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Abstract
The availability of a variety of Global Climate Models (GCMs) has increased the 
importance of the selection of suitable GCMs for impact assessment studies. In 
this study, we have used Bayesian Model Averaging (BMA) for GCM(s) selection 
and ensemble climate projection from the output of thirteen CMIP5 GCMs for the 
Upper Indus Basin (UIB), Pakistan. The results show that the ranking of  the top 
best models among thirteen GCMs is not uniform regarding maximum, minimum 
temperature, and precipitation. However, some models showed the  best perfor-
mance for all three variables. The selected GCMs were used to produce ensemble 
projections via BMA for maximum, minimum temperature and precipitation under 
RCP4.5 and RCP8.5 scenarios for the duration of 2011–2040. The ensemble projec-
tions show a higher correlation with observed data than individual GCM’s output, 
and the BMA’s prediction well captured the trend of observed data. Furthermore, 
the 90% prediction intervals of BMA’s output closely captured the extreme values 
of observed data. The projected results of both RCPs were compared with the clima-
tology of baseline duration (1981–2010) and it was noted that RCP8.5 show more 
changes in future temperature and precipitation compared to RCP4.5. For maxi-
mum temperature, there is more variation in monthly climatology for the duration of 
2011–2040 in the first half of the year; however, under the RCP8.5, higher variation 
was noted during the winter season. A decrease in precipitation is projected during 
the months of January and August under the RCP4.5 while under RCP8.5, decrease 
in precipitation was noted during the months of March, May, July, August, Septem-
ber, and October; however, the changes (decrease/increase) are higher than under the 
RCP4.5.
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1 Introduction

The rapid developments in computational technology make it viable to run a 
complex process-based climate model for simulating a climate system. However, 
the output from a single model still may have uncertainties (Uusitalo et al. 2015). 
There have been several General Circulation Models (GCMs) developed by the 
scientific community for the projection of future climate changes and these pro-
vide useful information for impact assessment studies (Intergovernmental Panel 
on Climate Change = IPCC 2013). Different GCMs may produce different results 
due to internal atmospheric variability (Lorenz 1982), structural and paramet-
ric differences (Neggers 2015; Baumberger et al. 2017; Achieng and Zhu 2019). 
Therefore, it is better to consider the output of several GCMs instead of relying 
on a single GCM, which will reduce the uncertainty as different climate models 
may simulate different aspects of climate better (Brient 2020). Regression models 
can be used to fit the observed climate by using outputs from different GCMs as 
covariates. However, it is important to select the set of best possible GCMs. In a 
regression model context, the problem of uncertainty modeling has been raised by 
Raftery et al. (2005). In such models, covariate selection is a basic part of build-
ing a valid regression model, and the objective is then to find the “best” model for 
the response variable given a set of predictors. The first problem to solve is which 
covariates should be included in the model and how important are they?

Bayesian Model Averaging (BMA) is a regression-based approach where the 
dependent variable is the observed climate variable of interest, e.g., maximum 
temperature, minimum temperature, and precipitation in this study, and covari-
ates are the output of GCMs. Suppose there are k covariates then the total number 
of possible linear regression models will be 2k . It is important to remember that 
in both cases, i.e., GCM selection and ensemble projections, covariates are the 
outputs of GCMs. Posterior Inclusion Probability (PIP) is used as GCM selec-
tion criterion where PIP is the sum of the posterior probabilities of each covari-
ate from each regression model included in BMA. In ensemble projection, each 
regression model has weight equal to posterior probability during the  training 
period (reference or baseline duration). Consequently, the model with better per-
formance will have higher weight as compared to the model having poor perfor-
mance. Details about GCM selection and ensemble projections, as well as poste-
rior probabilities, are presented in the methodology section.

The Atmospheric-Ocean coupled GCMs (AOCMs) are the tools that pro-
vide the basic and detailed information about the global climate. Therefore, it 
is important to choose better GCMs among a set of available models for impact 
assessment studies (Themßl et  al. 2011; Maraun 2013; Mendlik and Gobiet 
2016). There are only few studies that focus on this topic, e.g., Mendlik and 
Gobiet (2016) presented an approach based on three steps: find common patterns 
of climate change using principal component analysis, using cluster analysis to 
detect model similarities, generate subgroups of representative models by sam-
pling from clusters. McSweeney et al. (2015) used decision matrices over three 
steps which have four classification categories about the model performances on 
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three different parts of the Globe, Southeast Asia, Europe, and Africa. Further 
studies include McSweeney et al. (2012), Smith and Hulme (1998), and Salathe 
et al. (2007). The skill of GCMs is normally assessed on the basis of some global 
phenomena e.g., monsoon or ENSO. In this study, initially the GCMs are selected 
on the basis of available literature (Ashfaq et al. 2017), skills score, warm, dry, 
wet, cold criteria (Lutz et  al. 2016). For the  final selection of GCMs, we pro-
pose BMA, a probabilistic approach where the posterior probability of each GCM 
in each regression model being included in model averaging is used as a model 
selection criterion. Ensemble climate projections are developed based on the out-
put of selected GCMs.

Ensemble projections provide more information because of their reliability 
and take account of the uncertainties, which are particularly important for impact 
assessment studies (Leedale et al. 2016; Kumar et al. 2012; Patricola et al. 2012; 
Stedinger et al. 2008; Reum et al. 2020). One way of computing ensemble data is 
arithmetic ensemble mean (AEM), which produces better results than those based 
on single models. However, this approach lacks uncertainties in predictions (Min 
et al. 2007). BMA estimates regression models using all possible combinations of 
covariates and then builds a weighted average model from all of them to produce 
ensemble projections (Zeugner 2011). There are various studies that recently 
focused on BMA for different purposes. Achieng and Zhu (2019) and Qu et  al. 
(2017) used BMA for hydrological prediction, whereas Sloughter et  al. (2007) 
used BMA for  the weather forecast in the North American Pacific Northwest in 
2003–2004. Yang et al. (2011) used BMA for bias reduction in RCMs’ outputs in 
the Eastern-Pacific-region.

In this study, the output of thirteen GCMs is considered for predicting the 
observed  local climate under the representative concentration pathways (RCPs). 
According to Eckstein et al. (2019), Pakistan is listed among the top countries vul-
nerable to the impacts of climate change. Therefore, the  medium-range emission 
scenario (RCP4.5) and the high range emission scenario (RCP8.5) are being consid-
ered. The target location of this study is Upper Indus Basin (UIB), Pakistan, which 
has abrupt spatial variation in climate due to its unique topography. Consequently, 
the output of the process-based climate model has more uncertainties (Khan et al. 
2015, 2017; Ali et al. 2015). Before embarking on ensemble projections, the outputs 
of selected GCMs were downscaled from coarser to finer resolution using a statisti-
cal approach called Bias Correction and Spatial Disaggregation (BCSD). The details 
are presented in the methodology section of this paper and various steps of the study 
are schematically presented in Fig. 2. For analysis and visualization, R software with 
packages BAS (Clyde et al. 2020), BMA (Raftery et al. 2020), BMS (Feldkircher 
and Zeugner 2020) and ensembleBMA (Fraley et al. 2018) have been used.

The major aims of this study are: to select a set of best possible GCM(s) for 
the area under study from the Coupled Model Intercomparison Project Phase-5 
(CMIP5); to calculate ensemble projections using BMA on the basis of selected 
GCMs’ outputs. In addition, this study may be helpful for impact assessment studies 
e.g. in agriculture, reservoir management, flood forecasting, hydropower generation 
and consequently may help to achieve some of the Sustainable Development Goals 
(SDGs) of the United Nations Development Program (UNDP).
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2  Data and study area

Daily observed and GCMs simulated meteorological data, including maximum, 
minimum temperature and precipitation over the UIB, Pakistan, have been used. 
Observational data of climate variables have been collected from the  Pakistan 
Meteorological Department (PMD) for the duration of 1981–2010. The UIB has 
unique topography and contains the third largest glaciers in the world, where the 
elevation range is 2000–8247 m. Therefore, the meteorological stations are dis-
persed as it is challenging to operate it in many parts of this region. The total area 
of the target location is approximately134,621 square kilometers. The GCMs’ out-
put was acquired from the World Climate Research Programme (WCRP; https:// 
www. wcrp- clima te. org/). For GCM selection and ensemble projections, the 
outputs of thirteen GCMs have been considered. The GCM’s data lie on a grid; 
therefore, the data were extracted for the selected meteorological stations and 
then averaged and converted to time series for each model. Similarly, observed 
climate data was averaged over the study area using the data from eleven mete-
orological stations. The details about meteorological stations are given in Fig. 1 
and Table 1, and brief information about each GCM is presented in Table 2.  

Fig. 1  The area under study comprises Northern Pakistan (Upper Indus Basin, Pakistan). The considered 
meteorological stations are marked with blacked filled circles, Indus River is indicated by a line with 
blue color and Tarbela Reservoir is marked with a blue color triangle

https://www.wcrp-climate.org/
https://www.wcrp-climate.org/
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3  Methodology

The methodology is divided into three subsections, GCM(s) selection, downscaling 
of selected GCM(s) and ensemble projections. The details about various phases of 
this study are presented graphically in Fig. 2.

3.1  GCM(s) selection

Bayesian model averaging is used for model selection and producing ensemble pro-
jections which is based on posterior probability evaluations. Therefore, it is impor-
tant to discuss briefly the concept of posterior probability which is at the core of the 
Bayesian approach. Bayesian model averaging is discussed afterwards.

3.1.1  Posterior probability

Bayes’ theorem states that the posterior probability of jth regression model, 
p
(
Mj|D

)
, is calculated as the likelihood of observed data given jth model,p

(
D|Mj

)
 , 

multiplied by the prior probability p
(
Mj

)
 of the jth regression model, divided by the 

(marginal) probability of having the current observation realization, p(D) . The pos-
terior probability is thus given in Eq. (1): 

In Eq. (1), p(D) is used as a normalizing constant given in Eq. (2),

(1)P
(
Mj|D

)
=

p
(
D|Mj

)
.p
(
Mj

)

p(D)

(2)p(D) =

s∑

j=1

p
(
D|Mj

)
.p
(
Mj

)

Table 1  Brief information 
about the meteorological 
stations (latitude, longitude and 
elevation) included in this study

S. No Name Latitude Longitude Elevation

1 Astore 35° 20ʹ 74° 54ʹ 2168.0 m
2 Balakot 34° 33ʹ 72° 21ʹ 995.4 m
3 Bunji 35° 40ʹ 74° 38ʹ 1372.0 m
4 Chitral 35° 51ʹ 71° 50ʹ 1497.8 m
5 Drosh 35° 34ʹ 71° 47ʹ 1463.9 m
6 Gari Duppatta 34° 13ʹ 73° 37ʹ 813.5 m
7 Gilgit 35° 55ʹ 74° 20ʹ 1460.0 m
8 Gopis 36° 10ʹ 73° 24ʹ 2156.0 m
9 Kakul 34° 11ʹ 73° 15ʹ 1308.0 m
10 Muree 33° 54ʹ 73° 26ʹ 2291.0 m
11 Skardu 35° 18ʹ 75° 41ʹ 2317.0 m
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and hence Bayes’ rule can be simply stated as in Eq. (3).

In this study we have Mj;j = 1, 2,… , s = 2
k possible regression models. The 

likelihood of observation represents the probability of getting the current model 
realization. The posterior probability of a model represents the probability of 
the model to realize the current model given observations. Different choices for 
the prior are available. However, the users can build their own customized pri-
ors for their analysis (Zeugner 2011). In this study, a uniform prior distribution 
(i.e.p

(
Mj

)
∝ 1∕2k ) has been used, which assigns equal prior weight to all models. 

Then the posterior model probability can be expressed as in Eq. (4).

(3)p
(
Mj|D

)
∝ p

(
D|Mj

)
.p
(
Mj

)

Fig. 2  The schematic diagram represents various steps followed in conducting this research work
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Equation (4) shows that in this case the posterior probability of a model is only 
determined by the likelihood of observational data. The  likelihood of a model is 
the ability to reproduce the given observed data. Different likelihood functions have 
been proposed in the literature, p

(
D|Mj

)
 , see for example Blasone et  al. (2001), 

Zheng et al. (2007), Freer et al. (1996) and Beven et al. (1992). A Gaussian likeli-
hood proposed by Stedinger et al. (2008) is used in this study.

The same procedures are used here for GCM selection, where GCM now stands 
for a covariate xk ; k = 1,…,m = 13; and a uniform prior (over the whole real line) 
was used as a prior probability distribution for the intercept term and the regres-
sion parameters βk (k = 0,1,…,13) corresponding to the covariates: p(βk) = 1, which 
corresponds to so-called prior ignorance (non-informativity) about the regression 
parameters.

The PIP (posterior inclusion probability) is the sum of posterior probabilities of 
each covariate’s contribution from all possible regression models included in BMA. 
The PIP has a range between zero and one, where a value close to one means that the 
GCM contributes to explain the variability in the observed data while a value close 
to zero means that the corresponding GCM does not really contribute to explain the 
variability. The selection of GCMs was carried out in the following steps:

 i. Estimate the regression models included in BMA (with full or customized 
number of regression models)

 ii. Observe the posterior probability of each regression parameter in each regres-
sion model included in BMA

 iii. Calculate PIP
 iv. Decide about GCM, select if it has higher PIP compared to other GCMs.

Since precipitation usually follows a gamma distribution, therefore, Anscombe 
transformation (Anscombe 1948) was used to achieve approximate normality. Let 
Yor and Ytr denote original recorded and transformed precipitation, respectively, then 
the relationship is given by Eq. (5).

3.2  Downscaling the selected GCM(s)

For downscaling the outputs of selected GCM(s), the statistical approach BCSD, 
which comprises of two steps, has been used. The details about both steps of BCSD 
are presented in the following subsections:

3.2.1  Statistical bias correction

Due to the inherent uncertainties in the models and input data, climate model out-
puts are biased and unable to reproduce the variation of observed data (Räty et al. 

(4)p
(
Mj|D

)
∝ p

(
D|Mj

)

(5)Ytr =
3
√
Yor
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2014; Rivington et al. 2006). Various statistical methods are available in the liter-
ature to reduce the gap between simulated and observed data; here we employed 
the Quantile Delta Mapping (QDM) method, which preserves the relative and 
absolute climate change in future (Cannon et al. 2015). Before starting bias correc-
tion of GCMs’ outputs, daily climate observations at the  target location were first 
assigned to the fine-scale (1/8° × 1/8°) grid cells. The GCM’s outputs were re-grid-
ded to 1° × 1° resolution to make it uniform for all GCMS. The fine-scale observa-
tions were then resampled to coarse-scale regridded GCMs’ resolution (1° × 1° for 
CMIP5) using a bilinear interpolation. Once the observed and simulated data were 
available at the same resolution, then QDM was used for bias correction.

The QDM requires four steps to implement, starting from the time dependent 
cumulative distribution function (CDF) of the model projected series. For the details 
of this method, we refer to Cannon et al. (2015), Khan and Pilz (2018) and Ali et al. 
(2015).

3.2.2  Spatial disaggregation

The approach of spatial disaggregation comprises of various steps. At the initial 
step, subtract the coarse-scale spatial pattern from the bias-corrected data which will 
yield a temporal scaling factor at coarser resolution of 1° × 1°. Then interpolate the 
temporal scaling factor from a coarser resolution of 1° × 1° to a finer resolution of 
1/8° × 1/8°. Finally, merge the temporal scaling factor with fine-scale observed cli-
matology, as a result this will yield the spatially downscaled climate projections at 
fine-scale resolution (1/8° × 1/8°). For precipitation, the fine-scale temporal factor 
is multiplied with fine-scale observed precipitation, while for temperature, the fine-
scale temporal factor is added with the fine-scale observed climatology. For further 
details about the BCSD approach, we refer to Brekke et al. (2013). To obtain climate 
data at daily frequency, disaggregate monthly outputs to daily time scales by resa-
mpling a historical month and scaling daily data to match the monthly projections 
(Wood et al. 2004).

3.3  Ensemble projections

In standard regression modeling a single model is assumed to be the true model to 
investigate the response variable given covariates, but other plausible models could 
give different results for the same problem. The typical approach, which means 
conditioning on a single model deemed to be true, does not take account of model 
uncertainty. BMA is a statistical technique that estimates the regression model 
using all possible combinations of covariates and then builds a weighted average 
over all of them. Thus, it provides probabilistic projections (Zeugner 2011; Hoet-
ing et al. 1999; Draper 1995). The BMA predictive probability density function of 
a quantity of interest is the weighted average of PDFs of individual forecasts, and 
the weights are the posterior model probabilities directly tied to the performance of 
the model during the training period (Raftery et al. 2005). The BMA’s performance 
has been studied in various areas such as hydrological predictions, weather forecast, 
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groundwater modeling, and model uncertainty (Li and Shi 2010; Zhang et al. 1999; 
Rojas et al. 2008; Verugt et al. 2007; Duan et al. 2007; Ajami et al. 2006; Fernandez 
et al. 2001; Raftery and Zheng 2003, Slaughter et al. 2007).

More recently, Achieng and Zhu (2019) and Qu et  al. (2017) used BMA for 
hydrological prediction, Yang et al. (2011) used BMA for bias reduction in RCMs’ 
outputs in the Eastern Pacific-region and Huang (2014) used BMA for model uncer-
tainty evaluations.

Suppose, we have k covariates (GCMs in this study), then there are s = 2k regres-
sion models M1,… ,Ms , the conditional forecast PDF of the variable to be forecast 
on the basis of training data D is given by Eq. (6).

where p
(
y|Mj

)
 is the forecast PDF based on model Mj and p

(
Mj|D

)
 is the cor-

responding posterior probability used as a weight; consequently it reflects how 
the model fits the training data. The weights are posterior probabilities, therefore ∑s

j=1
p
�
Mj�D

�
= 1. The posterior mean and variance can be easily calculated and 

are given in Eqs. (7) and (8), respectively (Li and Shi 2010; Zhang et al. 2009; Rojas 
et al. 2008).

Here �j denotes the predictive mean based on the  jth model, wj stands for the pos-
terior probability of Mj and �2

j
 denotes the variance associated with the jth model’s 

prediction. It is seen from Eq. (8) that the predictive variance has two parts; one is 
the between model variance and the other one is the within model variance (Raftery 
1993). The between model variance indicates how the individual model mean pre-
dictions deviate from the ensemble prediction, with all contributions to deviations 
weighted by posterior model weights (Rojas et al. 2008, Draper 1995). The within 
model variance represents the individual model contributions weighted by the cor-
responding posterior model probability. Therefore, in this study, we are not taking 
into account the second term as the objective is to ensemble assessments of climate 
change under recent emission scenarios as suggested by Huang (2014). As the pre-
diction mean and variance are available now, the confidence interval for the predic-
tive mean can be constructed using Eq. (9),

(6)p(y|D) =
s∑

j=1

p
(
y|Mj,D

)
.p
(
Mj|D

)

(7)E(y|D) =
s∑

j=1

E
(
y|Mj,D

)
.p
(
Mj|D

)
=

s∑

j=1

�j.wj

(8)Var(y|D) =
s∑

j=1

(
�j −

s∑

i=1

wi.�i

)2

+

s∑

j=1

wj.�
2
j

(9)�pr ± z(
1−

�

2

).
√

Varpr
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Here �pr , Varpr and z(
1−

�

2

) are the ensemble prediction mean and variance as 

given in Eqs.  (7) and (8), respectively, and z(
1−

�

2

) denotes the 
(
1 −

�

2

)
-quantile of 

the standard normal distribution.

4  Results and discussion

The results and discussion part is divided into three subparts, GCM selection, evalu-
ation of the climate models and future climate projections.

4.1  GCM selection

The results about model selection are presented in Table  3 and Fig.  3, using 6 
experiments with different sample sizes. In Fig. 3a-c the results of model selection 

Table 3  This table presents the selection of GCM(s) for three climate variables under six experiments on 
the basis of Posterior Inclusion Probabilities of each GCM

PIP takes values between zero and one where values near to one mean high probability and those near to 
zero indicate low probability

Variable Model/Experiment 1 2 3 4 5 6
GCM Posterior Inclusion Probabilities

Maximum Temp canESM2 1 1 1 1 1 1
EC.EARTH 1 1 1 1 1 1
GFDL.ESM2G 1 1 1 1 1 1
Inmcm4 1 1 1 1 1 1
MPI.ESM.LR 1 1 1 1 1 0.98
MPI.ESM.MR 1 1 1 1 1 1
CESM1.CAM5 0.78 0.76 0.74 0.74 0.74 0.74

Minimum Temp canESM2 1 1 1 1 1 1
EC.EARTH 1 1 1 1 1 1
GFDL.ESM2G 1 1 1 1 1 1
Nor.ESM.M 1 1 1 1 1 1
CCSM4 1 1 1 1 1 0.99
CESM1.CAM5 1 1 1 1 1 1
GFDL.ESM2M 0.99 1 1 1 0.99 1

Precipitation canESM2 1 1 1 0.99 1 1
CCSM4 1 1 1 0.99 1 1
Inmcm4 1 1 1 1 1 1
MICRO.ESM.CHEM 1 1 1 1 1 1
MPI.ESM.LR 1 1 1 1 1 1
NorESM.M 0.93 0.99 0.94 0.98 0.99 0.99
CMCC.CMS 0.90 0.88 0.83 0.90 0.90 0.89
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among all m = 13 GCMs, whereas in Table 3, the best seven models are given. The 
results in Fig. 3a-c and Table 3 suggest that CanESM2, EC.EARTH, inmcm4 and 
GFDL-ESM2G are the models which performed well for maximum and minimum 
temperature. Precipitation shares CanESM2 as the best model jointly with tempera-
ture while the other GCMs which performed well are CCSM4, inmcm4, MICRO.
ESM.CHEM and MPI.ESM.LR. The results are quite interesting and suggest that 
the performance of different GCMs varies, depending on the variable of interest. For 
downscaling temperature, the same GCM can be used for maximum and minimum 
temperature, while for precipitation, we might be well advised to choose a different 
one. Nevertheless, this is an effort in a new direction for model (GCMs) selection 
and we believe that it will help researchers dealing with model or scenario selection 
for their studies of climate change and impact assessment. 

4.2  Evaluation of BMA’s and GCMs’ output

Figure 4 shows a comparison of BMA’s results for the baseline duration and individ-
ual GCMs’ output with observational data by using three different statistical criteria, 
i.e. correlation coefficient, Root Mean Square Error (RMSE), standard deviation of 
individual data set. The results in Table 4 present correlation coefficients of BMA 
predicted data with observed data and only maximum and minimum values of cor-
relation coefficients are presented for individual GCMs’ outputs with observed data. 
Table 4 shows that the BMA predicted climate data has stronger correlation with 
observed data compared to that of individual GCMs’ outputs. Figures  4a-c show 
evaluations of individual GCMs output and BMA predicted data with observational 
data by utilizing the Taylor (Taylor 2001) diagram for maximum, minimum temper-
ature and precipitation, respectively. The results of these GCMs’ outputs are close 
to each other, however, CMCC.CMS has larger deviation from observational data as 
compared to other GCMs. CMCC.CMS has higher RMSE and weaker correlation 
with observed data in comparison to other GCMs. It also gives clear indications that 
the models’ output has larger deviations under maximum temperature as compared 
to minimum temperature and, subsequently, the BMA output follows the same trend. 
Inter-comparison of GCMs output shows that there is less variation in the outputs 
of different GCMs for maximum and minimum temperature, except CMCC.CMS, 
while for precipitation, the variation is higher. All GCMs’ outputs underestimate the 
observational variability slightly for maximum and minimum temperature, and con-
siderably for precipitation. Figure 4 shows that the BMA predicted data has higher 
correlation (r = 0.95 for maximum and minimum temperature and 0.2 for precipita-
tion) with observational data than individual GCMs output. The Root Mean Square 
Error (RMSE) results show that the BMA predicted climate data has smaller val-
ues for all climate variables than individual GCMs output, where we have values of 

Fig. 3  The posterior inclusion probabilities using different variables to select a suitable GCM. a maxi-
mum temperature, b minimum temperature, c precipitation with six different models (experiments). On 
the x axis different GCMs are presented while on the y axis the posterior inclusion probability (PIP) is 
given. Note Users can customize their own prior: http:// bms. zeugn er. eu/ custo mprio rs. php

▸

http://bms.zeugner.eu/custompriors.php
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2.9 °C, 2.3 °C for maximum temperature, minimum temperature, respectively, and 
4.1 mm  day−1 for precipitation. The results show that CMCC.CMS stands last w.r.t 
performance as compared to other GCMs. It was observed during the comparison 
that both statistics, correlation coefficient and Nash–Sutcliffe coefficient, have dif-
ferent trends for temperature and precipitation. CMCC-CMS has lower correlation 

Fig. 4  Taylor diagram presenting a comparison between models and observational data on the basis of 
the correlation coefficient, Root Mean Square Error (RMSE) and standard deviation. Where a maximum 
temperature, b minimum temperature c precipitation. The comparison included thirteen different GCMs’ 
outputs and BMA predicted climate data

Table 4  Comparison of 
correlation coefficients 
and Nash–Sutcliffe efficiency 
coefficients between observed, 
BMA predicted climate 
variables and individual GCM 
bias corrected outputs

Where Max and Min indicate the lower and higher correlation coef-
ficients between individual GCM outputs and the observed climate 
data

Correlation MaxTMP MinTMP Precipitation

Correlation coefficients
BMA 0.94 0.96 0.28
Max 0.89 0.92 0.13
Min 0.72 0.74 0.09
Nash–Sutcliffe efficiency coefficients
BMA 0.88 0.93 0.08
Max 0.76 0.83 − 1.01
Min 0.41 0.46 − 1.06
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and Nash–Sutcliffe coefficients for maximum and minimum temperature, while it 
behaves differently for precipitation. The reason is possibly the parameterization 
scheme of CMCC.CMS, which is better for precipitation than for temperature, but it 
needs further experiments and tests to validate this point. The results illustrate that 
the trend of observed data is followed better by BMA predicted data than by using 
individual GCM output. 

Figures 5, 6, and 7 show the results about observed and BMA predicted maxi-
mum, minimum temperature and precipitation, respectively, along with their 
90% prediction intervals for the duration of 1981–2010 on a daily frequency. 
In each of these figures the red, blue and dark grey colors represent observed 

Fig. 5  Comparison of predicted and observed values for maximum temperature for the duration of 1980–
2010 on the basis of daily frequencies. Red, blue and dark-grey colors represent observed values, BMA 
predicted values and 90% prediction intervals, respectively. Left side panel is for thirty years and right 
side is for one year to depict detailed information

Fig. 6  Comparison of predicted and observed for minimum temperature for the duration of 1980–2010 
on the basis of daily frequencies. Red, blue and dark-grey colors represent observed, BMA predicted and 
90% prediction interval, respectively. Left side panel is for thirty years and right side is for one year to 
depict detailed information
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data, BMA predicted data and 90% prediction intervals, respectively. It can 
be seen from Fig.  5 that BMA’s predicted maximum temperature follows the 
trend of observed temperature, but the extreme values are not captured well. To 
overcome this issue, 90% prediction intervals have been calculated which cov-
ered almost all values of observed maximum temperature. Figure  6 represents 
the observed, BMA predicted minimum temperature, along with their 90% pre-
diction intervals. The extreme values are mostly covered by the 90% prediction 
intervals. Figure  7 displays observed and BMA predicted precipitation, along 
with 90% prediction intervals. In Figures 5, 6, and 7 on the right side, the results 
are presented for one year of observed and BMA predicted climate variables, 
along with their 90% prediction intervals, which makes it easier and clearer to 
understand the predictive power of BMA. Figure 5 shows that the trend is fol-
lowed precisely and prediction intervals covered most of the observed values 
of maximum temperature. There is more variation during the first half of the 
year as compared to the second half, and consequently, some values of observed 
maximum temperature are still outside the 90% prediction interval. Also, most 
of the observed values of minimum temperature are covered by the 90% predic-
tion intervals. From Figures 5, 6, and 7 and Table 4, it can be concluded that the 
performance of BMA is better for minimum temperature as compared to that for 
maximum temperature. During the evaluation, it was noted that BMA performs 
better for temperature as compared to precipitation in target locations.  

4.3  Future’s climate projections

The results in Figs.  8, 9, and 10 show the comparison of baseline climatology to 
the ensemble projections by using BMA for maximum temperature, minimum tem-
perature and precipitation, for RCP4.5 and RCP8.5, respectively. The red line shows 
the average climatology for the baseline (30 years) and the thick black line inside 

Fig. 7  Comparison of predicted and observed values for precipitation for the duration of 1980–2010 on 
the basis of daily frequencies. Red, blue and dark-grey colors represent observed, BMA predicted and 
90% prediction intervals, respectively. Left side panel is for thirty years and right side is for one year to 
depict detailed information
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the whisker plot shows the average climatology for each month for thirty years of 
the future period (2011–2040). By comparing these two data sets we can assess the 
changes in future climatology with respect to the baseline time period. Additionally, 
the Figs. 8, 9, and 10 also offer a comparison between the two emission scenarios 
for the UIB Pakistan.

Fig. 8  Comparison of baseline (1981–2010) and future’s (2011–2040) projected maximum temperature 
using Bayesian Model Averaging. The left side panel is for RCP4.5 and the right side panel is for RCP8.5

Fig. 9  Comparison of baseline (1980–2010) and future’s projected minimum temperature using Bayesian 
Model Averaging. The left side panel is for RCP4.5 and the right side panel is for RCP8.5

Fig. 10  Comparison of baseline (1980–2010) and future’s projected precipitation using Bayesian Model 
Averaging. The left side panel is for RCP4.5 and the right side panel is for RCP8.5
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Figure  8 displays the results for maximum temperature under the RCP4.5 and 
RCP8.5 scenarios. It can be seen from both scenarios that, on average, the increase 
in temperature is larger in the second half of each year as compared to the first half. 
It is obvious from Fig. 8 that the maximum temperature has higher increasing trend 
in winter season as compared to that in summer season, under both scenarios. Fig-
ure 8 shows that the increase is higher under the RCP8.5 in comparison to the base-
line period. The results also show that there is more variability in projected tem-
perature in the first half of the year than in the second half, under both scenarios. On 
average, there is less variation in the projected temperature under the RCP8.5.

Figure 9 shows the projected minimum temperature from selected GCMs under 
the RCP4.5 and RCP8.5 scenarios. The projected minimum temperature indi-
cates that there is more variation in the first half of the year than in the second one 
(monthly average climatology for 2011–2040). In Figs.  8, 9, and 10, one thing is 
common under both scenarios: the increase occurs more often during the winter sea-
son as compared to the summer season. On average, the results of RCP4.5 are look-
ing more stable during the whole year as compared to that of RCP8.5 with respect 
to variability. However, in some months there is more variability under the RCP4.5 
scenario, e.g. during the Summer (May, June, July, August), whereas during winter 
season (December, January, February, March) it is larger under the RCP8.5 scenario.

Figure  10 represents a comparison of precipitation of baseline and projected 
future periods under the RCP4.5 and RCP8.5 scenarios. The general trend in pre-
cipitation is looking similar, under both scenarios, but, if we look carefully at the 
results, we can see some differences, particularly in different months. The differ-
ences are obvious in the months of January, March, April, June, July, September, 
October and December. Under RCP4.5, precipitation increases in the months of 
January and August while it decreases in February, April, May, July, September, 
October and remains similar in the remaining months. Under RCP8.5, precipitation 
increases in the months of February and June while no changes in January, April 
and decreases in the remaining months occur as compared to the baseline precipita-
tion. The results under RCP4.5 show more variations in most of the months. Overall, 
there is a clear increasing/decreasing trend in most of the months under the RCP8.5 
scenario as compared to the baseline duration. On the other hand, under the RCP4.5 
scenario, no such obvious increasing/decreasing trend is noted in future’s projected 
precipitation.

5  Conclusion and recommendations

It was noted that some climate models are best and consistent in their perfor-
mance for maximum, minimum temperature and precipitation. For precipitation, 
GCMs behave somewhat differently compared to maximum and minimum tem-
perature, particularly when using different prior choices. The results give signifi-
cant directions about using GCMs for different variables. It was also noted that the 
trend of observed data is captured better by BMA predictions than by individual 
GCMs outputs, which is supported by higher values of correlation coefficients and 
Nash–Sutcliffe efficiency coefficients. Important results have been noted during the 
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comparison of correlation coefficients and Nash–Sutcliffe efficiency coefficients for 
different variables; both statistics behave differently for temperature and precipita-
tion. One possible reason may be that the parameterization scheme of some mod-
els is better suited for precipitation, and the other ones are better when it comes 
to predicting temperature. However, we need more studies to confirm this. Future 
projections of maximum temperature, minimum temperature and precipitation under 
RCP4.5 and RCP8.5 show mixed results: in some months, these variables have an 
increasing trend and a decreasing trend in the other months. It was observed that 
there is more increase in maximum and minimum temperature under the RCP8.5 
scenario as compared to RCP4.5. Further, it was noted that there are more changes 
in results under RCP8.5 but the projections under RCP4.5 show more variability as 
compared to the RCP8.5. The application of this methodology is location  specific, 
but the readers can easily apply it to the area of their interest for model selection as 
well as for ensemble projections. Furthermore, the interested researchers can use 
this approach to select RCM(s) and scenario(s). We are looking forward to conduct-
ing a study covering all climate zones of Pakistan to evaluate the performance of 
BMA and explore the preferences of GCMs for each climate zone.
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