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Abstract
Because of the dramatic changes that are being observed in the climatic conditions of
the world, such as excess of rains, drought and huge floods, we introduce a versatile
hydrologic probability model with three parameters. The proposed model is a com-
bination of the Lomax and generalized Weibull distributions based on an exponent
odd function. Main properties of the distribution are obtained, such as shapes of the
probability density and hazard rate functions, quantile function, asymptotic distribu-
tion, information matrix and characterization via hazard rate function. Parameters are
estimated via the maximum likelihood estimation method. Four data sets are used to
compare the proposed model with a number of well-known hydrologic models. The
proposedmodel is found to be suitable and representative for heavy-tailed hydrological
data sets, with least loss of information attitude and a realistic return period.
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1 Introduction with the proposedmodel

Frequency of heavy precipitation or proportion of total rainfall from heavy falls will
increase in the 21st century over many areas on the globe, this will increase the
likelihood of floods and devastation of infrastructures (Intergovernmental Panel on
ClimateChange IPCC2012). These upcoming future devastating effects have certainly
opened the hidden corner for accurate modeling of the flood/precipitation/earth quake
data which will not only produce good fit but also yield realistic return periods. Such
requisition for modeling the hydrologic phenomenon needs to assess the tail behavior
which is the only realistic knowledge regarding the behavior of the distribution beyond
the range of the sample (Markovich 2007). Such tail behavior has its own significance
in its relative discipline. For example, light tail distributions (kurtosis less or equal to
3) can effectively be used in the analysis of global warming in terms of extreme warm
and cold temperature (Loikith and Neelin 2015) and rainfall data analysis (Papalexiou
et al. 2013), while the heavy-tailed distributions are used to model the service time and
input in queuing models, flood levels of rivers, major insurance claims, wave heights
during a storm, and low and high temperatures (Markovich 2007). These heavy-tailed
distributions include the Pareto, the lognormal, the Weibull with shape parameter less
than 1, the Cauchy, the Burr and the Fréchet, while the light-tailed distributions include
the exponential, the gamma, the Weibull with shape parameter greater than 1, and the
normal distributions.

In this regard, the conventional frequency analysis (CFA) is used for modeling
these extreme events via heavy-tailed distributions which include the the Log-Pearson
type III (LP(3)) defined by Bobee (1975), the three parameter log-normal distribu-
tion (LN(3)) as stated by Krige (1960), the generalized Pareto (GP) distribution used
by Hosking and Wallis (1987) and Dargahi-Noubary (1989), the generalized logistic
(GLO) distribution studied by Dyrrdal (2012) and Balakrishnan and Leung (1988),
Gumbel distribution known as the generalized extreme value type I (GEV-I) distri-
bution investigated by Mujere (2011), the three parameter Kappa distribution studied
by Junior and Johnson (1973), the gamma distribution, the generalized exponenti-
ated exponential Lindley (GEEL) proposed by Hussain et al. (2018) and the Fréchet
distribution discussed by Ramos et al. (2018).

Moreover, the domain of attractions for maxima–minima, of the LP(3), LN(3), GP,
GLO and GEEL distributions belong to the Gumbel–Weibull, the Gumbel–Gumbel,
the Fréchet-Weibull, the Gumbel–Gumbel and the Gumbel–Fréchet distributions,
respectively. However, the Gumbel distribution is not considered an appropriate model
for the analysis of extreme events because its right tail is light. Furthermore, in extreme
events analysis, researchers generally prefer the positive skewness coupled with the
heavy-tailed phenomena instead of light or intermediate tails distributions (Hussain
et al. 2018).

Here, we study a phenomenal procedure designed for modeling heavy-tailed envi-
ronmental data sets, based on flexible parametric modeling by adding shape, location
or scale parameters, while constraining the number of parameters to be at most equal
to four. However, three is a recommended number of parameters to draw valid con-
clusions (Mudholkar et al. 1996, Johnson et al. 2005), which provides a broader range
of hazard shapes and allow an assessment of each competing model relative to a more
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comprehensive one (Mudholkar et al. 1996). Also, such addition of extra parameter is
useful in exploring tail behavior which not only improves the goodness of fit of the pro-
posed models but also provides lower information criteria. Moreover, the exploration
of tails usually reflects the importance of extreme and intermediate order statistics or
exceedances over high thresholds. Focusing our attention on tails may advantageously
inspire the introduction of new parametric statistical models.

The first motivational ground of modeling the extreme events and heavy-tailed
phenomenon is based on the selection of Pareto Type II distribution, which was first
proposed by Lomax (1987). It is effectively used in reliability modelling, life testing,
income, wealth, business failure, firm size, queuing problems, biological sciences,
modeling the distribution of the sizes of computer files on servers and as an alterna-
tive to the exponential distribution when the data are heavy-tailed data. The Lomax
distribution is defined as follows.

Definition 1 A random variable T has the Lomax distribution with shape parameter
β > 0 if its cumulative distribution function (cdf) is given by

π(t) = 1 − (1 + t)−β, t > 0, β > 0,

and its corresponding probability density function (pdf) is expressed as

�(t) = β(1 + t)−β−1, t > 0, β > 0.

The second motivational ground is to handle the shortcomings of Weibull distri-
bution (an asymptotic version of one of the three heavy-tailed phenomena) which
is frequently used in statistical analysis of many practical data, however it is inap-
propriate when the failure rate is indicated to be unimodal and bathtub shaped as
well as when data exhibit high kurtosis usually greater (or equal) twenty. The third
motivation is the selection of two parameter generalized Weibull (GW); possess-
ing a bathtub hazard rate, simple structure and heavy-tailed behavior, defined by
Mudholkar et al. (1996) as a baseline distribution whose cdf defined on the inter-

val (0,∞) as G(x) = 1 − (1 − λxθ
) 1

λ with the pdf g(x) = θxθ−1
(
1 − λxθ

) 1
λ
−1

for x > 0, λ ≤ 0. The fourth motivational aspect is the choice of an appropriate
link function, with its help we can overcome the scaling issues of environmen-
tal data sets D(.) : [a, b] → [0,∞] which satisfies the next conditions: (i) D(.)

is differentiable and monotonically non-decreasing (ii) D(x) → a as x → 0
and D(x) → b as x → ∞, and can be considered as exponent odd function

D(x) = (eθ
G(x)

1−G(x) − 1)/(eθ − 1), θ > 0; where θ and eθ − 1 and behave as scale
parameters which usually help to overcome the scaling issues of the environmental
data sets. Now on the basis of above four motivational aspects, we define the cdf of
Lomax D-GW abbreviated as LDGW distribution as follows.

Definition 2 If X is a continuous random variable, then the cdf of the LDGW distri-
bution with parameters λ, θ, β is defined as
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FLDGW (x |λ, θ, β) =
∫ D(x)

0
�(t)dt = 1 −

⎛

⎝1 + e−θ+θ
(
1−λxθ

)− 1
λ − 1

eθ − 1

⎞

⎠

−β

, (1)

where β > 0, θ > 0, λ ≤ 0 and x > 0.

The corresponding probability density function (pdf) of the LDGW distribution is
expressed as

fLDGW (x |λ, θ, β)

= βθ2

⎛

⎝1 + e−θ+θ
(
1−λxθ

)− 1
λ − 1

eθ − 1

⎞

⎠

−β−1

e−θ+θ
(
1−λxθ

)− 1
λ xθ−1

(
1 − λxθ

)− 1
λ
−1

eθ − 1
.

(2)

Similarly the survival function (sf) of the LDGW distribution is

SLDGW (x |λ, θ, β) =
⎛

⎝1 + e−θ+θ
(
1−λxθ

)− 1
λ − 1

eθ − 1

⎞

⎠

−β

(3)

and the hazard rate function (hrf) of the LDGW distribution is given by

hLDGW (x |λ, θ, β) = βθ2e−θ+θ
(
1−λxθ

)− 1
λ x−1+θ

(
1 − λxθ

)−1− 1
λ

e−θ+θ(1−λxθ )
− 1

λ + eθ − 2
. (4)

In addition, we have observed that limx→∞ eαx SLDGW (x |λ, θ, β) = ∞, for all α > 0
and θ < −λ. Furthermore, limx→∞ hLDGW (x |λ, θ, β) = 0 for θ < −λ. Hence, the
LDGW distribution has a heavy tail when θ < −λ (Foss et al. 2011). This behavior of
such distribution adapts hydrological data with heavy tails in the application portion
of this paper. Other motivational factors include the handling of floods devastation
effects, generally, floods are caused by the heavy concentrated rainfall, which are
sometimes augmented by snowmelt flows in rivers. Such floods usually become the
causes of financial loss, destruction of infrastructure and spreadness distance issue. In
order to cope with the above mentioned causes our proposed model is desired which
not only addresses flood and precipitation data at a site or a region but also produces
a realistic return period, see real life application of the four data sets as mentioned
in the application portion of this paper. Moreover, the proposed model exhibits not
only increasing but also upside down bathtub shapes, see Figs. 1 and 2. In addition
to, the proposed model exhibits, positive skewness, symmetry and negative skewness
coupled with leptokurtic, mesokurtic and plattykurtic behavior (see Figs. 3, 4 and 5).
Last but not the least, the asymptomatic distribution of both maxima and minima lies
in the Weibull domain of attraction which rarely exists in the literature.

The contents in the rest of this article are arranged as follows. Section 2 deals
with some statistical properties of the LDGW distribution, such as quantile function,
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Fig. 1 LDGW hrf graphs for the indicated values
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Fig. 2 LDGW hrf graphs for the indicated values
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Fig. 3 LDGW pdf graphs for the indicated values

asymptotic distributions of largest and smallest order statistics and characterization
issues via the hazard function. Parameters estimation by maximum likelihood is stud-
ied in Sect. 3 as well as hydrological applications are explored and comparison is
made with reputed hydrological probability models. Concluding remarks, findings
and recommendation are given in Sect. 4.
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Fig. 4 LDGW pdf graphs for the indicated values

2 Some properties of themodel

Here, we shall discuss some properties of the LDGW distribution.

2.1 Quantile function

If X is an absolutely continuous random variable having the pdf defined in (2), then its
quantile function, sayQp (quantile of order p), is defined as FLDGW (Qp|λ, θ, β) = p,
where 0 < p < 1. Quantile function gives a number Qp in such a way that area to
the left of Qp is p, i.e., it is the root of the function

Qp = λ− 1
θ

⎛

⎜
⎝1 −

⎛

⎜
⎝

θ + ln
{
2 − eθ − (1 − eθ )(1 − p)−

1
β

}

θ

⎞

⎟
⎠

−λ⎞

⎟
⎠

1
θ

. (5)

Equation (5) can be used to simulate LDGW random variables.
Now by using (5) we can find the median, skewness and kurtosis of LDGW as

Median = Q0.5, when p = 0.5,

Sk. =
Q 3

4
− 2Q 1

2
+ Q 1

4

Q 3
4

− Q 1
4

, (6)

Ku. =
Q 7

8
− Q 5

8
+ Q 3

8
− Q 1

8

Q 6
8

− Q 2
8

. (7)

Equation (7) indicates that: As kurtosis increases, the tail of the distribution becomes
heavier. These measures are less sensitive to outliers and they exist even for distri-
butions without moments (Cakmakyapan and Ozel 2016). Figure 5 gives the plots of
skewness and kurtosis for the LDGW distribution. From this figure, the distribution is
leptokurtic and mesokurtic as well as platykurtic attitudes. From this, it is evident the
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Fig. 5 Skewness and Kurtosis of the LDGW distribution for the indicated values

distribution reflects light and heavy tail behavior. Moreover, it is also observed that
kurtosis and skewness decrease as β increases.

2.2 Asymptotic distribution

Here, we present the asymptotic distributions of Wn = Xn:n and wn = X1:n that
are the largest and smallest observations, respectively, from the random sample of n
observations. For this purpose we take the cd f and pd f of the LDGW distribution.
Then, when θ < −λ, the distribution of maxima is

lim
t→∞

1 − FLDGW (t + x |λ, θ, β)

1 − FLDGW (t |λ, θ, β)
= lim

t→∞
SLDGW (t + x |λ, θ, β)

SLDGW (t |λ, θ, β)
= 1.

Hence, the tail of FLDGW (.) is of slow variation. Also, the distributions with slowly
varying tails are shown to be of valuable use in practice (Alves et al. 2009). So, the
standardized formof distributionofmaxima isWeibull (type -III).Now, the distribution
of minima for all values of λ, after using L’Hôpital’s rule, is

lim
t→0

FLDGW (t x |λ, θ, β)

FLDGW (t |λ, θ, β)
= lim

t→0

x fLDGW (t x |λ, θ, β)

fLDGW (t |λ, θ, β)
= xθ ,

and its standardized form isWeibull (type -III), i.e., 1−e−xθ
. According to (Leadbetter

et al. 1987, Theorem 1.6.2) of norming constants an > 0, bn > 0, cn > 0 and dn > 0,
we obtain

P {an(Wn − bn) ≤ x} → e−1, P {cn(wn − dn) ≤ x} → 1 − e−xθ

,

as n → ∞. From this, it is clear that the asymptotic distribution of sample maxima
and sample minima is in the domain of attraction of Weibull distribution.
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2.3 Characterization based on the hazard rate function

Characterization usually helps the researchers for determining the exact probability
distribution. The hrf is twice differentiable and usually satisfies the first order differ-
ential equation

f ′(x)
f (x)

= h′
f (x)

h f (x)
− h f (x),

where h f (x) = f (x)

1 − F(x)
is the hrf. The following characterization establishes a non-

trivial characterization for the LDGWdistribution in terms of the hazard rate function.

Theorem 1 Let X : � → (0,∞) be an absolutely continuous random variable pos-
sessing sf SF (x)and f (x). Then it is said to have pdf as defined in Eq. (2) iff it satisfies
the expression

(ln h(x))′

h(x)
=
{
θ2xθ−1(1 − λxθ )−

1
λ
−1 + θ − 1

x
+ λθxθ−1(1 − λxθ )−1(1 + λ)

λ

− (β + 1)θ2xθ−1(1 − λxθ )− 1
λ
−1e−θ+θ(1−λxθ )

− 1
λ

e−θ+θ(1−λxθ )
− 1

λ + eθ − 2

}
h(x) + 1, (8)

for β > 0, θ > 0, λ ≤ 0 and x > 0.

The proof is postponed in “Appendix-A”.

3 Maximum likelihood estimation and hydrological applications

3.1 Maximum likelihood estimation

Let X1, X2, . . . , Xn be a randomsample from the distribution characterized by (2)with
parameter vector � = (λ, β, θ) and x1, x2, . . . , xn are the corresponding observed
values, then its log-likelihood is expressed as

�(	) = ln[L(x1, x2, . . . xn|	)] = (θ − 1)
n∑

i=1

ln(xi ) − n ln(eθ − 1)

− nθ + θ

n∑

i=1

(
1 − λxθ

i

)− 1
λ
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+ n ln(β) + 2n ln(θ) −
(
1 + 1

λ

) n∑

i=1

ln(1 − λxθ
i )

− (β + 1)
n∑

i=1

ln

⎡

⎣1 + −1 + e−θ+θ
(
1−λxθ

i

)− 1
λ

eθ − 1

⎤

⎦ . (9)

The maximum-likelihood estimators (MLEs) of λ, θ and β are obtained by solving
numerically the nonlinear system of equations ∂�(	)

∂θ
= 0, ∂�(	)

∂λ
= 0 and ∂�(	)

∂β
= 0.

Those partial derivatives are given in “Appendix-B”. Moreover, for determining the
variance co-variancematrix and the confidence interval for the distribution parameters,
one requires informationmatrixwhich canbegeneratedby the taking the expectationof
the second order derivative. In this regard the second order derivatives of the equations
above can be provided on demand.

3.2 Evaluation tests

In order to demonstrate the proposed methodology, we consider four different real-
world data sets, and compare ten distributions which are too much popular in
hydrologic data analysis including, theWeibull, generalized Pareto (3), log-normal (3),
log Pearson Type 3, Kappa(3), extreme value, Fréchet, generalized logistic generalized
exponentiated exponential Lindley (GEEL) and generalized Weibull distributions, for
probability density functions of these distributions readers referred to Hussain et al.
(2018). The statistics: Akaike information criterion (AIC), corrected Akaike infor-
mation criterion (AICc), Hannan–Quinn information criterion (HQIC) and consistent
Akaike information criterion (CAIC) along with Vuong test are used to select the best
model among several models. The definitions of AIC, AICc, HQIC and CAIC are
given as:

AIC = 2k − 2�(	̂), AICc = AIC + 2k(k + 1)

n − k − 1
,

HQIC = −2�(	̂) + 2k ln(ln(n)), CAIC = −2�(	̂) + 2kn

n − k − 1
.

Moreover, perfection of competing models is also tested via the Kolmogrov−
Simnorov(K-S), the Anderson–Darling (A∗

0) and the Cramer Von Misses (W∗
0) statis-

tics. The mathematical expressions for the statistics above are given by

K S = max

{
i

m
− zi , zi − i − 1

m

}
, χ2 =

m∑

i=1

(oi − ei )2

ei
,

A∗
0 =

(
2.25

m2 + 0.75

m
+ 1

){

−m − 1

m

m∑

i=1

(2i − 1) ln(zi (1 − zm−i+1))

}

,

W ∗
0 =

m∑

i=1

(
zi − 2i − 1

2m

)2

+ 1

12m
,

123



136 Environmental and Ecological Statistics (2019) 26:127–151

where k denotes the number of parameters, n denotes the number of observations, m
denotes the number of classes, zi = Q(xi ), the xi ’s are the ordered observations, oi
and ei are the observed and expected frequencies of the i th class, respectively.
Whereas the Vuong test with its concerning procedure is outlined as follows.
Vuong test Chi-square approximation in the regard of the likelihood ratio test statistic
is valid only for testing restrictions on the parameters of a statistical model (i.e., H0
and H1 are nested hypotheses). However when models are non-nested, we can not
use the likelihood ratio tests for model comparison. In this scenario, the AIC AICc,
CAIC and HQIC as well as the Vuong test for non-nested models are useful. Vuong
(1989) proposed a likelihood ratio-based statistic for testing the null hypothesis that
the competing models are equally close to the true data generating process against
the alternative that one model is closer. Let us consider two statistical models based
on the probability density functions f A(x; ξ) = FA(b) − FA(a) and fB(x; 
) =
FB(b) − FB(a) possess equal or unequal number of parameters. Now, we define the
likelihood ratio statistic for the model f1(x; ξ) against f2(x; 
) as

LR(ξ̂n, 
̂n) =
kmax∑

k=0

fkln

(
f A(x; ξ̂n)

fB(x; 
̂n)

)

,

where ξ̂n and 
̂n are the MLEs in each model based on the sample k1, k2, . . . kn and fk
denotes the observed frequency (Denuit et al. 2007). If both models are strictly non-

nested, then under H0 we have the test statistic Z = LR(ξ̂n ,
̂n)√
nω̂n

, having the N (0, 1)
distribution as approximated distribution when n is large, where

ω̂n = 1

n

n∑

i=1

(

ln
fA(xi ; ξ̂n)

fB(xi ; 
̂n)

)2

−
(
1

n

n∑

i=1

ln
fA(xi ; ξ̂n)

fB(xi ; 
̂n)

)2

.

In order to select an appropriate model we usually construct the following hypothesis

H0 : KL( f A(x; ξ)) = KL( fB(x; 
)),

that is, the model A is defined to be better than model B if model A’s KL distance to
the truth is smaller than the model B,

H1A : KL( f A(x; ξ)) < KL( fB(x; 
)),

with corresponding critical value, i.e., we reject H0 when Z > Zγ in favor of A.
Similarly, model B is defined to be better than model A if model B’s KL distance to
the truth is smaller than the model A,

H1B : KL( f A(x; ξ)) > KL( fB(x; 
)),

with the corresponding critical region, i.e., we reject H0 when Z < −Zγ in favor
of B otherwise decision can not be made, where KL denotes the Kullback–Leibler
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Table 1 Descriptive statistics for data set I

Sample size Median Skewness Kurtosis Skewness
Kurtosis SkB KuB

39 3570 4.5581 25.4436 0.1791 0.2457 1.7548

Table 2 Some theoretical measures for data set I from LDGW

Sample size Median Skewness Kurtosis Skewness
Kurtosis SkB KuB

39 3306.69 2.1644 8.7915 0.2461 0.3688 1.7926

distance measure and γ denotes the level of significance. Therefore, if the value of the
test statistic is higher than Zγ then one can reject the null hypothesis that the models
are equivalent in favor of f A(x; ξ) being better than fB(x; 
), and if the test statistic
is smaller than −Zγ then one rejects the null hypothesis in favor of fB(x; 
) being
better than f A(x; ξ) else decision can not be made. The comparisons of the competing
models are displayed in the Table 17 for the four data sets.

Example 1 The first data set (I) is the annual flood discharge rates of the Floyd River
data flood discharge ( f t3/s) during 1935–1973, and it was first reported by Pickands
(1975) and later on by Akinsete et al. (2008). The data consist of the following values:
1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440, 5320, 1400, 3240,
2710, 4520, 4840, 8320, 13900, 71500, 6250, 2260, 318, 1330, 970, 1920, 15100,
2870, 20600, 3810, 726, 7500, 7170, 2000, 829, 17300, 4740, 13400, 2940, 5660.

Analysis of data set I: It is evident from Table 1 that the data behave as positively
skewed with high kurtosis in such a way that skewness to kurtosis ratio is 0.1791.
Furthermore, Bowley skewness to Bowley kurtosis ratio based on quantiles is also
worth noting which is 0.1400. So, such description of the data demands a model which
canwork very well in positively skewed and leptokurtic distributions.Moreover, Table
2 also affirms the above statement. To draw a valid conclusion we have converted the
ungrouped data into grouped data by using the command bins of R computational
package (Tables 3 and 4).For this purpose we have created different classes, such as,
[318, 1.37×103], (1.37×103, 2.04×103], (2.04×103, 3.57×103], (5.43×103, 8.05×
103], (8.05 × 103, 7.15 × 104], (7.15 × 104,∞) with observed frequencies of each
class, which are 7, 6, 7, 6, 6, 7 respectively. So in this regard Tables 3 and 4 portray the
comparison of the compared distributions which are highly recommended in heavy-
tailed behavior. From this table, it is evident that our proposed model is the most
suitable one, with least values for all statistics and highest p value for χ2 statistics.
Thus showing that there is a close association between the data and the proposed
model.

Example 2 The seconddata set (II) is theWabashRiverFlows atMt.Carmel (Threshold
= 50,000 cfs). The data cover a period of 65years (1928–1992) with 281 peaks that
exceed 50,000 cfs with an average annual number of peaks 281/65 = 4.32308 . This
data set was reported by (Rao and Hameed 2000, page 297).
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Table 3 Maximum likelihood estimators and goodness of fit statistics of data set I

Distribution λ̂ β̂ θ̂ χ2(d.f) p value KS A∗
0 W∗

0

Weibull(β, θ ) – 0.8715 6189.6259 3.5429(3) 0.315 0.1271 1.0754 0.1513

Fr.(β, θ ) – 1.0145 2151.5901 1.7353(4) 0.784 0.0862 0.3938 0.0502

EV(β, θ ) – 3552.7109 4246.2181 12.4091(3) 0.006 0.1631 2.3600 0.3886

GLO(β, θ ) – 3.0876 0.0003 16.9198(3) 0.001 0.1808 2.8111 0.4705

GP(λ, β, θ ) 2600.0656 0.7125 0.5209 0.9642(3) 0.810 0.0724 0.1935 0.0290

GW(λ, β, θ ) −2.7775 4.7693×10−8 2.3073 8.2351(4) 0.083 0.2263 3.3010 0.6698

LN3(λ, β, θ ) 8.1222 1.1198 127.9900 0.7133(3) 0.870 0.0861 0.3924 0.0500

GEEL(λ, β, θ ) 5.0453 1.8752 0.0003 10.6837(3) 0.014 0.2457 6.0615 0.9768

Kappa3(λ, β, θ ) 0.00096 2152.9316 1063.1286 1.7294(4) 0.785 0.0861 0.3924 0.0501

LP3(λ, β, θ ) 4.9874 0.7621 4.8649 5.8554(3) 0.119 0.2077 2.2596 0.3976

LDGW(λ, β, θ ) −144.6139 0.5006 12.5202 1.0421(4) 0.903 0.0722 0.1985 0.0308

Table 4 Log likelihood (l)and information criterion for data set I

Distribution −l AIC AICC HQIC CAIC

Weibull(β, θ ) 382.1299 768.2598 765.5675 769.4535 768.5931

Fr.(β, θ ) 377.9868 759.9736 757.2813 761.1673 760.3069

EV(β, θ ) 394.3573 792.7146 790.0223 793.9083 793.0479

GLO(β, θ ) 398.1236 800.2472 797.5549 801.4409 800.5805

GP(λ, β, θ ) 376.6006 759.2012 755.8166 760.9918 759.8869

GW(λ, β, θ ) 381.4146 768.8292 765.4446 770.6198 769.5149

LN3(λ, β, θ ) 376.5220 759.044 755.6594 760.8346 759.7297

Kappa(λ, β, θ ) 377.9787 761.9574 758.5728 763.748 762.6431

GEEL(λ, β, θ ) 392.6568 791.3136 787.929 793.1042 791.9993

LP3(λ, β, θ ) 381.7355 769.471 766.0864 771.2616 770.1567

LDGW(λ, β, θ ) 376.6024 759.2048 755.8202 760.9954 759.8905

Analysis of data set II: As Table 5 portrays that the data are positively skewed
with high kurtosis. We have fitted all of the probability distributions by using
the MLEs. The descriptive statistics are as displayed in Table 5 and the corre-
sponding theoretical ones in Table 6.The skewness to kurtosis ratio is 0.1452.
Among the competitive models the proposed model exhibits smaller values for all
of the above defined statistics. For obtaining the χ2 statistics we have created 10
classes via R computational package (R Core Team 2013). The created classes are
[1.26 × 104, 5.48 × 104,(5.48 × 104, 6.07 × 104],(6.07 × 104, 6.98 × 104],(6.98 ×
104, 7.87 × 104],(7.87 × 104, 8.67 × 104],(8.67 × 104, 1 × 105],(1 × 105, 1.14 ×
105],(1.14×104, 1.34×105],(1.34×105, 1.60×105],(1.60×105, 5.50×105]while
observed frequencies are 30, 27, 28, 28, 28, 28, 28, 31, 25, 28, respectively. The cal-
culated χ2 for the proposed model is the least with highest p value thus indicating
that the proposed model is the suitable one for such data set (Tables 7 and 8).
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Table 5 Descriptive statistics for wabash river flows at Mt. Carmel

Sample size Median Skewness Kurtosis Skewness
Kurtosis SkB. KuB.

281 86700 2.9551 20.3424 0.14526 0.2749 1.0943

Table 6 Some theoretical measures for wabash river flows at Mt. Carmel from LDGW

Sample size Median Skewness Kurtosis Skewness
Kurtosis SkB. KuB.

281 87555.6 2.2956 10.274 0.2234 0.2037 1.4592

Furthermore, information criteria also exhibit least lost of information attitude. This
indicates that proposed model use each value of the data set in an efficient manner
which is not observed in other competing models.

Example 3 The third data set (III) is the maximum amount of rain in mm of Pakistani
city Kalat. The data covers a period of 30years (1981–2010) with 30 values of maxi-
mum rain fall, it was reported by Ahmad et al. (1988). The data are as follows: 32.77,
58.65, 60.71, 64.01, 42.6, 75.8, 88.6, 90.1, 97.9, 105.6, 73.1, 76.6, 78.5, 58.3, 122.5,
57.8, 546, 125.8, 50.5, 45.9, 21.7, 45.5, 38, 75.4, 168.2, 72.9, 95.8, 133.4, 71.9, 28.

Analysis of data set III: Tables 9 and 10 depict that the data consist of 30 obser-
vations of rain fall data set of Pakistani city Kalat, indicating a positive skewness
coupled with high kurtosis. All of the competing probability distributions are fitted
by using the MLEs. The descriptive statistics are displayed in Table 9 and the cor-
responding theoretical ones in Table 10.The skewness to kurtosis ratio is 0.1969.
The comparison as given in Table 11 indicates that the proposed model as good as
the Kappa(3). Moreover, we calculate the the χ2 statistics by creating 6 classes via
R computational package (R Core Team 2013). The created classes are (21.7, 45],
(45, 58.65] ,(58.65, 73], (73, 81.9],(81.9, 108], (108, 546] while observed frequen-
cies are 5, 5, 5, 5, 5, 5, respectively.
In addition to, the information criteria also suggest the proposed model exhibits the
least loss of information behavior.Moreover, theVuong test indicates that the proposed
model and Dagum as well as Kappa distributions are the strong candidates for this
data set. However, information criteria indicate that proposed model uses each value
of the data set in an efficient manner which is not observed in other competing models
(Table 12).

Example 4 The fourth data set (IV) is the annual maximum flow (in m3/s) recorded
at Kinrara, Spey for the period 1952–1982 and the number of records is 31. The data
were reported by Ahmad et al. (1988). The data are as follows: 89.8, 109.1, 202.2,
146.3, 212.3, 116.7, 109.1, 80.7, 127.4, 138.8, 283.5, 85.6, 105.5, 118.0, 387.8, 80.7,
165.7, 111.6, 134.4, 131.5, 102.0, 104.3, 242.5, 214.8, 144.6, 114.2, 98.3, 102.8, 104.3,
196.2, 143.7.

Analysis of data set IV: The descriptive statistics as displayed in Table 13 and the
corresponding theoretical ones in Table 14. The skewness to kurtosis ratio is 0.2256,
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Table 8 Log likelihood (l)and information criterion for data set II

Distribution − l AIC AICC HQIC CAIC

Weibull(β, θ ) 3425.4302 6854.86 6851.903 6857.779 6854.904

Fr.(β, θ ) 3433.6599 6871.32 6868.363 6874.238 6871.363

EV(β, θ ) 3387.7110 6779.422 6776.465 6782.34 6779.465

GLO(β, θ ) 3389.8747 6783.749 6780.792 6786.668 6783.793

GP(λ, β, θ ) 3483.6953 6973.391 6969.476 6977.768 6973.477

GW(λ, β, θ ) 4175.7534 8357.507 8353.592 8361.884 8357.593

LN3(λ, β, θ ) 3385.4767 6776.953 6773.039 6781.331 6777.04

GEEL(λ, β, θ ) 3392.3002 6790.6 6786.686 6794.978 6790.687

Kappa3(λ, β, θ ) 4136.1013 8278.203 8274.288 8282.58 8278.289

LP3(λ, β, θ ) 3591.8838 7189.768 7185.853 7194.145 7189.854

LDGW(λ, β, θ ) 3380.1537 6766.3070 6762.3930 6770.6850 6766.394

Table 9 Descriptive statistics for maximum amount of rain in mm of Pakistani city Kalat

Sample Size Median Skewness Kurtosis Skewness
Kurtosis SkB KuB

30 73 4.19394 21.2994 0.1969 0.0066 1.5874

Table 10 Some theoretical measures for maximum amount of rain in mm of Pakistani city Kalat from
LDGW

Sample Size Median Skewness Kurtosis Skewness
Kurtosis SkB KuB

30 69.9091 1.9674 7.5536 0.2605 0.2179 1.4709

Table 11 Maximum likelihood estimators and goodness of fit statistics for data set III

Distribution λ̂ β̂ θ̂ χ2 p value KS A∗
0 W∗

0

Weibull(β, θ ) – 1.3138 99.3311 3.2853(3) 0.350 0.1293 0.8479 0.1222

Fr.(β, θ ) – 1.8990 54.5467 3.8209(2) 0.148 0.1416 0.6254 0.1057

EV(β, θ ) – 63.7460 37.0421 3.1491(2) 0.207 0.1557 0.8943 0.1217

GLO(β, θ ) – 7.3043 0.0295 3.0876(3) 0.378 0.1615 0.9432 0.1273

GP(λ, β, θ ) 451.3255 7.6720 21.7 8.4027(3) 0.038 0.2433 N.A. 0.2433

GW(λ, β, θ ) −1.5226 4.5742×10−7 3.5098 1.3627(4) 0.851 0.1120 0.3116 0.0537

LN3(λ, β, θ ) 4.0483 0.7298 12.0047 2.8635(4) 0.581 0.1126 0.4752 0.0713

GEEL(λ, β, θ ) 3.5982 −0.0008 0.0226 3.4764(3) 0.324 0.1521 0.8850 0.1305

Kappa(λ, β, θ ) 0.6809 66.7702 4.2337 1.0250(4) 0.921 0.0920 0.2254 0.0326

LP3(λ, β, θ ) 5.9556 0.2816 2.4852 7.1695(3) 0.067 0.2257 1.6432 0.3413

LDGW(λ, β, θ ) −79.7834 0.5333 12.7016 0.7734(4) 0.942 0.0894 0.2301 0.0323

NA not available
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Table 12 Log likelihood (l)and information criterion for data set III

Distribution −l AIC AICC HQIC CAIC

Weibull(β, θ ) 162.8018 329.6036 327.0036 330.5001 330.048

Fr.(β, θ ) 154.8099 313.6198 311.0198 314.5163 314.0642

EV(β, θ ) 159.6930 323.386 320.786 324.2825 323.8304

GLO(β, θ ) 160.6316 325.2632 322.6632 326.1597 325.7076

GP(λ, β, θ ) 156.1486 318.2972 315.0972 319.642 319.2203

GW(λ, β, θ ) 153.4683 312.9366 309.7366 314.2814 313.8597

LN3(λ, β, θ ) 154.5718 315.1436 311.9436 316.4884 316.0667

GEEL(λ, β, θ ) 158.1517 322.3034 319.1034 323.6482 323.2265

Kappa3(λ, β, θ ) 153.3992 312.7984 309.5984 314.1432 313.7215

LP3(λ, β, θ ) 155.8643 317.7286 314.5286 319.0734 318.6517

LDGW(λ, β, θ ) 153.4493 312.8987 309.6987 314.2435 313.8218

Table 13 Descriptive statistics for annual maximum flow (in m3/s) recorded at Kinrara, Spey

Sample Size Median Skewness Kurtosis Skewness
Kurtosis SkB KuB

31 118 1.9129 6.8286 0.2801 0.5155 1.5521

Table 14 Some theoretical measures for annual maximum flow (in m3/s) recorded at Kinrara, Spey from
LDGW

Sample Size Median Skewness Kurtosis Skewness
Kurtosis SkB KuB

31 122.706 2.1423 8.5031 0.2519 0.3072 1.5307

also the data having positive skewness coupled with high kurtosis. The comparison as
given in Tables 15 and 16 indicates that the proposed model is the most recommended
model with minimum χ2 and highest p value. The χ2 statistic is compiled by creating
5 classes via R computational package (R Core Team 2013). The created classes
(80.7, 102], (102, 109], (109, 118], (118, 144], (144, 202], (202, 388] along with the
observed frequencies are 6, 6, 4, 5, 5, 5 respectively.

The proposed model gives least loss of information criteria by depicting minimum
values of AIC, AICC, HQIC and AICc. Moreover, the χ2 indicates that the proposed
model is the best one, also it can be seen again this result by looking up for the
information criteria of this model.

Comparison via Vuong Test The Vuong test summary is portrayed in Table 17. In
this table we have compared the competing distributions with the proposed model
at 5 percent level of significance, i.e., Reject Ho if ZCalculated ≥ Z0.05 = 1.645 in
favor of model A or Reject Ho if ZCalculated ≤ Z0.05 = −1.645 in favor of model B
else decision cannot be made. This table indicates that the proposed model is also a
reasonable choice for such data sets by portraying higher Vuong test statistic values,
however it also indicates that the GP and LN3 for data set-I and the Kappa3 for data
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Table 15 Maximum likelihood estimators and goodness of fit statistics for data set IV

Distribution λ̂ β̂ θ̂ χ2 p value KS A∗
0 W∗

0

Weibull(β, θ ) – 2.2928 164.4540 17.2829(2) 0.000 0.1797 1.4180 0.2191

Fr.(β, θ ) – 3.5883 113.5558 1.4751(2) 0.478 0.1188 0.3488 0.0448

EV(β, θ ) – 118.9713 39.1103 5.6178(2) 0.060 0.1203 0.7395 0.0825

GLO(β, θ ) – 23.4585 0.0263 5.7926(2) 0.055 0.1246 0.7889 0.0853

GP(λ, β, θ ) 2370.3742 37.6897 80.7 2.8323(2) 0.243 0.1433 N.A. 0.0774

GW(λ, β, θ ) −2.9999 1.0292×10−19 9.2569 1.6238(2) 0.444 0.1254 0.4514 0.0631

LN3(λ, β, θ ) 4.8698 0.3836 3.7702 5.8226(2) 0.054 0.1218 0.6379 0.0832

GEEL(λ, β, θ ) 5.4665 88.8688 0.0137 20.3762(2) 0.0001 0.3049 3.0805 0.5670

Kappa(λ, β, θ ) 0.3546 119.9933 11.8503 2.6723(2) 0.263 0.1335 0.5093 0.0552

LP3(λ, β, θ ) 6.2198 0.1816 3.7702 3.0407(2) 0.219 0.1579 0.7877 0.1137

LDGW(λ, β, θ ) −292.4228 0.1902 43.4412 0.7683(2) 0.681 0.1050 0.3271 0.0524

NA not available

Table 16 Log likelihood (l)and information criterion for data set IV

Distribution −l AIC AICC HQIC CAIC

Weibull(β, θ ) 171.5685 347.137 344.5241 348.0719 347.5656

Fr.(β, θ ) 162.1036 328.2072 325.5943 329.1421 328.6358

EV(β, θ ) 165.5294 335.0588 332.4459 335.9937 335.4874

GLO(β, θ ) 165.8120 335.624 333.0111 336.5589 336.0526

GP(λ, β, θ ) 161.5663 329.1326 325.9068 330.5349 330.0215

GW(λ, β, θ ) 162.2268 330.4536 327.2278 331.8559 331.3425

LN3(λ, β, θ ) 165.2506 336.5012 333.2754 337.9035 337.3901

GEEL(λ, β, θ ) 175.8027 357.6054 354.3796 359.0077 358.4943

Kappa3(λ, β, θ ) 163.0665 332.133 328.9072 333.5353 333.0219

LP3(λ, β, θ ) 164.4232 334.8464 331.6206 336.2487 335.7353

LDGW(λ, β, θ ) 161.7888 329.5776 326.3518 330.9799 330.4665

set-III are also reasonable competitor. However, an encouraging aspect of the proposed
model is having least loss of information statistics and highest p value which makes
it reasonable competitor of the existing models.

For the four data sets, we get the elements of the variance-covariance matrices
of the MLES of the LDGW distribution, see Table 18. Using this table, we get the
confidence intervals of the parameters of the LDGW distribution for all the data sets,
see Tables 19, 20, 21 and 22. Tables 18, 19, 20, 21 and 22 are given in the “Appendix
C”.

3.3 Hydrological parameters

After observing the suitability of the proposed model, we see that the LDGW distri-
bution is the most appropriate model for analysis of the considered hydrologic data.

123



144 Environmental and Ecological Statistics (2019) 26:127–151

Table 17 Comparison via Vuong test with ZCalculated

Competing models ZData-I ZData-I I ZData-I I I ZData-I V

LDGE-Wei. 5.2185 7.0089 8.6587 5.6671

LDGE-Fr. 2.3007 9.5239 4.6398 16.3466

LDGE-EV 4.5451 2.0263 7.7256 8.1281

LDGE-GP − 9.3555 15.3708 3.4378 0.7066

LDGE-GW 3.6701 51.0472 12.9314 23.99929

LDGE-LN3 − 8.0081 −1.2434 7.5549 3.8145

LDGE-Kappa3 2.2836 48.3992 − 12.3676 13.2672

LDGE-LP3 6.5921 17.0309 4.2569 11.8869

LDGE-GEEL 2.3006 4.7262 6.8553 8.5225

LDGE-GLO 3.6938 3.6939 6.6912 8.2274

Fig. 6 Return periods of the competing models for data set-I and II

based on this observation, we further explored some characteristics of the hydrology
data, which are mentioned below.

3.3.1 Return period

Flood peaks/Heavy rain fall/High temperature do not occur with any fixed pattern
in time or magnitude. Time intervals between floods vary. The definition of return
period is the average of these inter-event times between flood events (Rao and Hameed
2000). This implies that large floods/Heavy rain falls/High temperatures naturally
have large return periods and vice versa. Such definition of the return periods may not
involve any reference to probability. However, a relationship between the probability
of occurrence of a flood and its return period can be justified. A given flood xT with a
return period Tmay be exceeded once in T years. Hence the probability of exceedance
is P(X > xT ) = 1

T . Now, a return level with a return period of T = 1/p is a high
threshold xT (e.g., annual peak flow of a river) whose probability of exceedance is p.
For this purpose the return level xT of the LDGW distribution is given by
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Fig. 7 Return periods of the competing models for data set-III and IV
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where xT > 0 and T ≥ 1. Table 23 provides estimates of the return level xT for
the data sets I, II, III and IV, respectively, for the return periods T = 2, 5,
10, 25, 50, 100, 200 years. Moreover, the return periods for some largest values

of all the data sets are reported in Tables 24 and 25 and computed using T = 1

P(xT )
,

where P(xT ) = S(xT ) is the survival function of the LDGW distribution given by

SLDGW (x |λ, θ, β) =
⎛

⎝1 + e−θ+θ
(
1−λxθ

)− 1
λ − 1

eθ − 1

⎞

⎠

−β

,

where θ̂ , λ̂ and β̂ denote the MLEs of the LDGW distribution for the corresponding
data set. Tables 23, 24 and 25 are given in the “Appendix C”.Moreover, comparison on
the basis of return period is also depicted in Figs. 6 and 7 for the above mentioned data
sets. On the basis of this comparison, we can conclude that the LDGW distribution
shows a significant larger and realistic (neither too large nor too short) return period
as compared to competing models.

4 Conclusion

We have developed and studied a new hydrologic probability model known as the
LDGWdistribution, which can effectively be used inmodeling the higher kurtosis data
sets, and also generates realistic return return periods for all types of environmental
data irrespective of any region. It can also be used in modeling the data with bathtub or
upside down bathtub or increasing hazard rate shapes. Furthermore, some properties of
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the proposed model are studied. Finally, the hydrological applications of the proposed
model to real-life data sets demonstrate its competence, usefulness and applicability
for future use. Finally, we recommend this model for data having much larger kurtosis
typically greater than 20 and skewness to kurtosis ratio less than 0.29.

Appendix-A

Proof Necessity:
If X ∼ LDGW (λ, θ, β), with a cdf defined by Equation (1), then its hrf can be
expressed as

h(x) = hLDGW (x |λ, θ, β) = e−θ+θ
(
1−λxθ

)− 1
λ x−1+θβθ2

(
1 − xθλ

)−1− 1
λ

(
eθ − 1

)
(

1 + e−θ+θ(1−λxθ )
− 1

λ −1
eθ−1

) ,

where x > 0, λ ≤ 0, α > 0 and β > 0.
Now, differentiating the logarithmic form of the hrf with respect to x , we get

d ln h(x)

dx
= θ − 1

x
+ θ2xθ−1 (1 − λxθ

)− 1
λ
−1 +

(
1

λ
+ 1

)
λθxθ−1

1 − λxθ

− e−θ+θ
(
1−λxθ

)− 1
λ x−1+θβθ2

(
1 − λxθ

)−1− 1
λ

(
eθ − 1

)
(

1 + e−θ+θ(1−λxθ )
− 1

λ −1
eθ−1

) ,
h′(x)
h(x)

−
(
1

λ
+ 1

)
λθxθ−1

1 − λxθ

= θ − 1

x
+ θ2xθ−1(1 − λxθ )−

1
λ
−1 − e−θ+θ

(
1−λxθ

)− 1
λ x−1+θβθ2

(
1 − λxθ

)−1− 1
λ

(
eθ − 1

)
(

1 + e−θ+θ(1−λxθ )
− 1

λ −1
eθ−1

) ,

which after some algebraic manipulations we get Equation(8).
Sufficiency:
Suppose Equation(8) holds, then it may be re-written as

h′(x)
(h(x))2

=

⎛

⎜
⎜
⎝1 + e

−θ+θ
(
1−λxθ

)− 1
λ

− 1

eθ − 1

⎞

⎟
⎟
⎠

−β

⎡

⎢
⎢⎢
⎣

βθ2

⎛

⎜⎜
⎝1 + e

−θ+θ
(
1−λxθ

)− 1
λ

− 1

eθ − 1

⎞

⎟⎟
⎠

−β−1

e
−θ+θ

(
1−λxθ

)− 1
λ

xθ−1
(
1 − λxθ

)− 1
λ
−1

eθ − 1

⎤

⎥
⎥⎥
⎦

2
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×

d

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βθ2

⎛

⎜
⎜
⎝1 + e

−θ+θ
(
1−λxθ

)− 1
λ

− 1

eθ − 1

⎞

⎟
⎟
⎠

−β−1

e
θ−θ

(
1−λxθ

)− 1
λ

xθ−1
(
1 − λxθ

)− 1
λ
−1

eθ − 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dx
+ 1.

From the above differential equation, we have

h(u) = e−θ+θ
(
1−λuθ

)− 1
λ u−1+θβθ2

(
1 − λuθ

)−1− 1
λ

(
eθ − 1

)
(

1 + e−θ+θ(1−λuθ )
− 1

λ −1
eθ−1

) . (10)

Integrating the Equation (10) from 0 to x we get

− ln(1 − FLDGW (x |λ, θ, β)) = − ln

⎛

⎜
⎝

⎛

⎝1 + e−θ+θ
(
1−λxθ

)− 1
λ − 1

eθ − 1

⎞

⎠

−β
⎞

⎟
⎠ ,

which after simplification yields

FLDGW (x |λ, θ, β) = 1 −
⎛

⎝1 + e−θ+θ
(
1−λxθ

)− 1
λ − 1

eθ − 1

⎞

⎠

−β

.

This completes the proof. 
�

Appendix-B

∂�(	)

∂θ
= −n − eθn

eθ − 1
+ 2n

θ
+

n∑

i=1

ln(xi ) +
(
1 + 1

λ

) n∑

i=1

λ ln(xi )xθ
i

1 − λxθ
i

+ θ

n∑

i=1

ln(xi )x
θ
i

(
1 − λxθ

i

)−1− 1
λ +

n∑

i=1

(
1 − λxθ

i

)− 1
λ − (1 + β)

×
n∑

i=1

−
eθ

(

−1+e−θ+θ(1−λxθi )
− 1

λ

)

(−1+eθ )
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− 1

λ
(

−1+θ ln(xi )xθ
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i

)−1− 1
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i

)− 1
λ

)

−1+eθ
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− 1
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= 0,
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λ2
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i ) +

(
1 + 1

λ
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xθ
i
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(
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λ

(
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−
e−θ+θ

(
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θ
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)− 1
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(
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λ
(
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(
eθ − 1

)
(

1 + e−θ+θ(1−λxθi )
− 1

λ −1
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) = 0

123



148 Environmental and Ecological Statistics (2019) 26:127–151

and

∂�(	)

∂β
= n

β
−

n∑

i=1

ln

⎡

⎣1 + e−θ+θ
(
1−λxθ

i

)− 1
λ − 1

eθ − 1

⎤

⎦ = 0.

Appendix-C

See Tables 18,19, 20, 21, 22, 23, 24 and 25.

Table 18 Variances and co-variances of MLEs for data set-I to IV

Data set Var(λ̂) Var(β̂) Var(θ̂) Cov(λ̂,β̂) Cov(λ̂,θ̂ ) Cov(β̂,θ̂)

I 8.1894 0.0064 0.0585 0.2597 0.6988 0.0208

II 2.3715 0.0319 0.0943 0.0606 0.1455 0.0036

III 2.9084 0.0094 0.0729 0.1921 0.4647 0.0291

IV 8.7512 0.0011 0.1935 0.1595 1.3040 0.0223

Table 19 Confidence interval with level of significance α for data set-I

Parameters α = 0.85 α = 0.90 α = 0.95 α = 0.99

λ (−148.7348,
−140.4930)

(−149.3357,
−139.8921)

(−150.2229,
−139.0049)

(−151.9971,
−137.2307)

θ (12.1719,12.8684) (12.1211,12.9193) (12.0461,12.99426) (11.8962,13.1442)

β (0.3854,0.6158) (0.3686,0.6326) (0.3438,0.6574) (0.2942, 0.7070)

Table 20 Confidence interval with level of significance α for data set-II

Parameters α = 0.85 α = 0.90 α = 0.95 α = 0.99

λ (−693.0416,
−688.6065)

(−693.365,
−688.2831)

(−693.8424,
−687.8057)

(−694.7972,
−686.851)

θ (42.0639,42.3357) (42.0441,42.3555) (42.0149,42.3848) (41.9564, 42.4433)

β (0.4893, 0.5813) (0.4826,0.5880) (0.4727, 0.5979) (0.4529, 0.61776)

Table 21 Confidence interval with level of significance α for data set-III

Parameters α = 0.85 α = 0.90 α = 0.95 α = 0.99

λ (−82.2392,
−77.3276)

(−82.5973,
−76.9695)

(−83.1260,
−76.4408)

(−84.1833,
−75.3835)

θ (12.3127,13.0905) (12.2560,13.1472) (12.1723,13.2309) (12.0048, 13.3984)

β (0.3931, 0.6735) (0.3726, 0.6939) (0.3424, 0.7241) (0.2821, 0.7845)
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Table 22 Confidence interval with level of significance α for data set-IV

Parameters α = 0.85 α = 0.90 α = 0.95 α = 0.99

λ (−296.6829,
−288.1631)

(−297.3041,
−287.5419)

(−298.2212,
−286.6248)

(−300.0553,
−284.7907)

θ (42.8077,44.0748) (42.7153,44.1672) (42.5789,44.3036) (42.3061,44.5764)

β (0.1410, 0.2393) (0.1338,0.2465) (0.1232, 0.2571) (0.1020, 0.2783)

Table 23 Return level estimates ˆxT for T of data set-I to IV

T Return level
estimate (RI )

Return level
estimate (RI I )

Return level
estimate (RI I I )

Return level
estimate (RIV )

2 3306.69 87555.6 69.9091 122.706

5 7999.14 127456.0 110.288 174.297

10 14078.7 163280.0 147.263 224.364

25 28220.2 223722.0 210.099 308.94

50 46420.8 282447.0 271.069 389.713

100 74782.9 355340.0 346.195 487.81

Table 24 Return periods for some largest values of data set-I and II

Peak Flows (m3�s) Return periods Peak flows (m3�s) Return periods

330 87.1178 12,600 6.4589 ×1015

970 2542.2 60,800 9.8394 ×1023

2940 158020 84,400 1.1277 ×1026

4740 1.1865 ×106 160,000 3.0490 ×1030

7170 7.7400×106 235,000 2.7402 ×1033

7150 8.6393 ×106 550,000 7.0715 ×1040

Table 25 Return periods for some largest values of data set-III and IV

Run off (mm) Return periods Run off (mm) Return periods

21.7 1.0159 80.7 1.0283

58.3 1.5440 115.7 1.7321

95.8 3.6559 168.5 4.5657

105.6 4.5302 247 13.1097

133.4 7.8408 354.3 37.5181

546 391.8050 397 52.8971
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