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Abstract
This paper measured the efficiency of green science and technology (S&T) innova-
tion in 30 Chinese provinces from 2008 to 2017 by constructing a three-stage super-
efficiency DEA model that contains undesired output and then analyzed the spatial 
performance for these provinces. The purpose is to calculate exactly the extent to 
which S&T innovation in different regions of China has contributed to economic 
development, excluding negative impacts on the ecological environment and any 
spatial differences that have emerged in the past decade. The results show that the 
overall performance of green S&T innovation efficiency in Chinese regions was 
poor in the past decade, and there is still much room for improvement. In addition, 
China’s investment in S&T innovation and environmental management is inefficient 
and wasteful. From the temporal perspective, efficiency in green innovation shows 
a slowly increasing trend. From the spatial perspective, the efficiency shows a strict 
correlation with economic development, that is, an obvious three-level spatial distri-
bution pattern of "east, middle, and west".
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1 Introduction

In recent decades, China has been one of the fastest-growing economies in the 
world. However, China is also one of the most resource-consuming and environ-
mentally destructive countries. How to break the constraints of resources and the 
environment has become a substantial problem for China’s economic develop-
ment in the next period. In recent years, the Chinese government has made great 
efforts and introduced many supporting policies to promote the transformation 
of the economic development pattern toward innovation-driven growth. However, 
S&T progress does not necessarily mean that pollution will be reduced. S&T can 
be divided into two types: environmentally friendly and environmentally destruc-
tive. Only environmentally friendly and clean emerging technologies can reduce 
pollution and achieve high-quality economic development, while many traditional 
technological improvements conversely cause further damage to the ecological 
environment. Historically, the relationship between technology and the environ-
ment has been contradictory in the majority of cases. The extreme destruction of 
the environment originated from the beginning of the industrial revolution—the 
development and promotion of modern S&T were realized in industrial produc-
tion, and the basic characteristics of modern industrialization are high input, high 
consumption, and high pollution. In other words, the industrial revolution and the 
rise of modern S&T destroyed the environment. Therefore, in the development 
of S&T, we should consider not only the economic value but also the ecological 
value. This study’s question is described as follows: in the past 10 years, to what 
extent has investment in S&T resources in different provinces in China promoted 
economic growth after eliminating the cost of environmental pollution?

2  Literature review

At present, the international community defines green S&T innovation as any 
form of innovation aimed at avoiding or reducing environmental pollution, 
improving ecological carrying capacity, or achieving the more efficient alloca-
tion of natural resources (European Commission 2011; Rennings et  al. 2016; 
Rasi and Ester 2016). With the tightening of environmental constraints and the 
enhancement of S&T productivity, the strength of green innovation ability will 
undoubtedly become an important aspect to measure a region’s competitive-
ness. Efficiency is the core paradigm of economic research, which shows how 
to maximize the utility of developing subjects with limited resources at the low-
est cost. According to the existing literature, academic research on the innova-
tion efficiency of green S&T is mainly based on input and output and can be 
divided into three categories. First, research has been conducted on the effi-
ciency of regional green S&T innovation (Yao et al. 2015; Yu et al. 2017; Xiao 
et al. 2017; Xiao and Zhang 2019; Shen and Zhou 2018; Ren et al. 2014; Cao 
and Yu 2015; Yi and Cheng 2018; Huang and Wu 2019; Yang et al. 2018). The 
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results show that the efficiency of green S&T innovation in different regions pre-
sents an unbalanced development mode with low-efficiency values, and there is 
still much room for improvement. In addition, due to regional developmental 
differences, the innovation efficiency of green S&T correspondingly presents an 
obvious gradient distribution pattern. The industrial structure, technology trad-
ing market, and other basic environmental elements are important aspects that 
affect efficiency. Second, research has been conducted on the efficiency of green 
S&T innovation in enterprises and industries (Xu et al. 2019; Nie and Qi 2019; 
Qian et al. 2018; Wang et al. 2016; Liu and Song 2018; Zhu et al. 2018). The 
study points out that the overall efficiency level of green R&D in Chinese enter-
prises and industries is low. The losses during the stages of technology R&D 
and achievement transformation are substantial. The efficiency value is highly 
correlated with the environmental innovation atmosphere, enterprise and indus-
try scale, government support, and other factors. Third, there are other aspects. 
For example, Gong et al. (2017) studied how the agglomeration effect of OFDI 
affects the efficiency of green innovation in industry. They believed that there 
are three main influencing mechanisms: the lightweight structure effect, scale 
economy effect, and resource allocation optimization effect. Luo and Liang 
(2017) empirically analyzed the impact of technology spillover of international 
R&D capital on green innovation efficiency in China. They believed that inter-
national R&D capital not only has a much more apparent promoting effect on 
green innovation efficiency than domestic R&D capital but also has a crowding-
out effect on domestic R&D capital. Peng et  al. (2017) studied the impact of 
formal and informal environmental regulation on green innovation. They found a 
U-shaped relationship between formal environmental regulation and green inno-
vation efficiency, while there was an inverted U-shaped relationship between 
informal environmental regulation and green innovation efficiency. Moreover, 
some scholars have studied the green investment in China (Shen et  al. 2021; 
Li et  al. 2020a, b; Khan et  al. 2020), and found the cointegration relationship 
among public-private partnership investment in energy, technological innova-
tion, renewable energy consumption, exports, imports, and consumption-based 
carbon emissions is proved. Therefore, they think technological innovation for 
the cleaner production process and public-private partnership investment in 
renewable energy is needed.

The existing studies provide important references for this paper. However, 
due to the differences in research objectives, indicator selection, and empirical 
methods, the conclusions drawn from these studies are inconsistent. Therefore, 
this paper constructs a three-stage super-efficiency DEA model with unexpected 
outputs to measure the green S&T innovation efficiency of 30 provinces in 
China from 2008 to 2017 and studies the spatial performance of these provinces’ 
efficiency values using spatial statistical methods.
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3  Measurement of green S&T innovation efficiency

In this study, we define green S&T innovation efficiency as the final result after 
eliminating the negative impact on the regional environment on the basis of the 
existing S&T innovation output. The efficiency result should reflect and contain the 
impact of a region’s S&T innovation on the economy and environment.

The methods of efficiency evaluation are mainly divided into parametric and non-
parametric methods. The parametric method is dominated by the stochastic frontier 
approach (SFA), while the nonparametric method is dominated by data envelopment 
analysis (DEA). Among them, with strong objectivity, DEA is considered the best 
method for evaluating efficiency. DEA was initially proposed by Charnes et  al. in 
1978 and was called the CCR model, which is an efficiency evaluation model with-
out considering the change in returns to scale. In 1984, Banker et al. proposed an 
efficiency evaluation model with variable returns to scale called the BCC model. 
These two models have become the most classic and common DEA models. How-
ever, the BCC and CCR models have two obvious defects. The first is the evaluation 
method based on radial and angle, which does not take the negative externalities 
and other unexpected outputs into account. This means that in the case of redundant 
input or insufficient output (i.e., when there is a nonzero slack in input or output), 
the efficiency evaluation result will be distorted and may be misevaluated. Tone 
(2002) proposed a non-radial and non-angular SBM model (slack-based measure) to 
cover this defect, which can calculate both the amount of slack and redundancy on 
non-rays. Second, DEA calculations often result in the coexistence of multiple effec-
tive DMUs (decision-making units) (that is, the efficiency value of multiple DMUs 
is 1), which makes it impossible to make further orders. Considering this, Andersen 
and Petersen (1993) proposed the super-efficiency DEA model to extend the effec-
tive value to more than 1. Thus we can further contrast and sort the effective DMUs. 
To eliminate the influence of environmental and random factors, this paper builds a 
three-stage super-efficiency SBM model with unexpected outputs to measure green 
innovation’s efficiency in different provinces and cities in China.

3.1  Introduction of three‑stage DEA model

Fried and Schmidt (2002) thought the efficiency value under the traditional DEA model 
is biased because of three influencing factors: managerial inefficiencies, environmental 
effects, and statistical noise. The most important thing concerning a three-stage DEA 
is eliminating the three factors’ influence in the second stage. The specific steps are 
described as follows. In the first stage, we use the traditional DEA to measure the ini-
tial efficiency results. In the second stage, an SFA model is constructed to adjust each 
input variable’s random error terms to eliminate environmental factor interference and 
random error interference, ensuring that all decision units are in the same environment. 
The third stage involves replacing the original input data with the adjusted data and 
then combining the original output data so the classical DEA model can perform the 
calculation. The results obtained at this step can objectively reflect the true efficiency 
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values of each DMU due to the elimination of the influence of environmental factors 
and random errors.

Three-stage DEA has many advantages. The greatest advantage is DEA and SFA’s 
combination to effectively remove disturbances of environmental factors and random 
errors to make the value more real and effective. In addition, the DEA model has the 
advantage of simultaneously processing multiple inputs and outputs. Therefore, we use 
three-stage DEA to take many factors, such as ecological environment constraints, S&T 
innovation, and economic development, into a discussion framework to obtain a more 
comprehensive result, which can avoid the partial result calculated by a single indicator. 
Moreover, the DEA model has no specific functional form, which can avoid parameter 
estimation and further avert the deviation to make the estimation results more accurate.

3.2  DEA calculation at the first stage—before adjustment

The input of S&T resources has a double impact on the economy, a positive impact 
on the output of innovation, and a negative impact on the ecological environment. We 
usually call the former the expected output and the latter the unexpected output. Before 
evaluation, we first distinguish the expected and the unexpected outputs and then lead 
them into a specific production equation, the SBM model containing the unexpected 
output.

To better reflect reality, we select the super-efficiency SBM model with unexpected 
output to measure the green innovation efficiency of each province and city in China. 
The formula of the model is derived from Zhang and Pu (2017). Suppose there are 
n decision-making units (DMUs), denoted as DMUj (j = 1, 2, … , n) , and each 
DMU has m inputs, denoted as xi (i = 1, 2, … , m) , q1 expected outputs, denoted as 
yr (r = 1, 2, … , q1) , and q2 unexpected outputs, denoted as bt (t = 1, 2, … , q2) . 
For a DMUk (xk, yk, bk) , its production possibility set is

The green innovation efficiency, including the unexpected output, is

P =

{
(xk, yk, bk)

||||||
xk ≥

n∑
j=1,j≠k

xij�j , yk ≤

n∑
j=1,j≠k

yrj�j, bk ≥

n∑
j=1,j≠k

bij�j

}

min �∗ =

1 +
1

m

m∑
i=1

s−
i

xik

1 −
1

q1+q2

�
q1∑
r=1

s+
r

yrk
+

q2∑
t=1

sb−t

btk

�
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In the above formula, s−
i
 represents the slack of the ith input; s+

r
 represents the 

slack of the rth expected output; sb−
t

 represents the slack of the tth undesired output; 
and � is the weight vector.

After introducing the model, the next step is the selection of index variables. To 
measure green innovation efficiency, it is necessary to clarify the input variables, 
expected output variables, unexpected output variables, and environmental vari-
ables. For the green innovation system, input refers to the cost paid in the innovation 
process, which includes the economic and human investment and the effort made to 
improve the ecological environment. The output is divided into expected and unex-
pected; the former includes the economic benefits generated by innovation, which 
measures the returns gained by investment in S&T, and the latter includes industrial 
"three wastes" emissions, which measure to what extent technological innovation 
and ecological environmental governance investment reduce pollution emissions.

In addition, we set three environmental variables to represent the factors that 
significantly influence efficiency. In general, many factors can affect the efficiency 
value. In this paper, the economic development level, industrial structure, and S&T 
market size are chosen based on existing studies. Detailed indicators are shown in 
Table 1.

For research objects, 30 provinces (municipalities and autonomous regions) in 
China are selected. The green innovation efficiency of these provinces are meas-
ured from 2008 to 2017 under a total factor analysis framework. Tibet, Hong Kong, 
Macau, and Taiwan were excluded due to the lack of data. The data are from the 
China Statistical Yearbook, China Science and Technology Statistical Yearbook, 
and China Environmental Statistical Yearbook from 2009 to 2018.

According to econometrics, we use the software MaxDEA pro 6.6 to calculate the 
efficiency value of green innovation in various regions of China from 2008 to 2017 
without removing disturbances, as shown in Table 2.

From Table 2, the average efficiency value of the first stage was 0.518, which is 
an unsatisfactory result.

3.3  The truncated SFA regression in the second stage

The stochastic frontier approach (SFA) is a parametric method for efficiency eval-
uation based on the stochastic frontier production function. In general, the SFA 

s. t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
j=1,j≠k

xij𝜆j − s−
i
≤ xik

n∑
j=1,j≠k

yrj𝜆j + s+
r
≥ yrk

n∑
j=1,j≠k

btj𝜆j − sb−
t

≥ btk

1 −
1

q1+q2

�
q1∑
r=1

s+
r

yrk
+

q2∑
t=1

sb−
t

btk

�
> 0

𝜆 ≥ 0, s− ≥ 0, s+ ≥ 0
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model can measure the comprehensive technical efficiency of each DMU through 
the decomposition of error terms. The error terms are usually divided into envi-
ronmental factors and random variables. The calculation formulas of the model 
are as follows.

The first step is to establish the relaxation variable:

In the formula above, Sij represents the relaxation variable of the ith input of 
the jth DMU, that is, the deviation between the actual and ideal input quantities. 
Then, we use Sij as the dependent variable to carry out SFA regression for all 
other relaxation variables. The formula is:

This equation’s greatest advantage is that the relaxation variables are clearly 
decomposed into three categories: environmental impact, random error, and inter-
nal management. In the formula, zj is the jth environmental variable; � i represents 
the corresponding estimated value of each environmental variable; and f i(zj; � i) 
is the impact of environmental variables on Sij.We usually take f i

(
zj;�

i
)
= Zj�

i ; 
vij + uij as the joint error term; vij is a random error that follows the normal distri-
bution, that is, vij ∼ N(0, �2

vi
) ; and uij represents the management inefficiency and 

presents a truncated normal distribution, that is, uij ∼ N+(�i, �
2

ui
) . Moreover, vij 

has no relationship with uij.
We use Frontier 4.1 software to carry out a regression of the above SFA model.

In the formula, �2

u
 and �2

v
 represent the variance of management inefficiency 

and random error, respectively, and � represents the ratio of management inef-
ficiency variance to the total variance. If � is close to 1, the technical efficiency of 
each DMU is different, and the influence of random factors is small. Then, we use 
the maximum likelihood method to estimate the equation. If � is close to 0, the 
efficiency value of each DMU is not significantly different, and the influence of 
random factors is great. At this time, we use the least squares method to estimate 
the equation.

We used Frontier 4.1 software to calculate the estimated results of each param-
eter (𝛽i, �̂�2

vi
, �̂�i, �̂�

2

ui
) and adjusted the input value by the estimated results to elim-

inate the impact of random error on the model calculation so that all DMUs were 
under the same environmental conditions to obtain more realistic, scientific, and 
reasonable efficiency values. Theoretically, there are generally two adjustment 
methods: increase the DMU input in a good environment or reduce the DMU 
input in a poor environment. Undoubtedly, the first method is more reasonable 

Sij = xij − Xi� (i = 1, 2,… ,m; j = 1, 2,… , n)

Sij = f i(zj; �
i) + vij + uij

� =
�2

u

�2
u
+ �2

v

�2 = �2

u
+ �2

v
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and realistic. Therefore, we selected the first method to adjust the input of all 
other DMUs based on the most effective DMUs as the standard:

According to the above equation, we need to separate the random error from the 
mixed error term in the SFA regression model. The separation and estimation for-
mula of the random error v̂ik is

The estimation formula for the separation of environmental factors �̂�ij is

From the equation above,� = (�u∕�v) and �i = vij + uij are the joint error terms, 
and � and � represent the density and distribution functions of the standard normal 
distribution, respectively.

Here, we take the relaxation variables calculated at the first DEA stage as the 
explained variables and the environmental variables as the explanatory variables to 
construct the stochastic frontier model for further regression analysis. The software 
used here is Frontier Version 4.1, and the results are shown in Table 3.

As can be seen from Table 3 demonstrates that the coefficients of the three envi-
ronmental variables on the input relaxation variables all passed the significance test, 

xA
ij
= xij + (maxj(zj, 𝛽

i) − zj𝛽
i) + (max{v̂ik} − v̂ik)

Ê(vij
|||vij + uij) = sij − zj𝛽 − Ê(uij

|||vij + uij)

Ê(uij
|||vij + uij) =

𝜎𝜆

1 + 𝜆2

[
𝜑(𝜀i𝜆∕𝜎)

𝜙(𝜀i𝜆∕𝜎)
+

𝜀i𝜆

𝜎

]

Table 3  The second stage SFA regression analysis results

***, ** and * indicate significance at 1%, 5% and 10%, respectively; in parentheses is the t statistic

Name Slack in labor input for 
technological innovation

Slack in capital input for 
technological innovation

Slack in ecological & 
environment investment 
management

Intercept term − 37,959.347 − 1,140,785.3*** − 261,142.6***
(− 71.974) (− 1,131,045.8) (− 260,931.56)

Economic development − 0.069*** − 29.945 *** 1.848***
(− 3.77) (− 16.99) (5.03)

Industrial structure 67,847.437*** 976,142.5** 349,795.49*
(281.63) (974,230.73) (349,734.46)

Technology market scale − 0.001*** − 0.006*** 0.002***
(− 23.103) (− 0.928) (1.606)

Sigma2 ( �2) 780,588,430*** 703,659,800,000*** 54,001,370,000***
(780,566,700) (703,659,800,000) (54,001,370,000)

Gamma ( �) 0.995*** 0.803*** 0.982***
(433.769) (23.941) (79.119)

log likelihood function − 3357.175 − 4412.477 − 3966.203
LR test of the one-sided 

error
77.561*** 36.723*** 72.873***
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and the values representing the ratio of managerial inefficiency variance to total var-
iance also all passed the significance test at the 1% level. This result shows that the 
external environmental variables significantly impact the relaxation of investment in 
green innovation in China. Further analysis shows that the values of the input slack 
of labor, capital, and environmental governance are all close to 1 (0.995, 0.803, and 
0.982), indicating that slack is affected more by management factors than random 
errors. Therefore, it is necessary to use the SFA model to eliminate the environ-
mental factors and the influence of random errors on green technology’s innovation 
efficiency.

3.4  DEA analysis after adjustment in the third stage

After analyzing the above two steps, we successfully decomposed the loss of effi-
ciency into the redundancy rate of input and undesired output and the deficiency 
rate of expected output. The input redundancy rate is IEx = (1∕m)

∑m

i=1
s−
i
∕xi , 

where the redundancy rate of each input i is IExi = (s−
i
∕xi) . The deficiency rate of 

the expected output is IEy = (1∕q1)
∑q1

r=1
(s+

r
∕yr) , and the deficiency rate of each 

expected output is IEgr = (s+
r
∕yr) . The redundancy rate of the unexpected output 

is IEb = (1∕q2)
∑q2

t=1
(sb−

t
∕bt) , and the deficiency rate of each unexpected output is 

IEbt = (sb−
t
∕bt).

The third stage’s method takes the value after adjusting environmental factors 
and random error terms in the second step as the new input value. It then calculates 
again with the super-efficiency SBM model that contains the unexpected output. 
This time, we can obtain a more realistic efficiency value.

We used MaxDEA Pro 6.6 again to calculate the value of green S&T innovation 
efficiency in all regions of China from 2008 to 2017 after removing the disturbance 
term, as shown in Table 4.

From Table 4 shows that the comprehensive average efficiency values of the third 
stage of green S&T innovation in Chinese provinces from 2008 to 2017 is 0.23. This 
result is a very bad. Before adjustment, the value of China’s green S&T innova-
tion efficiency was unsatisfactory (0.518) in the first stage, and the adjusted value 
dropped by more than half. This finding shows that China’s performance in green 
technology innovation is highly unsatisfactory.

4  Spatial statistical analysis of green S&T innovation efficiency

4.1  Introduction of spatial statistical theory

Exploratory spatial data analysis (ESDA) is a method that studies how to describe 
and simulate spatial phenomena and processes with mathematical and statistical 
models.

The most important part of spatial statistical analysis is to combine the research 
object with a geographical location. Generally, scholars use the spatial weight matrix to 
sample the distance of research objects. The establishment of the spatial weight matrix 
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must meet the requirements of the first law of geography; that is, the spatial correla-
tion of different subjects must decrease with increasing distance. The assumption of 
spatial correlation makes the research subject’s performance highly correlated with its 
geographical position, thus making the research more scientific and reasonable in its 
application.

In this paper, based on the efficiency calculation result at the third stage, we analyze 
spatial autocorrelation. Then, we also described the spatial cluster status of efficiency 
and the forming reason.

4.2  Global spatial autocorrelation analysis

Global spatial autocorrelation analysis mainly studies the spatial distribution of things 
through their position and performance in the overall space. It is often represented by 
the global Moran’s I index, whose value range is [− 1,1]. Generally, if Moran’s I value 
is higher than 0, it indicates that units with similar efficiency show spatial clustering 
characteristics. The higher the value is, the higher the degree of clustering. If Moran’s I 
value is less than 0, it indicates that units show the feature of spatial dispersion, and the 
smaller the value is, the higher the degree of dispersion. If Moran’s I value is 0, it indi-
cates that the units have a uniform distribution and no spatial correlation, which only 
exists in the theoretical hypothesis. The closer Moran’s I is to 0, the more uniform the 
distribution of each subject and the weaker the spatial correlation.

The calculation formula of the global Moran’s I value (Yang et al. 2018) is:

In the formula, S2 = (1∕n)
∑n

i=1
(xi − x)2 , x = (1∕n)

∑n

i=1
xi,n represent the number 

of space units,xi and xj represent the observed value of the ith or jth space unit, and wij 
is the binary adjacency matrix; if the space elements are adjacent,wij = 1 , and if the 
spatial units are not adjacent,wij = 0.

In this paper, based on the third stage results in 30 provinces and cities from 2008 to 
2017, we use Geoda software for analysis and then obtain the standardized Moran’s I 
value. The results are shown in Table 5.

From Table 5, we can find that Moran’s I values from 2008 to 2017 are all greater 
than 0. This indicates that the efficiency values in all provinces of China are positively 
correlated globally. However, the correlation number is small, indicating that the posi-
tive correlation is not strong. From the time trend, the correlation value presents an 

I =

n∑
i=1

n∑
j≠i

wij(xi − x)(xj − x)

S2
n∑
i=1

n∑
j≠i

wij

Table 5  Moran’s I value of green innovation efficiency from 2008 to 2017

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Moran’s I value 0.113 0.114 0.152 0.128 0.211 0.219 0.207 0.197 0.192 0.157
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inverted U-shaped parabola, reaches a peak in 2013 (0.219), and then decreases. As 
ecological S&T innovation activities are highly correlated with economic development, 
we speculate that the decline in the spatial correlation coefficient after 2013 may be 
related to the slowdown of China’s economic growth.

4.3  Local spatial autocorrelation analysis

The global spatial autocorrelation value reveals the overall agglomeration and dis-
persion of green innovation efficiency across the whole country. However, the value 
cannot further reveal the spatial performance of different regions in more detail. 
Local spatial autocorrelation is the global version’s improvement, which can analyze 
the various situations of different subjects in space more effectively by refining each 
space unit’s correlation. Local spatial autocorrelation analysis is generally studied 
by local Moran’s I, and the calculation formula is

where Zi and Zj represent the standardized observation values of spatial units i and j, 
respectively, and wij represents the spatial weight matrix.

Usually, we take Moran’s local scatter plot to represent local spatial autocorrela-
tion. The horizontal axis represents the observed value of each province’s efficiency, 
and the vertical axis represents the spatial lag value. According to these two indica-
tors’ values, we divide the 30 provinces into four types, represented by four quad-
rants, as shown in Table 6.

To clearly illustrate the evolution tendency of efficiency agglomeration, this 
paper described the Moran scatter plot by dividing the 30 provinces and cities into 
four groups to classify these provinces based on their local space relationships with 
adjacent provinces. See Fig. 1 for details.

From Fig. 1, we know that most provinces are concentrated in the first, second, 
and third quadrants, indicating that China’s provinces are generally geographically 
characterized by the spatial correlation of H–H, L–H, and L–L.

Ii = Zi

n∑
j=1

wijZij

Table 6  Spatial properties of Moran scatter plots

Quadrant The local spatial relationship

I The value of provinces and surrounding provinces are both high
(High–High agglomeration, H–H)

II The value of the province is low, but the surrounding level is high
(Low–High agglomeration, L–H)

III The value of provinces and surrounding provinces are both low
(Low–Low agglomeration, L–L)

IV The value of the province is high, but the surrounding level is low
(High–Low agglomeration, H–L)
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4.4  LISA analysis

Local indicators of spatial association analysis (LISA), one of the most common 
spatial analysis methods, is a supplement to local spatial correlation analysis. Its 
main function is studying the spatial connection type between each research subject.

To further identify the local spatial clustering situation of green innovation effi-
ciency levels in 30 provinces of China during the study period, a LISA analysis was 
conducted. However, we first need to conduct the Z-value test of the LISA signifi-
cance level; the results are shown in Table 7.

The provinces listed in the above table show significant local clustering. From 
2008 to 2017, an increasing number of provinces passed the Z-value test of the LISA 
significance level. This means that there are an increasing amount of provinces and 
cities connected in the spatial statistical meaning. The local agglomeration of green 
S&T innovation efficiency in different regions of China is becoming increasingly 
obvious.

By filtrating the four quadrants of Moran’s I scatter diagram and deleting insig-
nificant provinces, we can obtain the regional clusters of China’s green S&T innova-
tion efficiency in the study year, as shown in Table 8 and Fig. 2.

From Table  8 and Fig.  2 show that among these significant provinces and cit-
ies, all H–H regions are located in the Yangtze River Delta, meaning that the 
Yangtze River Delta’s high-level development has a certain radiation effect on the 

Fig 1.  Moran scatter chart of green innovation efficiency in Chinese provinces from 2008 to 2017
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surrounding areas, but the effect is limited. The L–H zone was empty in 2008, 
Jiangxi joined in 2012, and Fujian joined a year later, thus, this zone has comprised 
these two provinces since. The H–L region had the fewest provinces, with only 
Sichuan being included in 2009. The L–L region is dominated by Xinjiang, Gansu, 
Inner Mongolia, and Sichuan, all of which are located in the west and are very sta-
ble. Therefore, the spatial clustering of green innovation efficiency in these Chinese 
provinces over the past 10 years is very stable, and it is difficult for a province to 
break away from its original cluster.

The results of the LISA analysis conforms to the real status of China’s devel-
opment. The provinces that performed well are all located in the eastern region 
because the eastern region has a relatively high economic development level, 

Table 7  Test results of LISA’s significance Z-value

Year Provinces that pass the significance test

2008 Jiangsu, Shanghai, Xinjiang, Gansu, Sichuan
2009 Jiangsu, Xinjiang, Gansu, Sichuan
2010 Jiangsu, Shanghai, Xinjiang, Gansu, Inner Mongolia
2011 Jiangsu, Shanghai, Zhejiang, Xinjiang, Gansu, Inner Mongolia
2012 Jiangsu, Shanghai, Zhejiang, Anhui, Jiangxi, Xinjiang, Gansu, Sichuan
2013 Jiangsu,Shanghai,Anhui,Fujian,Jiangxi,Xinjiang,Gansu,Sichuan,Inner Mongolia
2014 Jiangsu, Shanghai, Zhejiang, Anhui, Fujian, Jiangxi, Gansu, Inner Mongolia, Sichuan
2015 Jiangsu,Shanghai,Anhui,Fujian,Jiangxi,Xinjiang,Gansu,Sichuan,Inner Mongolia
2016 Jiangsu,Shanghai,Anhui,Fujian,Jiangxi,Xinjiang,Gansu,Sichuan,Inner Mongolia
2017 Jiangsu,Shanghai,Anhui,Zhejiang,Fujian,Jiangxi,Xinjiang,Gansu,Sichuan,Inner Mongolia

Table 8  Local concentration of green technology innovation efficiency in China from 2008 to 2017

Year H–H L–H L–L H–L

2008 Jiangsu, Shanghai – Xinjiang, Gansu, Sichuan –
2009 Jiangsu – Xinjiang, Gansu Sichuan
2010 Jiangsu, Shanghai – Xinjiang, Gansu, Inner Mongolia –
2011 Jiangsu, Shanghai, Zhejiang – Xinjiang, Gansu, Inner Mongolia –
2012 Jiangsu, Shanghai, Zhejiang, 

Anhui
Jiangxi Xinjiang, Gansu, Sichuan –

2013 Jiangsu, Shanghai, Anhui Fujian, Jiangxi Xinjiang, Gansu, Inner Mongolia, 
Sichuan

–

2014 Jiangsu, Shanghai, Zhejiang, 
Anhui

Fujian, Jiangxi Gansu, Inner Mongolia, Sichuan –

2015 Jiangsu, Shanghai, Anhui Fujian, Jiangxi Xinjiang, Gansu, Inner Mongolia, 
Sichuan

–

2016 Jiangsu, Shanghai, Anhui Fujian, Jiangxi Xinjiang, Gansu, Inner Mongolia, 
Sichuan

–

2017 Jiangsu, Shanghai, Zhejiang, 
Anhui

Fujian, Jiangxi Xinjiang, Gansu, Inner Mongolia, 
Sichuan
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relatively strong scientific and technological strengths, and is moving toward 
innovation-driven development. Comparatively, the western region is rich in 
energy and resources but has a low economic development level and a dated 
industrial structure. The development of these regions has caused certain damage 
to the ecological environment. For the Jiangxi and Fujian provinces, which have 
always been in the L–H region, their space manifests as low efficiency for them-
selves and high efficiency for the surrounding provinces. This is largely due to 
the special geographical location of the two provinces. On the map, the two prov-
inces are sandwiched between the Yangtze River Delta and the Pearl River Delta, 
two of China’s most important economic centers, both of which are highly effi-
cient, excellent-performing provinces. By contrast, Jiangxi and Fujian’s efficiency 
performance is not sufficient, forming an "efficiency lowland" and thus always in 
the "L–H" region. This result also indicates that the eco-technological innovation 
in the Yangtze River Delta and the Pearl River Delta has limited ability regarding 
spillover into the surrounding areas.

The results of the LISA analysis show that there is a strong spatial similarity 
in the development of green S&T innovation efficiency among neighboring prov-
inces and cities in China geographically, which is specifically reflected in the fact 
that provinces and cities with higher and lower efficiency values tend to be rela-
tively close to each other and are relatively concentrated geographically. There-
fore, China’s strategy to improve the efficiency of green innovation should use 
the driving effect between different regions and form growth poles by cultivating 
efficiency heights to drive ecological civilization’s development and progress in 
larger regions and even the whole country.

Fig 2.  Moran aggregation chart of green innovation efficiency in Chinese provinces from 2008 to 2017
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5  Conclusions

Under the concept of ecological civilization and innovation-driven development, 
the effective improvement of the green innovation efficiency in different prov-
inces of China and fully understanding the effects of innovation on ecological and 
environmental constraints are very important for improving the quality of Chi-
na’s economic development. Based on the perspective of green innovation, this 
paper calculated the green S&T innovation efficiency of China over the past ten 
years by building three stages of ultra-efficient SBM models that contain unex-
pected outputs. Then, we use the efficiency value results as the analysis objects 
and investigate the spatial correlation and heterogeneity of Chinese provincial 
green technological innovation efficiency by the exploratory spatial data analysis 
(ESDA) method. The results show that the efficiency value of green technology 
innovation in Chinese provinces is highly unsatisfactory in the whole research 
period, and there is still much room for improvement. In addition, after eliminat-
ing slacks, such as variable redundancy and management inefficiency, the effi-
ciency value of China’s green S&T innovation declines significantly. This result 
means that China’s investment in S&T innovation and environmental manage-
ment suffers from serious waste and low utilization efficiency.

In addition, the Chinese provincial efficiency value showed significant spatial 
autocorrelation in both global and local conditions. The spatial distribution pre-
sented an obviously nonrandom geographical agglomeration pattern. Different 
provinces and cities have shown spatial heterogeneity and correlation, the spillo-
ver effect is obvious, and the space network structure is stable. The LISA test 
results show that an increasing number of provinces are effective, indicating an 
increasing number of provinces are involved in the waves of "ecological civiliza-
tion" and are "innovation-driven." The correlation between provinces is strength-
ening. The bad news is that the provinces with the "High-High" model did not 
expand significantly in the study period (10 years), indicating that the strength of 
space overflow is limited and the overall correlation strength is low, which needs 
to be further reinforced.

This paper suggests that Chinese central government endow local govern-
ments with greater autonomy in development, and that local governments imple-
ment development policies according to local conditions. To help develop the 
eastern region, the local governments should provide more preferential treat-
ment, help, support and guidance for modern service industries and high-tech 
industries with little pollution and high value, and give rewards to enterprises 
with mature technologies and considerable benefits. To help develop the central 
region, the local governments should further improve the degree of concentration, 
extend the industrial chain, and implement the strategy of diversified develop-
ment. And more time and energy should be put in resource recycling, product 
quality improvement, technology improvement, and market development, thus 
actively carrying out environmental rectification work and promoting the trans-
formation and upgrading of traditional industries. In the western region, local 
governments should selectively undertake industrial transfer from the eastern and 
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central regions, make the development of green innovation a priority of govern-
ment investment, and support the development of green and technological enter-
prises through investment, subsidies, or interest discounts.

Due to the large differences in area and development, different regions in China 
should adopt different development strategies. Local governments should have more 
development initiatives to make decisions. However, it should be noted that more 
power for local governments may lead to chaos in competition. To a large extent, 
the deterioration of China’s environment is caused by previous local governments 
lowering environmental protection standards and implementing extensive develop-
ment mode in order to win the race in the fierce regional economic competition. 
Now, with the environment increasingly deteriorated, this wrong concept of devel-
opment has shown huge side effects, seriously affecting the economic sustainability. 
Therefore, in order to standardize the development behavior of local governments, 
the central government needs to perfect and strictly implement the environmental 
assessment mechanism of local government.
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