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Abstract
Joint species distribution modeling is attracting increasing attention these days,
acknowledging the fact that individual level modeling fails to take into account
expected dependence/interaction between species. These joint models capture species
dependence through an associated correlation matrix arising from a set of latent multi-
variate normal variables. However, these associations offer limited insight into realized
dependence behavior between species at sites. We focus on presence/absence data
using joint species modeling, which, in addition, incorporates spatial dependence
between sites. For pairs of species selected from a collection, we emphasize the
induced odds ratios (along with the joint occurrence probabilities); they provide a
better appreciation of the practical dependence between species that is implicit in
these joint species distribution modeling specifications. For any pair of species, the
spatial structure enables a spatial odds ratio surface to illuminate how dependence
varies over the region of interest. We illustrate with a dataset from the Cape Floristic
Region of South Africa consisting of more than 600 species at more than 600 sites.
We present the spatial distribution of odds ratios for pairs of species that are positively
correlated and pairs that are negatively correlated under the joint species distribution
model.
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1 Introduction

Recently, numerous publications on joint species distribution modeling (JSDM) have
appeared in the literature (Pollock et al. 2014; Thorson et al. 2015; Ovaskainen et al.
2016; Rota et al. 2016; Clark et al. 2017). A comparison of such modeling has been
presented in Wilkinson et al. (2018). Such effort reflects the appreciation that obser-
vation of a community at a site anticipates dependence between the species present
at that site. That is, stacked species distribution modeling (Guisan and Rahbek 2011;
Calabrese et al. 2014), i.e., modeling the species independently but looking at the
results jointly, need not perform well. For example, with presence/absence data, such
modeling may tend to overestimate the probability of presence for each species at a
site. Hence the number of presences, the richness, at a site (Guisan and Rahbek 2011;
Clark et al. 2017) may be overestimated. This can be potentially more problematic
when a large number of species are examined.

Specifically, Guisan and Rahbek (2011) offer the following criticisms of stacked
species distribution modeling: (i) without adding a dispersal filter, it may incorrectly
predict species in areas that appear environmentally suitable but that are outside their
colonizable or historical range; (ii) it does not consider any constraints based on the
carrying capacity of the local environment which determine the maximum number of
species that may co-occur; and (iii) it does not explicitly consider any rules based on
biotic interactions that control species co-occurrences and can exclude species from a
community. As a result, too many species can be predicted to occur in a geographical
unit by stacked species distribution models (e.g., Graham and Hijmans 2006; Pineda
and Lobo 2009).

Joint species distribution modeling has been developed for presence/absence data,
for count (abundance) data, and for composition data (Clark et al. 2017). Here, we
focus primarily on presence/absence data, considering a large number, S, of species
and a large number, n, of sites. Site i, i = 1, 2, . . . , n provides an S × 1, vector, Yi

with entries 1 (presence) or 0 (absence). The sites may be viewed, hence modeled,
as independent or as spatially dependent, as appropriate. Regardless, with j denoting
the species, dependence among species, i.e., among the Yi j in Yi , is modeled within
a site.

The joint species distribution modeling challenge for presence/absence is the need
to model, for each site i , the set of 2S probabilities associated with the set of possible
realizations of Yi . This is infeasible even for relatively small S (while we imagine S
of order 102 or more). Rota et al. (2016) attempt modeling of such probabilities in the
context of animal occupancy, employing a multivariate Bernoulli specification with
logit links in order to specify regression models. They adopt log odds ratios as second-
order interaction parameters under this specification and illustrate with a collection
of four species. For plant species, where typically S is large, the solution commonly
adopted in the literature is to introduce latent variables, Zi which drive the responses
Yi . The Zi are modeled as S × 1 multivariate normal vectors, which enable tractable
model specification and fitting.

The contribution here is to note the strong limitation with regard to understanding
dependence in response between pairs of species through the correlations between
the corresponding pairs of latent normal variables. It has been remarked, e.g., Clark
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et al. (2017), that the S × S correlation matrix associated with the latent multivariate
normal vectors is primarily a device for creating dependence among species and that
the pairwise correlations are difficult to interpret. We clarify that the dependence
structure associated with the latent multivariate normal model used to drive the JSDM
offers little useful information regarding whether joint occurrence of species at a site is
encouraged or discouraged.Wedemonstrate that odds ratios offer a quantitativelymore
clear and useful story in this regard and propose their use for inference. Specifically, in
terms of joint occurrence, the odds ratios reflect the contribution of the environmental
covariates in addition to the pairwise correlations; as a result, they will vary across
sites. Again, Rota et al. (2016), mentioned above, allude to odds ratios for species
pairs. Lane et al. (2014) also examine odds ratios (in a non-model based fashion) with
regard to pairwise association between species. In fact, they also remark that “the
correlations provide little information on species presence.”

Further, we work with a spatial JSDM, following Shirota et al. (2019), which, for
each pair of species, enables an odds ratio surface over the study region to illuminate
the nature of pairwise species dependence over the region. Thus, we are able to capture
presence/absence dependence between species at a site as well as spatial dependence
in presence/absence across sites.

Our approach is applicable for JSDM modeling in general; in fact, it can pro-
ceed from the output of fitting any of the current crop of such models. However, in
order to illustrate, we employ a plant communities dataset from the Cape Floristic
Region (CFR) in South Africa (following Shirota et al. 2019). This dataset consists
of presence–absence measurements for 639 tree species at 662 locations to which the
spatial JSDM is fitted.

The format of the paper is as follows. The second section reminds us of 2×2 tables
and associated dependence. Section 3 reviews the basics of JSDMs and also supplies
connection to odds ratios. Section 4 brings in formal spatial modeling while Section 5
presents the results for the foregoing CFR dataset. Section 6 offers a brief conclusion
with some possible extensions.

2 2× 2 tables and familiar ecological dependence notions

For a single site and two species, a joint model requires specification of four probabil-
ities, (p00, p01, p10, and p11) which sum to 1. The subscripts indicate absence (0) or
presence (1) of the first and second species, respectively. Customarily, the probabilities
are presented in a 2 × 2 table (where the rows are associated with species 1 and the
columns are associated with species 2), as in Table 1(a).

The probabilities in Table 1(b) provide an example of strong sympatry, i.e., when
the species are present, there is a strong chance that they are present together. For-
mally, sympatry is characterized by encouraging joint occurrence or joint absence,
e.g., P(species 2 present|species 1 present) > P(species 2 present). With the nota-
tion above, we have p11

p1.
> p.1, a departure from independence. Expressed through

odds, we have p11
p10

>
p01
p00

, the odds for the presence of species 2 when species 1
is present are greater than the odds when species 1 is not present. The odds ratio,
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Table 1 2×2 tables : (a) A
generic 2×2 table, (b) A table
showing strong sympatry, (c) A
table showing strong allopatry

(a)

0 1

0 p00 p01 p0.
1 p10 p11 p1.

p.0 p.1 1

(b)

0 1

0 .14 .02 .16

1 .04 .80 .84

.18 .82 1

(c)

0 1

0 .03 .49 .52

1 .47 .01 .48

.5 .5 1

θ ≡ p11 p00
p10 p01

> 1, is capturing positive dependence. For Table 1(b), θ = 140, far above
1, very strong positive dependence between the species. Odds ratios are often pre-
sented on the ln scale, placing them on the whole real line, “symmetrizing” departure
from independence around 0. Here, lnθ = 4.94.

Table 1(c) captures very strong allopatry. Formally, allopatry is character-
ized by discouraging co-occurrence, e.g., P(species 2 present|species 1 present) <

P(species 2 present). Now, we have p11
p1.

< p.1, again a departure from independence.

Expressed through odds, we have p11
p10

<
p01
p00

. The odds for the presence of species 2
when species 1 is present are less than the odds when species 1 is not present; the odds
ratio, θ = p11 p00

p10 p01
< 1, capturing negative dependence. For Table 1(c), θ = .0013,

well below 1; we have very strong negative dependence between the species. Also,
lnθ = −6.64.

In summary, the odds ratio provides a useful tool for learning about species depen-
dence with regard to presence/absence. Below, we employ odds ratios to assess to
departure from independence, with interpretation in terms of encouraging or discour-
aging joint occurrence or joint absence for pairs of species. This is analogous to
specifying correlation pairwise in providing multivariate normal distributions. Impor-
tantly, since independence modeling underlies stacked species distribution models,
such models will not be able to capture sympatric or allopatric behavior for pairs of
species.

In the context of a JSDM, for a pair of species, if both are somewhat prevalent,we can
adopt the interpretation above for θ . Suppose one species, say species 1, is prevalent,
i.e. p10 + p11 ≡ q with q not very small and species 2 is rare, i.e., p01 + p11 = ε

for ε very small, with say, p11 = kε , 0 < k < 1. Then, the four cell probabilities
are p00 = (1 − q) − (1 − k)ε, p01 = (1 − k)ε, p10 = q − kε, and p11 = kε. So,
θ = ((1−q)−(1−k)ε)(kε)

((1−k)ε)(q−kε) ≈ k(1− q)/q(1− k). With regard to the interpretation of θ , it
only depends upon the size of k relative to the size of q. The fact that the second species

123



Environmental and Ecological Statistics (2021) 28:287–302 291

is rare does not inhibit the interpretation of θ . However, suppose joint absence occurs
nearly all of the time, i.e., p00 = 1 − ε. As a result, all three remaining probabilities
are very small, say p01 = aε, p10 = bε, and p11 = cε with a + b + c = 1. Then,
θ = (1−ε)cε

aεbε = (1−ε)c
abε ≈ c/abε. So, regardless of a, b, or c, θ will be very large, and

this is driven by the very large probability of joint absence. Strong sympatry results
from the high probability of joint absence and θ is less meaningful.

Under a JSDM we typically consider that many possible species can potentially
occur at a site, e.g., O(102), as in our dataset. However, typically we find just a few
species at a given site, perhaps at most 10. As a result, at site s, with the indicator
function, 1 j (s), indicating presence or absence of species j at location (s), most of
the P(1 j (s) = 1) ≡ p j (s) ≈ 0. Therefore, for many species pairs, we will be in the
last case above. So, we will obtain more useful insight from odds ratios when at least
one species is somewhat prevalent. Arguably, species interaction is of lesser interest
for pairs of rare species.

2.1 Species richness

Weoffer a brief remarkon species richnesswhich records the number of distinct species
present at the site and is commonly used to characterize species distributions at sites.
With the notation above, the observed richness at site s is Rich(s) = ∑S

j=1 1 j (s). (To
be clear, {1 j (s), j = 1, 2, . . . , S} does not constitute a multinomial trial but, rather,
a set of dependent Bernoulli trials.) Whether we model species independently, using
stacked species distribution models or dependently, using JSDM’s, E(Rich(s)) =∑S

j=1 E(1 j (s)) = ∑S
j=1 P(1 j (s) = 1) = ∑S

j=1 p j (s).
The practical issue is whether the marginal expectations across the species under

a joint model will tend to agree with the corresponding expectations across species
under independent models. Because the joint model considers the data for all of the
species at a site while the individual models consider the data only for the individual
species at the site, unconstrained by the overall presence/absence at the site, intu-
itively, we might anticipate the latter expectations to be larger, suggesting prediction
of higher richness using a stacked species distribution model. Regardless, we expect
to incorrectly estimate uncertainty in richness when the indicator variables in the sum
are not independent.

3 Joint species distributionmodeling

We offer a brief review of joint species distribution modeling in the nonspatial case.
We take our data to consist of observations Yi j , a binary variable indicating presence
(Yi j = 1) or absence (Yi j = 0) of species j at site i . Following either Clark et al.
(2017) or Ovaskainen et al. (2016), we associate with each Yi j a latent normal variable
Zi j . In fact, we have a latent multivariate normal vector Zi which yields the observed
Yi .

Following Ovaskainen et al. (2016), in the specification for Zi j , we let LF
i j and LR

i j
denote the fixed and random effects contributions, respectively, which are included
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additively in the modeling of Zi j . The L notation is intended to suggest a linear
form. We assume the S × 1 vector LR

i ∼ N (0, H) with H an S × S correlation
matrix capturing dependence between species. So, marginally, LR

i j ∼ N (0, 1) and

Hj j ′ ≡ ρ( j, j ′) is the correlation between species j and j ′.
We adopt a functional relationship between Yi j and Zi j , that is, Yi j = 1(Zi j > 0)

and P(Yi j = 1) = P(Zi j > 0) under the specification that Zi j = LF
i j + LR

i j + εi j
where the εi j are pure error terms, i.e., ε ∼ N (0, 1). Dependence is introduced through
the specification for LR

i j , making Zi j and Zi j ′ dependent (corr(Zi j , Zi j ′) = ρ( j, j ′))
and therefore, Yi j and Yi j ′ dependent.

Given LF
i j and LR

i j , the Zi j are conditionally independent and P(Yi j = 1) =
P(Zi j > 0) = �(LF

i j+LR
i j ).Now, it is the�’s that are dependent, yieldingdependence

between species at the so-called second stage of a hierarchical model.
Ovaskainen et al. (2016) employ a conditional specification, [Yi j |Zi j ]. Under a

probit link function, they specify P(Yi j = 1) = �(Zi j ). So, if Zi j = LF
i j + LR

i j , they

obtain�(LF
i j + LR

i j ). The distinction between functional and conditional specification
seems muddled in, e.g., the review paper of Wilkinson et al. (2018). In the sequel, we
work exclusively with the functional specification, as above.

The correlations arising from the latent Z ’s ignore the issue that, whilemany species
can potentially occur at a site, typically we find just a few. While we might be con-
sidering say 600+ species (as in our example) that could be present at a site, we will
rarely see more than say 10. In fact, these correlations do not vary with site and have
little to do with the actual realization of Yi at site i . Those species we see at the site
i will typically be in response to the available environmental predictors at the site.
Furthermore, a positive association may be suggestive of co-occurrence or of a poten-
tial substitution effect, i.e., a particular species is present but another, say similar one,
could equally well have been successful there. That is, the joint distribution at a site is
not a multinomial trial where the occurrence of one species precludes the occurrence
of the other, yielding negative correlations. The joint distribution allows presence of
the pair of species and, if they respond similarly, adjusted for the environment, we
can have positive associations. This leads to discussion presented in Zobel and Anton
(1997) and in Ovaskainen et al. (2016) regarding the nature of the species pool.

As a last comment here, why not specify the εi j to be standard logistic random errors
rather than standard normal random errors to attempt to directly connect probabilities
to logits needed for log odds ratios, as in Sect. 2? That is, we could follow the path
in Ovaskainen et al. (2010), which employs a multivariate logistic link. However, the
incompatibility between the logistic distribution for the ε’s and the normal distribution

for the LR’s muddies the computational waters. For instance, p( j, j ′)
i,11 = P(Zi j ≥

0, Zi j ′ ≥ 0) = ∫
a(LR

i j )a(LR
i j ′) f (L

R
i j , L

R
i j ′)dL

R
i j dL

R
i j ′ where a(LR

i j ) = e
LFi j+LRi j

1+e
LFi j+LRi j

and

f (·, ·) is a bivariate normal density. Such integrals are awkward to work with for no
benefit.
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3.1 Connection to odds ratios

For the JSDMs above, again, dependence across species is captured through the pair-
wise correlation between species in the latent bivariate normal distribution. We do

not model the p( j, j ′)
a,b , a, b = 0, 1 directly but, rather, we model the parameters in the

latent multivariate normal distribution and, as a result, each of these probabilities is a
smooth function of these parameters.

However, there is no direct connection between say, ρ( j, j ′) and the odds ratio
associated with the induced 2×2 table of joint probabilities for the species pair, ( j, j ′)

at site i . Specifically, suppose the latent bivariate normal distribution for

(
Zi j

Zi j ′

)

has

mean

(
μ

( j)
i

μ
( j ′)
i

)

and correlation matrix

(
1 ρ( j, j ′)

ρ( j, j ′) 1

)

. Then,

θ
( j, j ′)
i = p( j, j ′)

i,00 p( j, j ′)
i,11

p( j, j ′)
i,10 p( j, j ′)

i,01

= P(Zi j < 0, Zi j ′ < 0)P(Zi j ≥ 0, Zi j ′ ≥ 0)

P(Zi j ≥ 0, Zi j ′ < 0)P(Zi j < 0, Zi j ′ ≥ 0)
. (1)

The expressions for the double integrals in (1) show that each probability is a function

of μ
( j)
i , μ

( j ′)
i , and ρ( j, j ′). The Appendix provides the attractive result that θ

( j, j ′)
i is

non-decreasing in ρ( j, j ′) for fixed μ
( j)
i and μ

( j ′)
i . However, in the presence of μ

( j)
i ,

μ
( j ′)
i , the latent correlations do not determine the strength/magnitude of the odds ratios.

In more detail, the result in the Appendix should be applied to Wi j = Zi j − μ
( j)
i

where say,μ( j)
i = XT

i β j andWi j ′ = Zi j ′−μ
( j ′)
i where say,μ( j ′)

i = XT
i β j ′ .As a result,

P(Zi j < 0, Zi j ′ < 0) = P(Wi j < ci j ,Wi j ′ < ci j ′), where ci j = −XT
i β j and ci j ′ =

−XT
i β j ′ , is non-decreasing in ρ( j, j ′) for any Xi , β j , and β j ′ and therefore so is the

associated odds ratio, θ(Xi ,β j ,β j ′). Then, for a given ρ( j, j ′), we can see the response
of θ(Xi ,β j ,β j ′) to changes in Xi for given coefficient vectors; we can understand
how the odds ratio varies across environmental niches. In different words, JSDMs
disentangle the role of the environment from the role of biotic interactions in the
model specification. With these models, odds ratios provide a measure of association
that unifies the effects of the biotic and abiotic conditions while enabling assessment
of the effect of each on the association.

Figure 1 illustrates the foregoing in the lower panels by showing the log odds ratio
(ln θ ) and the joint occurrence probability (p11) as a function ofρ for given pairs ofμ’s.
The monotonicity is observed in both ln θ and p11 with respect to ρ. In fact, according
to the μ’s, we can have p11 arbitrarily large with ρ < 0. That is, ρ supplies essentially
no information regarding the probability of joint occurrence of the species. (A similar
argument can be made in terms of joint absence.) The Appendix further argues that we
can not have contradictory signs for ρ and lnθ . If ρ > 0(< 0), lnθ ≥ (≤)0. However,
again according to the μ’s, for a given ρ > 0, lnθ can take arbitrary positive values;
for a given ρ < 0, lnθ can take arbitrary negative values. Again, ρ provides little
indication of the strength of dependence between species.
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Fig. 1 ln θ (left) and p11 (right) as a function of ρ (bottom) and μ’s (top)

We can ask whether dependence using either θ (lnθ ) or p11 can demonstrate mono-
tonicity in the level of a predictor, i.e., in a component of X? For p11 (and p00) the
answer is yes; this is clear since μ( j) and μ( j ′) will be monotone in the predictor. The
upper right panel of Fig. 1 reveals this. For θ the answer is no. Technical analysis is
messy, but the upper left panel of Fig. 1 demonstrates this by following straight lines
from left to right or top to bottom. Therefore, while there is a relationship between
the odds ratio and the latent means, hence, regressors, it is not monotone. As a result,
spatial variation in the odds ratio surface need not align with spatial variation in a
regressor.

Lastly, working within a Bayesian framework, analysis of odds ratios and joint
occurrence probabilities is a post-model fitting activity. We can examine any pair of
species at any location since these probabilistic objects are functions of the model
parameters (along with the environmental predictors); posterior samples of model
parameters provide posterior samples of these objects. As a result, we can obtain

the posterior distribution for, say, θ
( j, j ′)
i . We can summarize this distribution with a

posterior mean but, we can also calculate probabilities such as P(θ
( j, j ′)
i > 1|data),

the probability of positive association. The Appendix comments on such calculation.
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4 Spatial dependence considerations

Bringing in spatial dependence, first-order spatial explanation is captured through
spatially referenced predictors (covariates) as a spatial regression. Second-order expla-
nation brings in spatial dependence in the sense that, for a species, locations closer to
each other are anticipated to provide a similar probability of presence (adjusted for
covariates). Spatial random effects, customarily assumed to come from a Gaussian
process using so-called geostatistical models (Banerjee et al. 2014; Cressie andWikle
2011), are employed. With binary responses, they are introduced through a latent
Gaussian process as follows.

Wemodify the notation above by attaching the location si to site i andwriting Yi j ≡
Y j (si ). Now we envision point level modeling with a conceptual presence/absence
variable, Y j (s) for species j at every location, s, in a study region, say D. For species
j , we have a realization of a presence/absence surface, {Y j (s) : s ∈ D} which is
observed at {si , i = 1, 2, . . . , n}.

With regard to the Z ’s, extending Sect. 4, at location s, we have Z j (s) = LF
j (s) +

LR
j (s) + ε j (s). Association between the Z ’s is identical to that between the LF ’s.

With the functional specification, now Y j (s) = 1(Z j (s) > 0), which is referred to as
a clipped Gaussian field in the literature (e.g., De Oliveira 2000).

There are two types of dependence in play here. The first is with regard to
presence/absence among species at a site, while the second is with regard to
presence/absence across sites. With multiple species, the latter requires the cross-
covariance for the latent Gaussian variables, the covariance between, say Z j (s) and
Z j ′(s′) and supplies dependence between the presence of species j at location s and
species j ′ at location s′. See Banerjee et al. (2014) for a full discussion of cross covari-
ance specification and see Shirota et al. (2019) for joint species distribution modeling,
taking into account spatial dependence between locations.

For the joint modeling, we now envision site-specific two-way tables at each s,
comprised of p( j, j ′)

ab (s) (a, b,= 0, 1), resulting in a “surface” of such tables, which

can be summarized by a log odds ratio surface, lnθ(s)( j, j
′). The spatial dependence

modeling provides smoothing for these surfaces as well as interpolation of these sur-
faces to unobserved locations. The key point is extension of earlier marginal spatial
work which presented individual probability of presence surfaces for each of a set
of species (Latimer et al. 2006; Gelfand et al. 2005). Now, we examine, pairwise,
probability of joint occurrence, of joint absence, and log odds ratios as surfaces over
the region of interest.

It is worth remarking that, here and in our application, we are viewing the sampling
sites as points within a fairly large study region. For species j , we envision a binary
variable (presence/absence) at each point. We are not considering presence/absence
associated with areal units, i.e., whether there is at least one individual of species j
in the areal unit. This leads to very different modeling for presence/absence (and is
beyond the scope here). See Gelfand and Shirota (2019) for careful discussion and
development of the differences.
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4.1 Model and inference details

We briefly present the spatial JSDM for presence/absence data from Shirota et al.
(2019). Let D ⊂ R

2 be a bounded study region with S = {s1, . . . , sn} ∈ D a set of
plot locations, and Z(si ) ∈ R

S be an S × 1 latent vector of continuous variables at
location si . Under independence for the locations, the model for Zi is specified as

Z(si ) = BX(si ) + ε(si ), ε(si )
i id∼ NS(0, 6), for i = 1, . . . , n (2)

where B is an S× p coefficient matrix, X(si ) is a p× 1 covariate vector at location si
and 6 is a S×S covariancematrix for species. This model has orderO(S2) parameters,
S(S + 1)/2 parameters from 6 and pS parameters from B. For example, for S = 300
species and p = 3 covariates, the model contains 46, 050 parameters.

Taylor-Rodríguez et al. (2017) propose a dimension reduction approximation to 6
which allows the number of parameters to grow linearly in S. They approximate 6
with 6∗ = 33T + σ 2

ε IS and replace the above model with

Z(si ) = BX(si ) + 3w(si ) + ε(si ), ε(si ) ∼ NS(0, σ 2
ε IS), for i = 1, . . . , n

(3)

where the random vectors w(si ) are i.i.d, distributed as Nr (0, Ir ), and 3 is an S × r
matrix with r � S. Now, 6∗ has only Sr + 1 parameters, the estimation problem of
O(S2) parameters is reduced to that ofO(S) parameters. This specification is referred
to as the dimension reduced nonspatial model. That is, we have spatially referenced
predictors but no spatial dependence.

Spatial dependence is introduced through the w(si ). We suppose the r × 1 vector
w(si ) is a realization of an r dimensional Gaussian process at si . In fact, we let the
components of the vector be associated with independent and identically distributed
Gaussianprocesseswith common (decayparameter) exponential covariance function.1

Thismodel is referred to as the dimension reduced spatial model. The full specification
is more complex than we have presented here, including the use of Dirichlet process
specifications as part of a dimension reduction to cluster species. That hierarchical
model, specified within a Bayesian framework, with prior distributions, model fitting,
and prediction is exactly what we used in the example of the next section. In the
interest of flow and space for the manuscript, we omit details; the interested reader is
encouraged to consult Shirota et al. (2019) for explicit development.

For binary response data in the form of presence-absence, again we employ the
functional relationship form, Y ( j)(si ) = 1 ifZ ( j)(si ) ≥ 0, = 0 ifZ ( j)(si ) < 0 for
j = 1, . . . , S, i = 1, . . . , n. The data-augmentation algorithm proposed by Chib
(1998) for multivariate probit regression, which improves the mixing of the Markov
chain Monte Carlo (MCMC) algorithm, is implemented for model fitting.

1 Under the dimension reduction, we can include at most r << S decay parameters where r is say 3 to 5.
The effect of adopting a common decay parameter for the latent GP’s is expected to be negligible.
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Fig. 2 All 662 locations in CFR and the distribution of the presence of the 5 selected species

5 The Cape Floristic Region data

Our data is extracted from a large database studying the distribution of plants in the
Cape Floristic Region (CFR) of South Africa (Takhtajan 1986). The CFR is one of
the six floral kingdoms in the world and is located in the southwestern part of South
Africa. Though, geographically it is relatively small, it is extremely diverse (9, 000+
species) and highly endemic (70% occur only in the CFR (Rebelo 2001)). There are
more than 40, 000 geo-coded sites within the CFRwhere sampling has been recorded.
The database from which our dataset was extracted consists of more than 1,400 sites
with more than 2,800 species, spanning six regions. The subset we use comes from
one of these regions with n = 662 sites and S = 639 species. The response is binary,
presence-absence for each species and site.

Under restriction to a latitude-longitude rectangle, the upper left panel of Fig. 2
shows the 662 locations of the CFR data and the remaining panels show the distri-
bution of 5 selected species: 1) Bromus pectinatus (BrPe); 2) Cannomois parviflora
(CaPa); 3) Diospyros austro-africana (DiAu); 4) Elegia filacea (ElFi); and 5) Gale-
nia fruticosa (GaFr). For covariate information, we include: (1) elevation, (2) mean
annual precipitation, and (3) mean annual temperature; these values are standardized,
following Shirota et al. (2019). Figure 3 shows the levels of these three associated stan-
dardized covariates at the locations. Altogether, the total number of binary responses
is n × S = 662 × 639 = 423, 018. The overall number of presences is 6,980, 1.65%
of the total number of binary responses. Again, though we have many species in our
dataset, only a few are present on a given plot.
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Fig. 3 Standardized covariate surface: elevation (left), mean annual precipitation (middle) and mean annual
temperature (right)

Fig. 4 Posterior mean surfaces of log odds ratio for all pairs of 5 species with positive correlation. The
values in parenthesis are the posterior correlations for each pair

It is difficult to grasp a 639×639 correlationmatrix and investigation of the resulting
potential 20, 416 odds ratio surfaces resulting from all possible pairs is infeasible. So,
we focus on the foregoing 5 species which occur in at least 20 of the locations and
provide a range of posterior correlations from −.7 to .7 under the model fitting. The
10 posterior mean log odds ratio (ln θ(s)) surfaces are presented in Figs. 4 (positively
correlated pairs) and 5 (negatively correlated pairs).

The surfaces are above 0 for positively correlated pairs and below 0 for negatively
correlated pairs, as argued above, but show spatial variation attributable to the covari-
ates. Specifically, the correlations of ElFi with the other species are quite different: −
0.30 (BrPe), 0.37 (CaPa), − 0.70 (DiAu) and 0.68 (GaFr). For the strongly positively
correlated pair, ElFi and GaFr, we see much spatial variation in association with many
large positive ln θ(s). For the strongly negatively correlated pair ElFi and DiAu, again
we see much variation in association with many large negative ln θ(s).

The probability of joint occurrence (p11) is very small (very close to 0) across all
pairs and most locations (though p11 reaches 0.15 for positively correlated pairs at
some locations); in the interest of space, we do not show them. In summary, the prob-

abilities of joint absence, the p( j, j ′)
00 (s), are almost always very high. Under individual

species modeling, P(Y j (s) = 1) need not be very small. Thus, while a marginal model
may suggest that the chance of absence is not high, the joint chance of absence will
almost always be high.
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Fig. 5 Posterior mean surfaces of log odds ratio for all pairs of 5 species with negative correlation. The
values in parenthesis are the posterior correlations for each pair

6 Conclusion

For the current collection of high-dimensional joint species distribution models,
focusing on presence/absence data, we have argued that the correlations which are
incorporated in the latent multivariate normal models that drive these JSDMs offer
limited inference regarding species interaction. We have shown that odds ratios as
well as joint occurrence probabilities (or joint absence probabilities), all induced by
the JSDM specification, enable a more clear interpretation. Further, using a JSDM
with spatial modeling of presence/absence, we developed odds ratio surfaces as well
as joint occurrence surfaces over a study region. In this way, we can assess how joint
species dependence varies over the region.

For a dataset with spatially varying regressors, whether one fits a packaged JSDM
model (which assumes independence across plots) or a spatial JSDM, we obtain spa-
tially varyingodds ratios (and joint presence probabilities), extending the interpretation
beyond pairwise correlations. We unify the effects of the biotic and abiotic conditions
while still enabling assessment of the effect of each on the association.

While we have focused on odds ratio and joint presence surfaces, we could consider
other summaries in this spirit. For instance, we could be interested in conditional
probability surfaces, i.e., the probability of the presence of one species given another
one is there and vice versa. Unlike the odds ratio which is symmetric, focusing on
whether both species are there or not, these features are asymmetric, accounting for
an ordering of the species. In fact, such conditioning can be extended to more than
two species to assess the probability of presence given say two other species are there.

A different extension would turn to abundance, often of more interest than pres-
ence/absence. When abundances are recorded as counts, frequently they are converted
to ordinal classifications, e.g., (i) absent, (ii) 1 to 5, (iii) 6 to 20, (iv) 21 to 50, and
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(v) more than 50. In some cases, abundances are presented as relative abundances,
normalizing individual species abundance by total abundance across all species. Now,
we can specify ordinal classifications through proportions. In other cases, abundances
are viewed as cover-abundance, i.e., a measure of plant cover (often used in veg-
etation science). It is based on percentages with several scales of cover-abundance
in the literature, e.g. the 5-point cover scale of Braun-Blanquet or the Domin scale
(Mueller-Dombois and Ellenberg 1974).

For a pair of species, if there are K ordinal classifications, we replace the foregoing
2 × 2 table with a K × K table, letting Yi, j denote the categorical classification for
species j at site i , taking ordered values k = 1, 2, . . . , K . Then, we can consider local,
global, and cumulative odds ratios (Agresti 2012) as measures of species dependence.
They are defined as:

(i) Local: θ L( j, j ′)
i,kk′ = P(Yi, j=k,Yi, j ′=k′)P(Yi, j=k+1,Yi, j ′=k′+1)

P(Yi, j=k,Yi, j ′=k′+1)P(Yi, j=k+1,Yi, j ′=k′)

(ii) Global: θG( j, j ′)
i,kk′ = P(Yi, j≤k,Yi, j ′≤k′)P(Yi, j>k,Yi, j ′>k′)

P(Yi, j≤k,Yi, j ′>k′)P(Yi, j>k,Yi, j ′≤k′)

(iii) Cumulative: θC( j, j ′)
i,kk′ = P(Yi, j ′≤k′|Yi, j=k)/P(Yi, j ′>k′|Yi, j=k)

P(Yi, j ′≤k′|Yi, j=k+1)P(Yi, j ′>k′|Yi, j=k+1)

By extending the discussion in Sect. 2, each of these odds ratios has a clear interpre-
tation in terms of a particular type of pairwise species dependence.

Acknowledgements The computational results were obtained using Ox version 6.21 (Doornik 2007).

Appendix

I:Weconsider, in detail, the connection between the correlation arising under the latent
multivariate normal model for species pairs and the associated odds ratio. We draw
on some older work relating bivariate normal probabilities to the associated bivariate
correlation. There is a substantial literature, with multivariate extensions, and we only
note two papers here: Gupta (1963) and Slepian (1962).

The basic result we need is the following:

Theorem: Suppose

(
Z1
Z2

)

∼ BivN

((
0
0

)

,

(
1 ρ

ρ 1

))

. Then, P(Z1 ≤ c1, Z2 ≤ c2) is non-decreasing in ρ.

We apply this result to (1). For fixed μ
( j)
i and μ

( j ′)
i , by simple probability calcu-

lations, we have p( j, j ′)
i,00 non-decreasing in ρ( j, j ′), we have p( j, j ′)

i,01 non-increasing in

ρ( j, j ′), we have p( j, j ′)
i,10 non-increasing in ρ( j, j ′), and we have p( j, j ′)

i,11 non-decreasing in

ρ( j, j ′). As a result, the numerator in (1) is non-decreasing in ρ( j, j ′) while the denomi-

nator in (1) is non-increasing in ρ( j, j ′). So, altogether, we have θ
( j, j ′)
i non-decreasing

in ρ( j, j ′) for all i and ( j, j ′) pairs.
As a corollary, since θ

( j, j ′)
i = 1 when ρ( j, j ′) = 0, we must have θ

( j, j ′)
i ≥ 1 when

ρ( j, j ′) > 0 and θ
( j, j ′)
i ≤ 1 when ρ( j, j ′) < 0.
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II: We offer some brief words regarding how calculation of probabilities is imple-
mented. Under Markov chain Monte Carlo model fitting, we obtain posterior samples,

say μ
( j)
i,b , μ

( j ′)
i,b , ρ

( j, j ′)
b , b = 1, 2, . . . , B. Each term in (1) is a double integral which is

a function of (μ( j)
i , μ

( j ′)
i , ρ( j, j ′)). So, each sample,μ( j)

i,b , μ
( j ′)
i,b , ρ

( j, j ′)
b produces a pos-

terior realization of each of the four terms on the right side of (1), e.g., p( j, j ′)
i,00,b, hence

a posterior realization, θ( j, j ′)
i,b . Across b = 1, 2, . . . , B, we obtain a posterior sample

of size B for each of the terms on the right side of (1) as well as the induced odds
ratio. The double integrals that are needed can be computed using approximations or
numerically. In fact, if we work with the functional JSDM and specification (ii) above,
then Zi j and Zi j ′ are conditionally independent given LF

i j , L
F
i j ′ , L

R
i j and LR

i j ′ . So, we
only need to calculate univariate cumulative normal distribution functions.

A fully Monte Carlo alternative is to generate many (Zi j , Zi j ′) pairs, hence many

(Yi j ,Yi j ′) pairs for each μ
( j)
i,b , μ

( j ′)
i,b , ρ

( j, j ′)
b . The collection can be placed into a 2 × 2

table from which we can obtain a posterior realization of each of the probabilities on
the right side of (1) as well the odds ratio.
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