the Valencian Community, Spain, between
2010 and 2015. The methodology relies on writing the intensity function of such a
process, jointly for starting times, locations and durations, as a weighted Dirichlet
process mixture model. A particular choice of the kernel that determines such mixture
was made, compatible with data features. We conducted posterior inference on some
characteristics of interest for understanding wildfire behavior, showing high flexibility
to emulate data patterns.
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1 Introduction

Fire is an ubiquitous ecological disturbance. Since the first plant communities were
established on land, lightning and other ignition sources have started forest fires. In
Mediterranean landscapes, fire is one of the main ecological disturbances, as it can
affect forests severely enough to induce changes in forest dynamics and geohydrology.
(Miguel et al. 2011; Shakesby 2011). Through time, living beings in most terrestrial
ecosystems have adapted to the presence and effects of fire, turning it into a natural
component in all forest ecosystems (Agee 1993). Despite this, fire represents a hazard
to human life and property, encouraging society and policy makers to take measures
that mitigate its effects. In European forests, wildfire incidence has increased in recent
years, apparently associated to climate change and global warming (Aragó et al. 2016).
Unlike other natural hazards, wildfire risk is predictable to some extent (Birot 2009),
and thus models able to explain and predict the space and time variability of their
incidence, as well as their variability in time to extinction, are of great importance
(Faivre et al. 2018). Modeling forest fire dynamics helps to increase the structured
knowledge about terrestrial ecosystems, to establish better management of them, and
consequently, to set a sustainable use of forest resources (Ager et al. 2006; Lindner
et al. 2010). Modeling the spatial variation of fires is important as their burning time
is directly associated to the final size of the burned area and the amount of gasses
and particulate matter emissions (van der Werf et al. 2009). Such association is also
affected by local factors, like vegetation and lithology (Miranda et al. 1994).

Stochastic models for forest fire incidences have been in the literature since the
pioneering modeling made by Dayananda (1977). With the advent of Geographic
Information Systems (GIS), various attempts to model and screen out risk factors for
forest fires have been developed (Amatulli et al. 2007). Though useful, some of these
approaches lack necessary key components for adequate spatial modeling, e.g., the
classical raster approach based on GIS assumes independence among pixels. In fact,
most of the models based on GIS do not include a random component (Mandallaz and
Ye 1997; Ager et al. 2006).

Ignition time and location of forest fires constitute a complex process, difficult to
predict. However, historical data can be used to construct predictive maps for fire risk.
In this sense, some authors have proposedmodels based on standard generalized linear
models (Padilla and Garcia 2011; Vilar et al. 2010) and weighted generalized linear
models (Marques et al. 2011). Other authors have proposed more elaborate models
based on Markov random fields (Díaz-Avalos et al. 2001), maximum entropy models
(Duane et al. 2015) (Duane et al., 2015), kernel density adaptive models (Amatulli
et al. 2007), fire growth models (Bar Massada et al. 2009), quantile regression (Barros
and Pereira 2014) and spatial point processes (e.g. Juan et al. 2012; Møller and Díaz-
Avalos 2010; Turner 2009; Serra et al. 2014; Aragó et al. 2016; Díaz-Avalos et al.
2016), among others.

Fromanecological viewpoint, characteristics such as ignition time, ignition location
and fire duration, are relevant components forwildfiremodeling. Indeed, these features
are important as they are closely associated to fire dynamics, in the sense that they are
amongst the main variables that control hazards and are also related to burning area
and recurrence rate (McKenzie et al. 2011).
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The observed sites and ignition times constitute a space-time point pattern and a
natural framework to model this type of data is via marked point processes (see e.g.
Daley and Vere-Jones 2008; Baddeley et al. 2015). These models have been used in
fields such as biology, ecology, agronomy and physics, among others (Møller and
Waagepetersen 2004; Illian et al. 2008; Diggle 2013). Within the forest fire model-
ing literature, various approaches have been proposed (see for example Møller and
Díaz-Avalos 2010; Serra et al. 2014; Díaz-Avalos et al. 2016). While the theory and
application of point processes is vast, in many cases their estimation remains a chal-
lenge. In this regard, the approach by Taddy and Kottas (2012), which models the
intensity of a Poisson point process via weighted mixtures of Dirichlet processes,
results in a flexible alternative to intensity modeling, as it borrows the practicality of
Bayesian nonparametric inference techniques.

The complete randomness property inherent to Poisson point processes may be
inadequate to model point patterns that exhibit regularity or clustering features. How-
ever, this effect is diminished when the intensity measure is modelled by another
random measure, such as in the case of Cox processes. In fact, there are some inter-
sections between non-homogeneous Poisson processes and renewal processes that fall
within Cox processes theory (Yannaros 1994; Daley and Vere-Jones 2008).

In this work, we propose a marked Poisson point process for wildfire ignition times
and locations as events, marked with durations. The central idea is to use a particular
joint intensity function for events and marks, which adapts to the context at issue.
Specifically, we apply the model to infer the intensity functions for ignition times and
locations, the survival and hazard functions for durations, and the conditional survival
function for durations given starting times and locations, for fires occurring in the
Valencian Community, Spain, between January 1st, 2010, and December 31st, 2015.
Wildfire ignitions may be intentional, accidental, or caused by natural forces such as
lightning. In our study, we will only consider wildfires caused by lightning strikes.

2 Methodology

2.1 Study area

The Valencian Community is located in the east and southeast (SE) part of Spain,
neighbouring the communities of Castilla - La Mancha, Cataluña, Aragón and Mur-
cia (Fig. 1). The inland part of the territory is craggy, with the highest peaks in the
Valencia and Castellón provinces forming part of the Iberian mountain range. The
mountains in the Province of Alicante form part of the Subbaetic range. The coastal
zone is mostly a fertile farming zone with some wetlands. According to the Agencia
Estatal de Meteorología of Spain (2013), the climate in the study area is diverse, with
Mediterranean climate in the coastal areas, continental Mediterranean climate in the
continental zones and some zones with hot semi-arid climate.

The vegetation of the Valencian community is diverse as well due to the topography
in the community. According to the Coordination for the Information on the Environ-
ment (CORINE), there are more than forty-four vegetation types in the Valencian
Community.

123



552 Environmental and Ecological Statistics (2021) 28:549–565

Fig. 1 Political division map showing the location of the Valencian Community in the Iberic Penninsula

2.2 Data set

The data set used in our case study consists of m = 337 wildfires reported for the
Valencian Community during the years 2010 to 2015 by the “Comité de Lucha contra
Incendios Forestales” in the Valencian Community. The time span is 2191 days, start-
ing from January 1st, 2010, 00:00:01 GTM.Wildfires are originated by several causes,
but here we will analyze only those originated by natural causes. The information used
in our analysis considers starting time (days since January 1st, 2010, 00:00:01 GTM),
duration (days) and geographic location of the ignition site in UTM. Figure 2 shows
nonparametric kernel estimates (Diggle 2013) of the intensity function for the five
years considered in this study, using the observed point pattern of wildfires in space
and time. The incidence of wildfire ignitions shows variability among the six years,
but the levels of the intensity estimates have similar maxima except for 2010, where
the overall intensity was low, and 2013, which shows an intensity peak in the SE part
of the study area.

To better highlight the areas where wildfires are more common, Fig. 3 presents the
marginal spatial distribution of the wildfires in the Valencian Community, as well as
the variation in 30 day bins of the number of wildfires between January 1st, 2010,
and December 31st, 2015. The spatial incidence of the wildfires (Fig. 3a) shows only
some areas where wildfires apparently form clusters. These areas are located in the
western part of the study area, where forest zones and higher elevations are common.
Wildfires at the north, south and coast zones of the Valencian Community were scarce
during the study period. Figure 3b shows the seasonality of wildfire incidence in the
study area, with high incidences during the warm and dry summer months, and lower
incidence during winter. Due to the weather conditions, as well as to the closeness
to firefight centers and accessibility, wildfire control times are random, analogous
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Fig. 2 Estimated spatial incidence of wildfires in the Valencian Community, Spain, for years 2010 to 2015,
obtained by using a space-time kernel estimator with border correction
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Fig. 3 Spatial incidence of wildfires in the Valencian Community, Spain, between January 1st, 2010, and
December 31st, 2015 (a), and temporal incidence along time in 30 day bins (b)
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to survival analysis (Daley and Vere-Jones 2003). Thus, the observed spatial point
pattern of wildfire ignition sites, ignition times, and survival times can be considered
as a realization of a space-time marked Poisson process. Hence, our goal here is to
propose and fit a model for the joint intensity function of the point pattern of wildfires
occurring in the Valencian Community during the time span mentioned above. Note
that the areas where the nonparametric estimate of the intensity function in Figs. 2 and
3 is high suggest the presence of some degree of clustering. However, when the events
are spread along the five years of the study, the observed groupings are a consequence
of a static projection of all events during that period rather than a true clustering effect.

3 Modeling the spatio-temporal incidence of wildfires using Dirichlet
process mixturemodels

We assume that the observed point pattern is a realization of a space-time marked
point process and denote the point configuration of fire i by yi = (si , xi , li ), where
si ∈ [0,∞) and xi = (x1i , x2i ) ∈ R

2 are the wildfire starting times and locations,
respectively, each attached with its duration li ∈ [0,∞), say the marks. Specifically,
we assume that { yi : i = 1, . . . ,m} are m ∈ N points generated from a marked
space-time Poisson process (MPP) with a continuous intensity function λ : [0,∞) ×
R
2 × [0,∞) → [0,∞), such that

0 <

∫
[0,∞)

{∫
W0

λ(s, x, l)ds dx
}
dl < ∞ (1)

for all bounded subsets W0 of [0,∞) × R
2. Hence, in some W := W0 × [0,∞),

we observe m wildfire starting times {s1, . . . , sm}, their corresponding locations
{x1, . . . , xm} and durations {l1, . . . , lm}. Using (1) we can estimate features of the
MPP through its likelihood function, which is proportional to

exp(−ρ)ρm
m∏
i=1

π(si , xi , li ), with π( · ) := λ( · )
ρ

and

ρ :=
∫
W

λ(s, x, l)ds dx dl. (2)

In (2), π : W → [0,∞) is a continuous probability density function by construction.
As exp(−ρ)ρm depends on the data only through the sample size m, { yi : i =
1, . . . ,m} can be considered as a random sample coming from π , independent from
ρ. Thus, modeling λ flexibly is equivalent to modeling π . This technique has been
previously used by Taddy andKottas (2012), who proposedmodelingπ as as Dirichlet
process mixture (DPM) model (Antoniak 1974; MacEachern 1994; Escobar andWest
1995), and a Jeffreys prior forρ, supported on (0,∞), with functional formρ−1. Under
such framework, each yi is generated from a random probability density function

123



Environmental and Ecological Statistics (2021) 28:549–565 555

π( y | H) := ∫
�
K( y | θ)dH(θ), which admits the hierarchical representation

yi | θ i
ind.∼ K( · | θ i ) : i = 1, . . . ,m

θ1, . . . , θm | H i.i.d.∼ H

H | α, H0 ∼ DP(α, H0). (3)

Here, DP(α, H0) represents a Dirichlet process (DP) with centering probability mea-
sure H0 and concentration parameter α (Ferguson 1973; Blackwell and MacQueen
1973), and K( · | θ) is a suitable probability kernel indexed by a latent parameter
θ ∈ �. Model (3) can be enriched by assigning prior distributions to α and (possible)
hyper-parameters associated with H0.

Many theoretical properties regarding DPMmodels can be found in the specialized
literature. Here, we highlight one that is important formodel specification. Sethuraman
(1994) shows that

H( · ) = V1δθ1( · ) +
∞∑
r=2

{
Vr

r−1∏
t=1

(1 − Vt )

}
δθr ( · ), (4)

where δa( · ) is the Dirac measure centred on a ∈ � and {(θr , Vr ) : r ∈ N} is a
sequence of independent random vectors (θr , Vr ) whose coordinates are mutually
independent with common distributions θr ∼ H0 and Vr ∼ Beta(1, α). Equation (4)
says that H is a discrete probability measure with probability one. Thus, π( y | H)

given by (3) is a countably infinite random mixture centered at the parametric model
π( y | H0) := ∫

�
K( y | θ)dH0(θ). This feature can help in choosing K by analyzing

the marginal behaviour of s, x and l, or some transformations on them. Also, (4)
implies that the induced random intensity function λ( y | ρ, H) := ρ π( y | H) is not
separable in terms of s, x and l, even when K and H0 are factorizable.

A full specification of model (3) requires selecting K and H0. Within a similar
context, various choices have been studied, e.g., a Beta distribution for s (Kottas
2006a); a Sarmanov bivariate distribution with Beta marginals for x (Kottas and Sansó
2007); a Weibull distribution (Kottas 2006b) or Gamma distribution (Fúquene 2015)
for l. Implementing such choices for our context, we observed poor estimates for
the corresponding parameters, which in turn affected every other posterior inference
related to (3). After analysing our data, we found that working under transformations
of the form z �→ log( z−lb

ub−z ) : z ∈ [lb, ub], wildfire starting times and locations
can be captured by mixtures of Normal distributions. The choice of lb and ub were
selected according to the range of data. Specifically, we applied the following data
transformation
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f (s) = log

(
s

2191 − s

)
and

G(x) = (g1(x1), g2(x))

=
(
log

(
x1 − 591,685.7

823,584.3 − x1

)
, log

(
x2 − 4,157,261

4,578,246 − x2

))
(5)

for starting times and locations, respectively. For wildfire durations, we applied Cheng
and Yuan (2013)’s approach. Hence,

K( y | θ) = {Normal( f (s) | η, κ) f ′(s)}{Normal(G(x) | μ,�)J(x)}
{Normal(log(l) | ξ, φ)l−1}, (6)

where θ = (η, κ,μ,�, ξ, φ) and J(x) = g′
1(x1)g

′
2(x2). Here, Normal( · | m,V) is

the Normal probability density function with (scalar or vector) mean m and (scalar or
matrix) varianceV, (η, κ) ∈ R× (0,∞), (μ,�) ∈ R

2 ×S
2 and (ξ, φ) ∈ R× (0,∞).

The set S
2 is the space of positive-definite matrices of dimension 2 × 2. As for H0,

we use the following distribution

dH0(θ) = dH01(η, κ)dH02(μ,�)dH03(ξ, φ), (7)

where

dH01(η, κ) = Normal(η | ms, c
−1
s κ)Inv-Gamma(κ | 0.5as, 0.5bs)dη dκ

dH02(μ,�) = Normal(μ | mx, c
−1
x �)Inv-Wishart(� | ax,Bx)dμ d�

dH03(ξ, φ) = Normal(ξ | ml , c
−1
l φ)Inv-Gamma(φ | 0.5al , 0.5bl)dξ dφ.

Here, Inv-Gamma( · | a, b) is the inverse-Gamma probability density function with
shape a and scale b, Inv-Wishart( · | d,S) is the inverse-Wishart probability density
function with degrees of freedom d and scale matrix S, (ms, cs, as, bs) ∈ R×(0,∞)3,
(mx, cx, ax,Bx) ∈ R

2×(0,∞)2×S
2 and (ml , cl , al , bl) ∈ R×(0,∞)3. Equation (7)

is an appealing choice in that it is a conjugate distribution for (6), with hyperparameters
that are easy to calibrate using the data in the transformed scale.With the idea of having
posterior inference on weakly informative priors, we first set as = al = 3 and ax = 4,
which are the least integer values such that κ , � and φ have finite means and infinite
variances. Next, we choose prior guesses for (ms, cs, bs), (mx, cx,Bx) and (ml , cl , bl)
which determine the first two moments of H01, H02 and H03, through the relations

E[η] = ms, Var[η] = c−1
s bs, E[κ] = bs,

E[μ] = mx, Var[μ] = c−1
x Bx, E[�] = Bx,

E[ξ ] = ml , Var[ξ ] = c−1
l bl , E[φ] = bl .

These specifications ensure good coverage of the data along with a user-friendly spec-
ification.

Here is worth emphasizing that, besides the application at issue, themain difference
between the approach by Kottas et al. (2005) and the one here proposed is the marked
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feature of our spatio-temporal model plus the choices for kernel and prior guess at the
shape, (6) and (7), respectively. These variations allow us to capture the duration and
the data-based spatio-temporal features under the transformations (5).

4 Posterior Inference

We adapt Algorithm 8 (see Algorithm 1 below), proposed by Neal (2000), which
relies on (4). This characteristic implies ties among the latent parameters θ1, . . . , θm
in (3), thus forming a set of k ≤ m unique latent values θ�

1, . . . , θ
�
k . A convenient way

for updating θs in terms of θ�s, is by introducing a collection of auxiliary variables
e1, . . . , em ∈ {1, . . . , k}, such that ei = j if θ i = θ�

j . As for the concentration
parameter α, we use a Gamma(a0, b0) prior distribution with shape a0 and rate b0 (see,
e.g., Escobar and West 1995; Kottas et al. 2005), independent of all hyperparameters
indexed in the centering measure H0. Parameters a0, b0 ∈ (0,∞) can be fixed by
exploring the prior distribution of k given α, whose mean and variance are equal to∑m

r=1
α

α+r−1 and
∑m

r=1
α(r−1)

(α+r−1)2
, respectively. Details about all full conditionals and

steps in this pseudo-algorithm are given in Sections A–C of the online Supplementary
Material.

Algorithm 1
1: Input.

a) Data: y1, . . . , ym .
b) Parameters:ms , cs , bs ,mx , cx ,Bx ,ml , cl , bl , a0, b0 .
c) Iterations: T .

2: Initial values.
a) Auxiliary variables: (e1(0), . . . , em (0)).
b) Unique parameters: {(η�

j (0), κ
�
j (0), μ

�
j (0), �

�
j (0), ξ

�
j (0), φ

�
j (0)) : j = 1, . . . , k(0)}.

3: Updating.
for t = 1 to T do
a) Auxiliary variables: (e1(t), . . . , em (t)) following A.
b) Unique parameters: {(η�

j (t), κ
�
j (t), μ

�
j (t), �

�
j (t), ξ

�
j (t), φ

�
j (t)) : j = 1, . . . , k(t)} following B.

c) Concentration parameter: α(t) following C.
d) Scale factor: ρ(t) following aGamma(k(t), 1) distribution.

4: end do
5: Output.

a) MCMC samples: {(e1(t), . . . , em (t)) : t = 1, . . . , T }, {{(η�
j (t), κ

�
j (t), μ

�
j (t), �

�
j (t), ξ

�
j (t), φ

�
j (t)) :

j = 1, . . . , k(t)} : t = 1, . . . , T }, {α(t) : t = 1, . . . , T } and {ρ(t) : t = 1, . . . , T }.

Although there are numerical features that can be estimated directly from the
MCMC samples, several quantities necessarily require posterior samples from the
mixing measure H in (3), a topic that is not addressed by Neal (2000). To fix ideas,
let F(ρ, H) := F(λ( · | ρ, H)) be a generic function of the the intensity function
λ( · | ρ, H) = ρ π( · | H). Recall that π( · | H) is given by (3), and ρ is independent
of H , following a Jeffreys prior supported on (0,∞) with functional form ρ−1. Given
the observed data { y1, . . . , ym}, we use a method that allows reporting posterior point
and interval estimates for F(ρ, H). This inferential problem requires to deal with
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the posterior distribution of H . To address this issue, Ishwaran and Zarepour (2002)
proposed a clever method which combines the MCMC posterior samples

{(e1(t), . . . , em (t)) : t = 1, . . . , T }, {α(t) : t = 1, . . . , T }, {ρ(t) : t = 1, . . . , T } and

{{(η�
j (t), κ

�
j (t), μ

�
j (t), �

�
j (t), ξ

�
j (t), φ

�
j (t)) : j = 1, . . . , k(t)} : t = 1, . . . , T }

with a “truncated” stick-breaking representation of the Dirichlet process (Sethuraman
1994). Algorithm 2 below provides a pseudo-code applying their technique in our
context. Details can be found in Section D of the online Supplementary Material.

Algorithm 2
1: Input.

a) Truncation index: G .
b) MCMC samples: {(e1(t), . . . , em (t)) : t = 1, . . . , T }, {{(η�

j (t), κ
�
j (t), μ

�
j (t), �

�
j (t), ξ

�
j (t), φ

�
j (t)) :

j = 1, . . . , k(t)} : t = 1, . . . , T }, {α(t) : t = 1, . . . , T } and {ρ(t) : t = 1, . . . , T }.
2: Approximation.

for t = 1 to T do
a) Truncated DP: HG (t) following D.

3: end do
4: Output.

a) Approximated posterior samples: {F(ρ(t), HG (t)) : t = 1, . . . , T }.

5 Results and discussion

Using the data set described in Section 2 and the algorithms described in the previous
section, we fitted the model described in Section 3. Parameter elicitation suggested in
Sections 3 and 4 is provided below.

• Concentration parameter: a0 = 2.5 and b0 = 0.2. These values induce a priori
E[k] ≈ 41 and Var[k] ≈ 361.

• Unique latent parameters: ms = 0, cs = 0.004, bs = 0.04, mx = (0, 0)
, cx =
0.02, Bx = diag(0.1, 0.1), ml = −1, cl = 0.1 and bl = 1. These values induce a
priori E[η] = 0, Var[η] = 10, E[κ] = 0.04, E[μ] = (0, 0)
, Var[μ] = diag(5, 5),
E[�] = diag(0.1, 0.1), E[ξ ] = −1, Var[ξ ] = 10 and E[φ] = 1.

We collected 5,000MCMC iterations after discarding the first 100,000. The estimation
of the posterior survival function for durations given starting times and locations was
done using a truncation index G = 30.

Given that the proposed model for the intensity function is based on a random
distribution, under the assumption of an underlying Poisson point process, our model
falls in the class of Cox point processes with random density (3). In order to check the
validity of the Poisson assumption, we computed envelopes for the inhomogeneous
L-function for a non-homogeneous Poisson process with density proportional to the
intensity function shown in Fig. 3a (Møller andWaagepetersen 2004). Figure 4 shows
the observed L-function computed from the observations and the 95% confidence
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Fig. 4 Confidence band for the (L(r) − r) function in terms of distance r (in meters), computed for the
observed spatial marginal point pattern of wildfires in the Valencian Community between January 1st, 2010,
and December 31st, 2015. Dotted lines represent the upper and lower band limits and the solid black line
represents the observed non-homogeneous (L(r) − r) function

bands. The observed non-homogeneous L-function lies inside the confidence bands,
showing that there is no strong evidence against the Poisson assumption. Although
one would expect some level of interaction between wildfires as areas burned by one
fire become less prone to have another ignition, one should also consider that only
a small proportion of wildfires burn large areas, and that the random origin of the
ignition source for naturally caused wildfires—mostly lightning strikes—is likely to
start wildfires in other areas. Further, the spread of the small number of fires observed
in this study explains the lack of evidence of interactions.

Figure 5 shows the estimated posterior intensity function for starting times. The
flexibility of the model captures quite accurately the trend and local varying cycles
across time. The figure also reveals that ignition times due to lightning strikes are
highly concentrated in spring/summer, which is consistent with climatic factors in
the region. In addition, the intensity function shows a positive trend over time in the
number of outbreaking wildfires in the study area, a phenomenon that is probably
associated to the change from agricultural to industrial society in Spain (Moreira
et al. 2011). Land abandonment is a social factor related to wildfire increase in size,
severity and risk in Europe (McLauchlan et al. 2020; Perpiña Castillo et al. 2021).
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Fig. 5 Estimated posterior intensity function (solid blue curve) for wildfire starting times. Shaded gray area
represents the 95% credible interval. The symbols “ � ” below the x-axis are the observed starting times

Abandonment of agricultural lands results in shrub growth, increasing at a slow pace
of highly flammable fuels (Jaber et al. 2001). The abandonment of farm lands induces
an ecological succession process known as “old field succession”, which has been
related to increased fire risk in Spain (Santana et al. 2010) as the abandoned farm
lands represent an adequate habitat for grasses, weeds and other highly combustible
pioneering vegetal species. The effect of the change from agricultural to industrial
society on the incidence of forest fires in Spain has been discussed byVelez (1998), and
for other Mediterranean countries by Rego (1992); Alexandrian and Esnault (1998);
Pérez B. (2003). A detailed treatment of the subject is beyond the scope of this paper
and the reader can find further details in the literature in ecology and ecological
succession.

Figure 6a shows the estimated posterior intensity function for locations through
a heat map. Notice that high-intensity zones are concentrated in the north-central
portion of the Iberian System (Mira, Martés and Aledua mountain chains), where the
type of flora that abounds corresponds to bushes, pastures, conifers and mountainous
forests. The high risk of wildfires is possibly explained by the presence of these rapid
combustion elements, together with the difficult access due to the altitude. Figure 6b
displays the posterior mean absolute deviation as a measure of dispersion around the
estimated intensity function.
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Fig. 6 Estimated posterior intensity function and mean absolute deviation for wildfire locations. Solid gray
dots represent the observed data
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Fig. 7 Estimated posterior survival and hazard functions for wildfire durations. Solid blue curves represent
point-wise posterior means, and shaded gray areas, the corresponding 95% credible intervals. The symbols
“ � ” below the x-axis indicate the observed durations

Wildfire duration data can be seen as lifetimes generated by a heavy-tailed survival
distribution (Xi et al. 2019). In fact, the hazard function is also useful for understanding
the severity and impact of wildfires on human communities and ecosystems. Indeed,
for duration data, proportional hazard and frailty models (Kalbfleisch and Prentice
2002) are frequently used to assess how durations vary in space through a collection
of fire compartments (Martell and Sun 2008). See also Morin (2014); Morin et al.
(2015); Bayham (2015) for nice discussions and modeling details about fire durations.
Here, we use the outcome of the Bayesian nonparametric estimation to estimate the
posterior survival function. Figure 7a shows such a posterior estimate, revealing a
right-asymmetric shape with heavy tail. For display purposes, we truncated the x-axis
at 1.5 days. It should be noted that the estimated probability that a wildfire lasts more
than 1.5 days lies between 0.044 and 0.087, with probability 0.95. Figure 7b shows the
corresponding estimated posterior hazard function. There is little association between
the pattern of lightning strikes andfire ignitions.Wildfires triggered by lightning strikes
occur at random despite the existence of zones with high lightning-strike intensity
(Agee 1993).
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Fig. 8 Estimated posterior survival function for wildfire durations given two events (s, x). Solid blue curves
represent point-wise posterior means and shaded gray areas, the corresponding 95% credible intervals

To illustrate the versatility of the proposed model in estimating functions of the
duration, Figs. 8a and b show estimated posterior survival curves for durations given
two different space-time observed events, selected at random. Notice the difference
on the decay of the curves. In Fig. 8a, the selected event has an associated duration
l = 0.0729 days (1.75 h), whereas for Fig. 8b, l = 1.1458 days (27.5 h). Notice that
Fig. 8a corresponds to a low fire incidence area, while Fig. 8b to a high incidence
area. Clearly, the corresponding survival function shows a shorter duration for low
incidence areas, whereas for high fire incidence zones, the survival times are longer.
This could be due to the different fuel availability (Agee 1993).

6 Conclusions

Wildfires are becoming a common event in the European Mediterranean zone. Their
impact in landscape change, CO2 emissions to the atmosphere and the hazard they pose
to human life and property make the study of the factors associated to their presence
and the development of predicting models an important task. Here we have presented
a model that considers the spatio-temporal variability and duration of wildfires, three
of the most important properties for prevention, risk assessment andmanagement. The
case study is representative of a significant part of the European Mediterranean zone.
Our proposal represents a good tradeoff betweenmodel generality and implementation
feasibility.

Weighted DPM models are a rich class of stochastic processes that provide great
flexibility in terms of modeling prior beliefs, avoiding the sometimes restrictive para-
metric assumptions about conditional intensity functions used in classical space-time
modeling.

The approach undertaken here can potentially be explored in several directions.
For example, other marks, such as the area burned by a wildfire, can be incorporated
in the joint intensity function. Space-time covariates z(s, x) ∈ R

p, such as weather
conditions, wind speed, etc., could potentially be introduced in the joint intensity
function, at the expense of adding more complexity.
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