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Abstract
Weinvestigate a framework for improvingpredictions frommodels for spatio-temporal
data. The framework is based on minimising the mean squared prediction error and
can be applied to many models. We applied the framework to a model for monthly
rainfall data in the Murray-Darling Basin in Australia. Across a range of prediction
situations, we improved the predictive accuracy compared to predictions using only
the expectation given by the model. Further, we showed that these improvements in
predictive accuracy were maintained even when using a reduced subset of the data for
generating predictions.

Keywords Kriging · Mixed model · Prediction · Spatio-temporal data

1 Introduction

Spatio-temporal data is becoming increasingly prevalent in areas ranging from cli-
matology, ecology, epidemiology, cellular biology to the social sciences. As such,
developing models for spatio-temporal data that are able to describe the structures
present in the data and produce accurate predictions is an important area of statistical
research. In this paper, we apply a framework for improving predictions for mod-
els for spatio-temporal data to modelling rainfall data in the Murray-Darling Basin
(MDB) in Australia. However, the framework can be applied generally to models for
spatio-temporal data.

Before detailing the framework for improving predictions, we first provide a brief
outline of the general approach used for modelling spatio-temporal data. Let Y (si , t)
denote the spatio-temporal data value at spatial location si and time point t , where
i = 1, . . . , N and t = 1, . . . , T . In matrix notation, we can express the data as a T ×N
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matrix Y , where the rows correspond to time points and the columns correspond to
spatial locations. As a general model for Y (si , t), following Banerjee et al. (2015), we
write

Y (si , t) = μ(si , t) + e(si , t), (1)

where μ(si , t) = E(Y (si , t)) denotes the mean spatio-temporal structure and e(si , t)
denotes the zero-mean residual component. Additional models and distributional
assumptions can be applied to both the mean structure μ(si , t) and the residual com-
ponent e(si , t).

Consider now the problem of predicting a new data value Y ∗ = Y (s∗, t∗), at some
spatial location s∗ and time point t∗, given some training dataY tr. A common approach
is to use the estimated expected value μ̂(s∗, t∗) = Ê(Y ∗) as the prediction for Y ∗.
Depending on howμ(si , t) in (1) was further modelled, computing the expected value
μ̂(s∗, t∗) may require estimating various model parameters from the training data. A
better approach to prediction is based on minimising the mean squared prediction
error. If g(Y tr) denotes a predictor of Y ∗, the mean squared prediction error (MSPE)
is given by

E
[(
Y ∗ − g

(
Y tr))2] .

The predictor that minimises the MSPE is E
(
Y ∗|Y tr

)
, the conditional expectation of

Y ∗ given the training data Y tr. Under some distributional assumptions on the data, we
can derive an expression for E

(
Y ∗|Y tr

)
. If Y ∗ and ytr are jointly normally distributed,

where ytr denotes the vectorised form of the training data, it can be shown that

E
(
Y ∗| ytr) = E(Y ∗) + Cov(Y ∗, ytr)Var( ytr)−1 (

ytr − E( ytr)
)
. (2)

This is of course the familiar expression for Best Linear Unbiased Predictors (BLUPS;
Henderson 1950; Robinson 1991) that also underlies the method of kriging for spatial
interpolation (see Krige 1951, 1962; Cressie 1990). Its advantage over the estimated
expected value (the first term in (2)) is that it brings in and optimally weights infor-
mation from observations in the training data that are correlated with the new data
value. Note that the normality assumption is not a strict requirement to use (2) for
producing predictions as it can also be derived without assuming normality (Harville
1976). However in this case, the sense in which the predictions are “best” is weaker
because it is constrained by the linearity and unbiasedness requirements. Nonetheless,
provided the data are approximately normal (or at least not strongly non-normal), then
predictions from (2) are likely to be an improvement over using only E(Y ∗). Further,
these improved predictions can be produced for many models.

To implement (2), we need to compute estimates of the E(Y ∗), Cov(Y ∗, ytr),
Var( ytr) and E( ytr) terms, which will require estimating any necessary model param-
eters from the training data. Note that this framework for improved predictions will
apply to any model where we can compute these terms. Ideally, we would like to use
all of the training data to compute these terms because the optimality property requires

123



Environmental and Ecological Statistics (2020) 27:631–648 633

doing so. However, depending on the size of the training data, computing the inverse
of the NT × NT matrix Var( ytr) can quickly become computationally prohibitive.
We will consider using a reduced subset of the training data for computing estimates
of Cov(Y ∗, ytr), Var( ytr) and E( ytr), as this will decrease the number of calculations
required. For example, we could use only recent time points or only neighbouring spa-
tial locations in the training data. Depending on the type of prediction that is desired
(e.g., predicting only at an unobserved time point, predicting only at an unobserved
spatial location, or predicting at both an unobserved time point and spatial location),
a particular method of subsetting the training data may be more appropriate than oth-
ers. We explore various subsetting methods and compare their resulting predictive
performance.

The motivation for improving prediction for spatio-temporal data stemmed from
our work in Nowak et al. (2018). There we developed a hierarchical model for spatio-
temporal rainfall data of the type suggested by Banerjee et al. (2015) and produced
predictions in time and predictions in space. While the model performed reasonably
well when predicting in time, it was outperformed by a naive single nearest neighbour-
based prediction when predicting in space. This indicated that we were likely not
sufficiently using the structure/information present in the data and that there was
substantial scope to improve the predictions.

We apply the framework for improved prediction to a model for modelling spatio-
temporal rainfall data in the MDB (described in Nowak et al. 2018). The predictions
produced from applying the framework greatly improve the overall accuracy compared
to those produced from the model using only E(Y ∗). In the next section, we provide
some background on the MDB rainfall data and the model used for modelling these
data. In Sects. 3.1, 3.2 and 3.3 we then detail the application of the framework for
improved prediction to this model, for predicting in time, predicting in space and
predicting in both space and time, respectively.

2 Model for monthly rainfall data in theMurray-Darling Basin

The data analysed consisted of monthly rainfall data recorded across a network of
weather stations in theMDB fromwhich high-quality datawere available. Specifically,
Y (si , t) denotes the cube-root transformed monthly rainfall measurement, recorded
across N = 78 weather stations over a period of T = 986 months (spanning from
January 1923 to February 2005). In addition to the rainfall measurements, a number of
spatial variables were available for each station: the Cartesian x and y coordinates, the
elevation and the climatic region (top, middle, bottom) to which the station belonged.
Further details can be found in Nowak et al. (2018).

The hierarchical model we used for the MDB data proposes models for the mean
and residual components in (1). The mean is modelled as

μ(si , t) =
J∑

j=0

β j (si ) f j (t), (3)
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where the
{
f j (t)

}J
j=0 are smooth basis functions that describe temporal patterns that

may be present in the data and
{
β j (si )

}J
j=0 are spatially-varying coefficients that allow

the temporal patterns to differ across locations.We included J = 3 basis functions.We
set f0(t) = 1 and then let f1(t) and f2(t) represent deterministic seasonal effects. The
final basis function is empirically derived by applying a singular value decomposition
(SVD) to the residuals after removing the effects of the deterministic basis functions
from the data and setting f3(t) to be the first left singular vector of the SVD.

The spatially varying coefficients
{
β j (si )

}J
j=0 are further modelled by assuming

the β j = (
β j (s1), . . . , β j (sN )

)T satisfy

β j
ind∼ N

(
X jα j ,�θβ j

)
, j = 0, . . . , J , (4)

where the columns of X j represent a set of known spatial variables with α j denoting
the unknown coefficients. The N × N covariance matrix �θβ j

, where �θβ j
[i1, i2] =

Cov(β j (si1), β j (si2)), is parameterised by an unknown vector θβ j
. Based on empirical

variograms of the residuals from regressing the estimated β j on the spatial variables
X j , an exponential covariance function was used for modelling the spatial covariances
�θβ j

.
We assume the temporal patterns are captured in the mean structure through the

basis functions, so the residuals e(si , t) are assumed to be independent over time and
independent of the β j (si ). Letting et = (e(s1, t), . . . , e(sN , t))T , we assume

et
ind∼ N

(
0,�θ e

)
, t = 1, . . . , T , (5)

where the N × N covariance matrix �θ e , with �θ e [i1, i2] = Cov(e(si1 , t), e(si2 , t)),
is parameterised by an unknown vector θ e. Similar to �θβ j

, based on empirical var-
iograms of the residuals, an exponential covariance function was used for modelling
�θ e .

Given the model and the assumptions, we need to derive various covariance expres-
sions to use in Sect. 3whenwe construct improved predictions. It is not straightforward
to do this but the process can be simplified if we treat the basis functions

{
f j (t)

}J
j=0,

once determined, as fixed because we can then formulate our hierarchical spatio-
temporal model as a linear mixed model. This step (which is not included explicitly
in this paper) could be used to fit the model (given the basis functions

{
f j (t)

}J
j=0) in

a single step using maximum likelihood or restricted maximum likelihood (REML)
to improve the efficiency of the parameter estimates, although there are advantages in
developing the model to use a sequential stepwise approach as in Nowak et al. (2018).
We do use the linear mixed model formulation to compute the covariances needed for
improved prediction; it is still complicated but it is much easier than trying to compute
the covariances without this intermediate step.
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The covariance between two data values Y (si1 , t1) and Y (si2 , t2) is given by

Cov(Y (si1 , t1),Y (si2 , t2)) =
J∑

j=0

f j (t1) f j (t2)�θβ j
[i1, i2] + I (t1 = t2)�θ e [i1, i2].

Letting the N -vector yt = (Y (s1, t), . . . ,Y (sN , t))T denote the transpose of the t th
row of the data matrix Y , the covariance between yt1 and yt2 is given by the N × N
matrix

Cov( yt1 , yt2) =
J∑

j=0

f j (t1) f j (t2)�θβ j
+ I (t1 = t2)�θ e , (6)

where Cov( yt1 , yt2)[i1, i2] = Cov(Y (si1 , t1),Y (si2 , t2)). More generally, if yNi
ti

denotes a generic Ni -vector of data values over Ni spatial locations at time ti , then
Cov( yN1

t1 , yN2
t2 ) will be the N1 × N2 matrix given by

Cov( yN1
t1 , yN2

t2 ) =
J∑

j=0

f j (t1) f j (t2)�θβ j N1×N2
+ I (t1 = t2)�θ e N1×N2

, (7)

where�θβ j N1×N2
and�θ e N1×N2

are the corresponding appropriate N1×N2 submatri-

ces of�θβ j
and�θ e , respectively. Letting the T -vector ysi =(Y (si , 1), . . . ,Y (si , T ))T

denote the i th column of Y , the covariance between ysi1 and ysi2 is given by the T ×T
matrix

Cov( ysi1 , ysi2 ) =
J∑

j=0

f j f
T
j �θβ j

[i1, i2] + IT�θ e [i1, i2], (8)

where f j = ( f j (1), . . . , f j (T ))T , IT is the T × T identity matrix and

Cov( ysi1 , ysi2 )[t1, t2] = Cov(Y (si1 , t1),Y (si2 , t2)). More generally, if yTisi denotes
a generic Ti -vector of data values across Ti times points at spatial location si , then
Cov( yT1si1 , y

T2
si2

) will be the T1 × T2 matrix given by

Cov( yT1si1 , y
T2
si2

) =
J∑

j=0

f T1j

(
f T2j

)T
�θβ j

[i1, i2] + IT1×T2�θ e [i1, i2], (9)

where f Tij is the appropriate Ti -subvector of f j and IT1×T2 is the appropriate T1 ×T2
submatrix of IT .

123



636 Environmental and Ecological Statistics (2020) 27:631–648

2.1 Variable selection on the spatial variables

Before exploring the framework for improved prediction in the hierarchical model
described above, we investigated whether incorporating variable selection on the spa-
tial variables in (4) could improve the overall model. The spatial variables available
for each station were the Cartesian x and y coordinates, elevation and the climatic
region to which the station belonged. The hierarchical model of Nowak et al. (2018)
used the same set of spatial variables to model each β j . We now consider allowing
the set of spatial variables to potentially differ when modelling each β j , using a best
subsets approach to select the best model.

For each station, let X1 and X2 denote the x and y coordinates, respectively, X3
denote the elevation, and IT and IM denote indicator variables for the top and middle
regions, respectively. For each β j , we fitted 34 candidate models and selected the
model that produced the smallest value of the Bayesian Information Criterion (BIC).
These 34 candidate models were chosen based on some restrictions, namely, that the
two climatic region indicator variables (IT and IM ) must always appear together in
a model and only second order interactions of each continuous variable (X1, X2 and
X3) with the indicator variables were considered.

For each β j , the selected models with the smallest BIC were the following:

β0=α00 + α01X1 + α02X2 + α03X3 + α04 IT + α05 IM + α06X1 IT + α07X1 IM + ε

(10)

β1=α10 + α11X1 + α12X2 + α13X3 + α14 IT + α15 IM + α16X1 IT + α17X1 IM + ε

(11)

β2=α20 + α21X1 + α22X2 + α24 IT + α25 IM + α26X1 IT + α27X1 IM + α28X2 IT
+ α29X2 IM + ε (12)

β3=α30 + α31X1 + α32X2 + α33X3 + α34 IT + α35 IM + α36X1 IT + α37X1 IM
+ α38X2 IT + α39X2 IM + ε (13)

The parameter estimates for eachmodel, i.e., the α̂ j , for j = 0, . . . , J , are displayed in
Table 1. Also displayed in this table are the standard errors of each parameter estimate,
which were calculated using the block bootstrap approach described in Nowak et al.
(2018). We note that the standard errors displayed in Table 1 are conditional on the
particular selected model. That is, for each β j , the same corresponding model (either
(10), (11), (12) or (13)) was fitted for each bootstrap sample.

We next investigated whether this variable selection on the spatial variables leads
to better predictive performance when using the estimate of the expected value E(Y ∗)
as the predictions. We note that predictions in time use only the estimates β̂ j , whereas
predictions in space use only the estimates α̂ j . Since variable selection on the spatial
variables does not affect the estimates β̂ j , predictions in time will remain unchanged
with or without variable selection. As such, we will only compare predictive perfor-
mance for predictions in space. Using the estimated models (10) to (13), we calculated
predicted values for each station via leave-one-station-out cross-validation. The root-
mean-square error (RMSE) for the predictions was 1.0804, compared to 1.0828
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Table 1 Estimates of α j , for j = 0, . . . , J . Standard errors are given in brackets

j = 0 j = 1 j = 2 j = 3

α̂ j0 (Intercept) 2.98 × 100 −8.15 × 10−2 2.37 × 10−1 2.28 × 10−1

(2.76 × 10−1) (1.91 × 10−1) (3.06 × 10−1) (2.98 × 10−1)

α̂ j1 (X1) 3.68 × 10−4 1.58 × 10−4 −6.88 × 10−5 3.98 × 10−4

(5.13 × 10−4) (3.20 × 10−4) (8.70 × 10−4) (1.48 × 10−4)

α̂ j2 (X2) −4.83 × 10−4 5.03 × 10−4 1.09 × 10−3 −3.16 × 10−4

(4.09 × 10−4) (2.55 × 10−4) (7.58 × 10−4) (1.25 × 10−4)

α̂ j3 (X3) 1.06 × 10−3 −1.90 × 10−4 −1.44 × 10−4

(3.96 × 10−4) (2.47 × 10−4) (6.46 × 10−5)

α̂ j4 (IT ) −3.09 × 10−1 8.41 × 10−2 −1.84 × 10−1 2.19 × 10−1

(2.68 × 10−1) (1.67 × 10−1) (3.88 × 10−1) (7.34 × 10−2)

α̂ j5 (IM ) −2.91 × 10−1 3.75 × 10−2 −1.82 × 10−1 1.96 × 10−1

(1.67 × 10−1) (8.81 × 10−2) (4.14 × 10−1) (7.46 × 10−2)

α̂ j6 (X1 IT ) 8.23 × 10−4 −1.16 × 10−4 4.32 × 10−4 −5.50 × 10−4

(5.85 × 10−4) (3.54 × 10−4) (1.00 × 10−3) (1.82 × 10−4)

α̂ j7 (X1 IM ) 1.77 × 10−4 9.10 × 10−5 2.87 × 10−4 −2.08 × 10−4

(6.52 × 10−4) (3.86 × 10−4) (8.70 × 10−4) (1.55 × 10−4)

α̂ j8 (X2 IT ) −4.08 × 10−4 2.00 × 10−4

(7.97 × 10−4) (1.39 × 10−4)

α̂ j9 (X2 IM ) −4.73 × 10−4 4.22 × 10−4

(1.11 × 10−3) (1.87 × 10−4)

without variable selection. We see that variable selection provides a very marginal
improvement in predictive performance when predicting in space. As a visual com-
parison, the predicted and observed values, averaged over time, are displayed in Fig. 1
(no variable selection on the left, variable selection on the right). We see that the more
accurate predictions for stations in the south-east region (blue circles with smaller
radii) may be driving the lower overall RMSE. The selected models for β j given in
(10) to (13) will be used in Sects. 3.2 and 3.3 for predicting in space and predicting in
both space and time, respectively.

3 Applying the framework for improved prediction

Suppose we wish to predict a new data value Y (s∗, t∗). From (2), the improved pre-
diction Ŷ (s∗, t∗) is given by

Ŷ (s∗, t∗) = Ê(Y (s∗, t∗)) +̂Cov(Y (s∗, t∗), ytr)V̂ar( ytr)−1
(
ytr − Ê( ytr)

)
. (14)
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Fig. 1 Predicted (blue) and observed (green) values, averaged over time, for each station. The left plot
displays the predicted values without variable selection and the right plot displays the predicted values with
variable selection on the spatial variables

To apply these improved predictions to the hierarchical model described in Sect. 2, we
will need to calculate the appropriate expected value, covariance and variance terms in
(14). How these terms are calculated from the hierarchical model will depend on the
type of prediction desired. We will focus on three types of prediction: predicting at an
unobserved time point, predicting at an unobserved spatial location, and predicting at
an unobserved time point at an unobserved spatial location. For each type of prediction,
we set aside someof the data to serve as a test data set onwhich to compare the improved
predictions of (14) to predictions using only Ê(Y (s∗, t∗)).

We noted in Sect. 1 that calculating the covariance and variance terms in (14) can
be very computationally intensive for large data sets. As such, we explored the use
of reduced subsets of the data to compute these terms. Further, we investigated how
the prediction accuracy was affected by varying the size of the subsets. For each type
of prediction, we considered three different methods of subsetting the data, which are
described schematically in Figs. 2, 4 and 6. Note that the reduced subsets were only
used for computing the covariance and variance terms. Any model parameters that are
required to calculate the expected value, covariance and variance terms in (14), that

is,
{
β j

}J
j=0

,
{
α j

}J
j=0,

{
θβ j

}J

j=0
and θ e, were estimated using the full training data.

3.1 Prediction in time

Prediction in time refers to the problem of predicting the data value at a future time
point for an existing or observed spatial location. That is, we are wanting to predict
Y tst = Y (si , k), for i = 1, . . . , N , for some future time point k. Therefore, we will
set aside the most recent T tst = 12 months of the data as the test data and use the
remaining T tr = 974 months as the training data. That is, Y tst will be the T tst × N
matrix consisting of the last 12 rows of Y and Y tr will be the T tr×N matrix consisting
of the first 974 rows of Y .
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Fig. 2 Three methods of subsetting the training data for computing the covariance and variance terms when
predicting in time. Each rectangle represents the data matrix Y with months in the rows and stations in the
columns. The test data to predict (at a future month) is indicated in red. Moving from left to right across
the columns, the stations are assumed to be ordered in increasing distance from the test station. The first
method subsets the most recent months across all stations. The second method subsets the test and nearby
stations for all months. The third method subsets the most recent months for the test station

The improved prediction Ŷ (si , k) is calculated using (14), noting that

Ê(Y (si , k)) =
J∑

j=0

β̂ j (si ) f j (k), (15)

where we use the approach described in Nowak et al. (2018) to calculate the value
of the basis functions f j (t) at the future time point k. Specifically, the deterministic
basis functions f1(t) and f2(t) were extended in the natural way. The empirically
derived basis function f3(t) was extended by setting the value at each future month
to be the value at that month in the previous year. Predictions using (15) resulted in
an RMSE of 0.9190 on the test data, which we will use as a baseline for comparison
with our improved predictions. To feasibly computêCov(Y (si , k), ytr) and V̂ar( ytr) in
(14), we will investigate using reduced subsets of the training data. Figure 2 presents
a graphical representation of the three subsetting methods used.

For subsetting in time, we selected the most recent l months across all N stations,
i.e., the last l rows of Y tr. Specifically, we will set the vectorised subsetted training
data to be the Nl-vector ytr = (( ytrT tr−l+1)

T , . . . , ( ytrT tr)
T )T , where ytrt denotes the

transpose of the t th row of Y tr. Since the same training data is used for predicting each
station in the test data, we can efficiently calculate the predictions across all stations
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in one step. Letting ytstk denote the kth row of Y tst, the improved predictions for ytstk
are given by

ŷtstk = Ê( ytstk ) +̂Cov( ytstk , ytr)V̂ar( ytr)−1
(
ytr − Ê( ytr)

)
, (16)

where

Ê( ytstk ) =
J∑

j=0

β̂ j f j (k),

̂Cov( ytstk , ytr) =
[
̂Cov( ytstk , ytrT tr−l+1) . . . ̂Cov( ytstk , ytrT tr)

]
and

V̂ar( ytr) =

⎡
⎢⎢⎣

̂Cov( ytrT tr−l+1, y
tr
T tr−l+1) . . . ̂Cov( ytrT tr−l+1, y

tr
T tr)

...
. . .

...

̂Cov( ytrT tr, ytrT tr−l+1) . . . ̂Cov( ytrT tr , ytrT tr)

⎤
⎥⎥⎦ .

The individual covariance terms are calculated using (6). Using (16), predictions for
the test data were produced for l ∈ {12, 24, 36, 48, 60}. The RMSE for each value of l
is displayed (green line) in Fig. 3. We see that there is a small improvement in RMSE
compared to predictions using (15). Further, subsetting the most recent four years (48
months) of the training data seems to be optimal, resulting in an RMSE of 0.9113.

For subsetting in space, for a given station, we selected all months from a set of
neighbouring stations. That is, we subset Y tr by selecting the columns corresponding
to the set of neighbouring stations. Since the subsets vary for each station, predictions
need to be produced separately for each station. For the i th station si , let Smi =
{i1, . . . , im} denote the set of indices for the m nearest stations by distance (including
the i th station) and set the vectorised subsetted training data to be the mT tr-vector
ytr = (( ytrsi1 )

T , . . . , ( ytrsim )T )T , where ytrsn denotes the nth column of Y tr. Predictions
for all months in the test data can then be efficiently calculated in one step. Letting
ytstsi denote the i th column of Y tst, the improved predictions are given by

ŷtstsi = Ê( ytstsi ) +̂Cov( ytstsi , y
tr)V̂ar( ytr)−1

(
ytr − Ê( ytr)

)
, (17)

where

Ê( ytstsi ) =
J∑

j=0

β̂ j (si ) f T
tst

j ,

̂Cov( ytstsi , y
tr) =

[̂
Cov( ytstsi , y

tr
si1

) . . . ̂Cov( ytstsi , y
tr
sim

)
]

and

V̂ar( ytr) =

⎡
⎢⎢⎣

̂Cov( ytrsi1 , y
tr
si1

) . . . ̂Cov( ytrsi1 , y
tr
sim

)

...
. . .

...

̂Cov( ytrsim , ytrsi1 ) . . . ̂Cov( ytrsim , ytrsim )

⎤
⎥⎥⎦ .
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Fig. 3 RMSE over the test data
for prediction in time for
different methods of subsetting
the training data. The green, blue
and red lines denote subsetting
methods 1, 2, and 3, respectively,
of Fig. 2. The black line (which
is just above the blue line)
denotes predictions using (15)

The individual covariance terms are calculated using (8) and (9). Using (17), pre-
dictions for the test data were produced for m ∈ {1, 2, 3, 4, 5}. The RMSE for each
value ofm is displayed (blue line) in Fig. 3. The RMSE was mostly unchanged across
different values of m, with the minimum of 0.9190 being achieved when m = 1. The
RMSEs were also quite similar to using (15) for predictions.

We can draw some insights from the results of these two methods of subsetting the
training data. In terms of subsetting in time, the greatest gains in prediction accuracy
occur when selecting a recent set of months (e.g., 4 years) rather than all months in the
training data. In terms of subsetting in space, there does not appear to be much gain
from including any neighbouring stations in addition to the station itself. Combining
these observations, the optimal subset of the training data to use when predicting a
given station’s test data may simply be a selection of recent months from only the
station itself.

Further to the above, for a given station, we subsetted the training data in both
time and space by selecting the most recent l = 48 months from the given station.
Specifically, for the i th station si , we set the vectorised subsetted training data to
be the l-vector ytr = (Y tr(si , T tr − l + 1), . . . ,Y tr(si , T tr))T . We can then use (17)
for prediction, witĥCov( ytstsi , y

tr) and V̂ar( ytr) now calculated using (9). Using this
method for subsetting the training data resulted in an RMSE of 0.9103 (red line in
Fig. 3), which was the lowest among all subsetting methods.

3.2 Prediction in space

Prediction in space refers to the problem of predicting the data value at an unobserved
spatial location at observed time points. The problem can effectively be thought of
as spatial interpolation. Specifically, we want to predict Y tst = Y (si , t), for t =
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Fig. 4 Three methods of subsetting the training data for computing the covariance and variance terms when
predicting in space. Similar to Fig. 2, each rectangle represents the data matrix Y and the test data to predict
(at an unobserved station) is indicated in red. The first method subsets the nearby stations for all months.
The second method subsets a window of months around the test month for all stations. The third method
subsets nearby stations for the test month

1, . . . , T , at some unobserved spatial location si . We will use leave-one-station-out
cross-validation to evaluate the performance of our improved prediction in space. That
is, each station will serve as a “test station”. Therefore, for each i = 1, . . . , N , the test
data Y tst = ytstsi will be the T -vector that is the i th column of Y and the training data
Y tr will be the T × (N − 1) matrix consisting of the remaining columns of Y .

The improved prediction Ŷ (si , t) is calculated according to (14), with

Ê(Y (si , t)) =
J∑

j=0

β̂ j (si ) f j (t) =
J∑

j=0

xTj,i α̂ j f j (t), (18)

where x j,i denotes the vector of spatial variables for location si . Note that since si
is now an unobserved location, the estimates {β̂ j (si )}Jj=0 are unknown and need to
be calculated according to (10) to (13). Predictions using (18) resulted in an RMSE
of 1.0804 on the test data. As a naive comparison, when using the nearest station’s
observed data values as the predictions for each test station, theRMSEwas 0.6478. The
naive predictions outperforming predictions using (18) indicates there is potential for
the improved predictions of (14) to substantially increase predictive accuracy. For the
improved predictions, we will again investigate using reduced subsets of the training
data, with the details described in Fig. 4.
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To subset in space, for each test station, we selected all months from a set of neigh-
bouring stations. That is, for the i th test station si , let Smi = {i1, . . . , im} denote the
set of indices for them nearest stations by distance in the training data. The vectorised
subsetted training data is then set to be the mT -vector ytr = (( ytrsi1 )

T , . . . , ( ytrsim )T )T ,

where ytrsn denotes the nth column of Y tr. Improved predictions over all months in

the test station, i.e., ytstsi , are calculated according to (17), but now with Ê( ytstsi ) =∑J
j=0 x

T
j,i α̂ j f j . Predictions for the test data were produced for m ∈ {1, 2, 3, 4, 5}.

The RMSE for each value ofm is displayed (dark blue line) in Fig. 5. Even form = 1,
we see that the RMSE is lower than both the predictions using only (18) and the
naive predictions. As we include more neighbouring stations, the RMSE continues to
decrease, reaching a minimum of 0.5588.

To subset in time, for each month in the test station, we selected all stations for
a window of months surrounding this month of interest. Since we are predicting
at observed time points, we are able to consider data from both previous, current
and future months, relative to the month of interest, for subsetting the training data.
Specifically, for month t , let T l

t = {z ∈ Z : max{t − l, 1} ≤ z ≤ min{t + l, T }},
where l � T , denote the set of indices corresponding to the window of |T l

t | =
min{t + l, T } −max{t − l, 1} + 1 months centered at month t . Note that the window
size ranges from amaximum of 2l+1 months (when l+1 ≤ t ≤ T − l) to a minimum
of l+1months (when t = 1 and T ). The vectorised subsetted training data is therefore
set to be the (N − 1)|T l

t |-vector ytr = (( ytrmax{t−l,1})T , . . . , ( ytrmin{t+l,T })T )T . Since
the vectorised subsetted training data will depend on the month t , for the i th test
station si we calculated predictions separately for each month t using (14), where now
̂Cov(Y (si , t), ytr) =

[
̂Cov(Y (si , t), ytrmax{t−l,1}) . . . ̂Cov(Y (si , t), ytrmin{t+l,T })

]
and

V̂ar( ytr) =

⎡
⎢⎢⎣

̂Cov( ytrmax{t−l,1}, ytrmax{t−l,1}) . . . ̂Cov( ytrmax{t−l,1}, ytrmin{t+l,T })
...

. . .
...

̂Cov( ytrmin{t+l,T }, ytrmax{t−l,1}) . . . ̂Cov( ytrmin{t+l,T }, ytrmin{t+l,T })

⎤
⎥⎥⎦ .

The individual covariance terms were calculated using (6) and (7). Predictions for
the test data were produced for l ∈ {0, 1, 2, 3, 4}. The RMSE for each value of l is
displayed (green line) in Fig. 5. The minimum RMSE of approximately 0.5526 was
obtained for l = 0. This was similar to the minimumRMSE achieved when subsetting
in space.

These results indicate that, when subsetting the training data in space, including
moreneighbouring stations improves prediction accuracy and,when subsetting in time,
only training data from the month of interest are required. To explore this further,
we subsetted the training data in both time and space. In detail, for each month in
the test station, we selected a set of neighbouring stations only for this month of
interest. Similar to the setup used for subsetting in space, for the i th test station
si , let Smi = {i1, . . . , im} denote the set of indices for the m nearest stations by
distance in the training data. For month t , the vectorised subsetted training data is
set to be the m-vector ytr = (Y tr(si1 , t), . . . ,Y

tr(sim , t))T . For the i th test station si ,
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Fig. 5 RMSE via leave-one-station-out cross-validation for prediction in space for different methods of
subsetting the training data. The dark blue, green and red lines denote subsetting methods 1, 2 and 3,
respectively, of Fig. 4. The black line denotes predictions using (18) and the light blue line denotes the
naive prediction. The right plot is a zoomed view of the lower region of the left plot

predictions were calculated separately for each month t again using (14), noting that
the calculations of̂Cov(Y (si , t), ytr) and V̂ar( ytr) will now be somewhat simplified
compared to when subsetting in time. Predictions for the test data were produced for
m ∈ {1, 5, 10, 15, . . . , 75}. The RMSE for each value of m is displayed (red line) in
Fig. 5. While the minimum RMSE was achieved at m = 60 (0.5526), the RMSE was
approximately 0.553 from m = 15 onwards. Therefore, for each month in the test
station, optimal prediction accuracy can be achieved by subsetting on only 15 data
values in the training data.

3.3 Prediction in space and time

For spatio-temporal data, prediction in both space and time is the most challenging
problem but is often of most interest. It involves predicting the data value Y tst =
Y (si , k) for some future time point k at an unobserved spatial location si . For each
i = 1, . . . , N , the test data Y tst will be the vector of length T tst = 12 corresponding
to the last 12 rows (months) of the i th column (station) of Y and the training data Y tr

will be the T tr × (N − 1) matrix consisting of the first T tr = 974 rows of Y with the
i th column removed.

The improved prediction Ŷ (si , k) is calculated using (14), where now

Ê(Y (si , k)) =
J∑

j=0

β̂ j (si ) f j (k) =
J∑

j=0

xTj,i α̂ j f j (k). (19)

Note that the estimates {β̂ j (si )}Jj=0 need to be calculated according to (10) to (13),
as was done when predicting in space, and the values of the basis functions f j (t)
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Fig. 6 Three methods of subsetting the training data for computing the covariance and variance terms when
predicting in space and time. The subsettingmethods are the same as that used for prediction in time (Fig. 2),
with the only difference being that data in the test station are no longer included in the training data. This
is because we are now predicting at a future month at an unobserved station

at the future time point k are calculated similarly to when predicting in time. Given
that we are using the same test data used when predicting in time, we will follow a
similar method for subsetting the training data. We will use the RMSE obtained when
using (19) for prediction (0.9555) and the minimum RMSE achieved when predicting
in time (0.9103) as baseline comparisons. The subsetting methods are described in
Fig. 6.

For subsetting in time, we selected the most recent l months across the N − 1
stations in the training data. Hence we set the vectorised subsetted training data to
be the (N − 1)l-vector ytr = (( ytrT tr−l+1)

T , . . . , ( ytrT tr)
T )T . For each i = 1, . . . , N ,

the improved predictions for all months in the test station, i.e., ytstsi , are calculated

according to (17), where Ê( ytstsi ) = ∑J
j=0 x

T
j,i α̂ j f T

tst

j ,

̂Cov( ytstsi , y
tr) =

⎡
⎢⎢⎣

̂Cov(Y tst(si , 1), ytrT tr−l+1) . . . ̂Cov(Y tst(si , 1), ytrT tr)

...
. . .

...

̂Cov(Y tst(si , T tst), ytrT tr−l+1) . . . ̂Cov(Y tst(si , T tst), ytrT tr)

⎤
⎥⎥⎦

and V̂ar( ytr) is calculated as was done in (16). The individual covariance terms are
calculated using (6) and (7). Predictions for the test data were produced for l ∈
{12, 24, 36, 48, 60}. The RMSE for each value of l is displayed (green line) in Fig. 7.
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Fig. 7 RMSE over the test data
for prediction in both space and
time for different methods of
subsetting the training data. The
green, blue and red lines denote
subsetting methods 1, 2 and 3,
respectively, of Fig. 6. The black
line (which is almost on top of
the dark blue line) denotes
predictions using (19) and the
light blue line denotes the best
predictions in time of Sect. 3.1

Similar to what was observed when predicting in time, the minimum RMSE of 0.9515
was achieved when l = 48.

For subsetting in space, for a given station, we selected all months from a set of
neighbouring stations. For the i th station si , let Smi = {i1, . . . , im} denote the set
of indices for the m nearest stations by distance in the training data. The vectorised
subsetted training data is then the mT tr-vector ytr = (( ytrsi1 )

T , . . . , ( ytrsim )T )T . For
each i = 1, . . . , N , improved predictions for all months in the test station are again
computed using (17), but now witĥCov( ytstsi , y

tr) and V̂ar( ytr) calculated in a similar
manner to (17). Predictions for the test data were produced form ∈ {1, 2, 3, 4, 5}. The
RMSE for each value of m is displayed (blue line) in Fig. 7. Again, as was observed
when predicting in time, theRMSE remainedmostly unchanged across different values
of m, with the minimum (0.9554) being achieved when m = 1.

As a final comparison, we subsetted the training data in both time and space. Based
on the results for subsetting in time and subsetting in space, for a given station, we
selected the most recent l = 48 months for the nearest station in the training data (i.e.,
si1 ). The vectorised subsetted training data is then the l-vector y

tr = (Y tr(si1 , T
tr−l+

1), . . . ,Y tr(si1 , T
tr))T . For each i = 1, . . . , N , (17) is again used to produce improved

predictions for all months in the test station, wherêCov( ytstsi , y
tr) and V̂ar( ytr) are now

calculated using (9). The RMSE was 0.9537 and is displayed in red in Fig. 7.
Comparing these different methods of subsetting the training data, we see that the

greatest prediction accuracy on the test data is attained when we subset on all stations
for the most recent 48 months in the training data. However, using only the nearest
station for the most recent 48 months produces a similar RMSE, indicating that it may
not be necessary to subset on all stations in the training data. We note that regardless
of the method used for subsetting the training data, the RMSE on the test data when
predicting in both space and time is greater than the RMSE when predicting only in
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time. This is expected since, for each station in the test data, when predicting only in
time we have the advantage of being able to use any predictive power contained in
past data observed at this station.

4 Discussion

Predicting a new data value from a parametric model typically involves using an
estimate of the expectation of the new data value as the predicted value. We have
applied a framework for prediction for models for spatio-temporal data that improves
on using only the expectation of the value to be predicted. A key advantage of this
framework is that it is a general framework that can be applied to many parametric
models for spatio-temporal data. The improved predictions were based on minimising
the mean squared prediction error. The improved predictions have a strong optimality
property under normality and a weaker optimality property when normality does not
hold. As such, the framework has the potential to improve predictions over simply
using the estimated mean regardless of the distributional assumptions on the data.

We applied the framework for improving predictions to a hierarchical model for
monthly rainfall data in the Murray-Darling Basin. We focused on all the main types
of prediction for spatio-temporal data, namely, prediction only in time, prediction
only in space and prediction in both time and space. In all situations, the framework
improved prediction accuracy compared to using only the expectation of the value
to be predicted. In particular, the improvement in predictive accuracy was quite large
when predicting only in space. This confirms the value of kriging for spatial prediction.

One potential limitation of the framework is that the calculations of the improved
predictions may be computationally intensive. This is mainly due to the need to cal-
culate or invert large covariance matrices when generating the predictions. However,
we have demonstrated that large gains in predictive accuracy can still be achieved by
using only a reduced subset of the data for computing these matrices. Specifically, for
our model, we obtained good results for prediction in

– Time using only the previous 48 months data from the station of interest;
– Space using only data from 15 neighbouring stations for only themonth of interest;
– Space and time using data from all stations for only the most recent 48 months,
although there is some evidence that fewer stations can be used.

The results for prediction in time are interesting because they are similar to what we
expect when using an autoregressive time seriesmodel (for whichwe only need a small
fixed number of lagged values for prediction) even though ourmodel captures temporal
effects through the basis functions

{
f j (t)

}J
j=0 rather than through an autoregressive

model. The results for prediction in space are similar to what we expect from kriging
in spatial models. We believe that these results show that the framework provides a
computationally feasible approach for improving predictions that should be applied
to a wide variety of models for spatio-temporal data.

We have presented and evaluated the predictions made in this paper as point
predictions. The assessment of uncertainty for these predictions using analytical
approximations for the mean squared prediction errors or the bootstrap is quite com-
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plicated. A useful recent paper on the topic in the spatial context (Thiart et al. 2014)
provides some optimism that bootstrap methods may be useful in our context. This is
attractive because we have already developed a block bootstrap method to assess the
uncertainty in the parameter estimates. The application of the method to estimating
prediction uncertainty requires further investigation.
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