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Abstract In ecological studies, researchers often try to convey the analysis results to
individual level based on aggregate data. In order to do this correctly, the possibility of
ecological bias should be studied and addressed. One of the key ideas used to address
the ecological bias issue is to derive the ecological model from the individual model
and to check whether the parameter of interest in the individual model is identifiable
in the ecological model. However, the procedure depends on unverifiable assump-
tions, and we recommend checking how sensitive the results are to these unverifiable
assumptions. We analyzed the tuberculosis data that was collected in Seoul in 2005
using a spatial ecological regression model for the aggregate count data with spatial
correlation, and found that the deprivation index is likely to have a small positive effect
on the occurrence risk of tuberculosis in individual level in Seoul. We considered this
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finding in various aspects by performing in depth sensitivity analyses. In particular,
our findings are shown to be robust to the distribution assumptions for the individual
exposure and missing binary covariate across various scenarios.

Keywords Ecological bias · Robustness · Sensitivity analysis · Spatial model

1 Introduction

In ecological studies researchers are often faced with aggregate count data with spatial
correlation. Spatial ecological regression can be used to obtain results based on aggre-
gate data, which can then be used to try to convey the results to an individual level.
Ecological bias becomes an issue in these situations as the aggregate level associations
can fail to properly reflect the results from the individual level (Greenland and Mor-
genstern 1987). The issues related to ecological bias should be studied and addressed
in order to correctly convey the results. One of the key ideas that can be used to address
these issues is to derive the ecologicalmodel from the individual levelmodel and check
whether the parameter of interest in the individual model is identifiable in the ecolog-
ical model. However, the individual model often depends on unverifiable assumptions
and requires sensitivity analyses to test the assumptions (Wakefield 2003).

Tuberculosis control is still a major challenge in South Korea. Tuberculosis inci-
dence in South Korea was reported to be seven times higher than the average incidence
of countries belonging to the Organization for Economic Co-operation and Develop-
ment in 2013 (Kim and Yim 2015). Among various risk factors, the relationship of
socio-economic deprivation and tuberculosis risk has been an interesting topic for epi-
demiologic research, because of the possibility of missed opportunities for prevention
depending on socio-economic status (Lopez De Fede et al. 2008). There is also a pos-
sibility of treatment delay for the deprived population (French et al. 2009), and several
studies were conducted to find any association between deprivation and tuberculosis
occurrence. In this paper we analyze the tuberculosis data that was collected in Seoul
in 2005, using spatial ecological regression to analyze the aggregate count data with
spatial correlation. In this application we focus on how to address the ecological bias
issue in the Seoul tuberculosis data, and explain in what settings the ecological analy-
sis result is robust against the unverifiable assumptions. In particular, we show how to
conduct appropriate sensitivity analyses on the distribution of hypothetical individual
level exposures when the contextual effect is considered and when an unmeasured
important binary covariate exists. The analysis of Seoul tuberculosis data is presented
as a case study that deals with issues related to ecological bias.

In Seoul tuberculosis data, the unit of analysis is “dong” which corresponds to
a geographic area comparable to a district. It is desirable to include in the analyses
spatial correlation associated with the geographical distances between dongs. This
was considered to be a difficult problem 20 years ago as it requires addressing spa-
tial correlation in regression analysis, however, it can now be easily implemented
in many software packages such as Winbugs and R. In particular, the Besag–York–
Mollié (BYM) model by Besag et al. (1991) is commonly used in the areas of spatial
epidemiology and medical sciences (Besag and Kooperberg 1995; Deguen 2010). In
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many situations, we are interested in individual level associations, and therefore spa-
tial ecological modeling is not sufficient for the purpose of the analyses. With the
possibility of ecological bias, spatial modeling is often a secondary issue in analyzing
aggregate spatial data (Wakefield 2003).

Ecological bias has long been studied in the literature as it involves important issues
and is relevant in various applications. Greenland and Morgenstern (1987) discussed
the main attributes such as confounding and effect modification for ecological bias,
and Richardson et al. (1987) described sources of ecological bias. Wakefield (2007)
pointed out that ecological bias occurs due to within-area variability in exposures
and confounders, and as consequences of the within-area variability, ecological bias
can have different aspects such as pure specification bias and confounding (Wake-
field 2007). For dealing with ecological bias, the existing literature emphasizes that
the individual-level data should be used together with the ecological data (Jackson
et al. 2005). However, this is possible only when the individual level data is available,
and the researchers are often left with aggregate level data without access to indi-
vidual level data. Without the availability of individual level data, sensitivity analysis
can be considered. The effects of unmeasured confounders and the problem of pure
specification bias can be addressed by sensitivity analysis (Wakefield 2003). As usual
in ecological data, individual level data is not available for Seoul tuberculosis data.
Therefore, the unverifiable assumptions used in our analysis require us to perform
sensitivity analysis. By investigating the results of sensitivity analyses from several
aspects, if the results are not very sensitive and do not change its qualitative meaning,
it is possible to give a more confident statement of the results that can be conveyed to
individual level.

We begin by investigating the relationship between ecological quantities by apply-
ing BYM model to Seoul tuberculosis data, and we also address the possibility of
ecological bias issues. We tackle the issue by considering a reasonable individual
level model and deriving the ecological model from this model as suggested in Wake-
field (2007) andWakefield (2003). The correspondence between the ecological model
and derived ecological model from the individual model is examined in depth. We
also study whether the ecological analysis results are robust to misspecification of the
distributional assumption for within-area exposures and to a missing covariate. This
will be exemplified in our analysis in Sects. 6 and 7, followed by concluding remarks.

2 Seoul tuberculosis data

Let Yi denote the number of tuberculosis patients in i th dong and ei be the expected
number of tuberculosis patients in the general population to correct for age structure.
In Seoul in 2005, the average dong population for male is 9677.26 and its standard
deviation is 3984.82. For female case, the average dong population is 9718.59 and its
standard deviation is 4061.62.

Standardized mortality ratio (SMR) is often a quantity of interest for spatial epi-
demiologists, and is defined to be Yi/ei . We look into SMRs by gender on the map
of Seoul in Fig. 1a, b, to take into account that tuberculosis occurrence pattern is dif-
ferent between male and female. The x and y axes in the figures denote latitude and
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(b)

Fig. 1 Standardized mortality ratio. a SMR of Male. b SMR of Female

longitude values, respectively. Higher SMR is shaded with darker color. Since gender
differences in SMRs are observed, ecological analyses will be performed separately
by gender.

In this study, the covariate of interest is the deprivation index of each dong
(Townsend 1987). The deprivation index was developed by the British Department
for Communities and Local Government as a measure to identify how deprived dif-
ferent parts of England are. The index consists of seven different domains (McLennan
et al. 2011): (1) Income, (2) Employment, (3) Health and Disability, (4) Education,
Skills and Training, (5) Barriers to Housing and Services, (6) Living environment,
and (7) Crime. These domains are considered and combined to represent an overall
measure that shows the level of deprivation at a small area level. Figure 2 are scatter
plots of log(Yi/ei ) versus the deprivation index for male and female, respectively.
Both plots show linear increasing trends, particularly for males. The relationship of
socio-economic deprivation and tuberculosis risk in Seoul will be examined in depth
as in the following sections.

3 Spatial ecological model

We use the BYM model for our tuberculosis data to account for spatial correlation
in aggregate level data (Besag et al. 1991). For the aggregate count data Yi of the i th
dong (i = 1, . . . , n), the BYM model can be written by

log E(Yi |xi , ui , vi ) = log ei + β0 + β1xi + ui + vi (1)

where ui |u−i ∼ N (ūi , σ 2
u /qi ) and vi ∼ N (0, σ 2

v ). ui is introduced to explain the spa-
tial correlation and intrinsic conditional autoregressive model (ICAR) (Besag 1974)
is employed. ICAR has gained its popularity for analysis of aggregated spatial data in
spatial epidemiology, disease mapping, agricultural experiments and image analysis
(Besag 1974; Besag and Kooperberg 1995; Besag and Higdon 1999). ūi is the mean of

123



Environ Ecol Stat (2018) 25:341–362 345

−
1

0
1

2

Deprivation

(a)

−5 0 5 −5 0 5

−
2.
0

−
1.
5

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

1.
5

Deprivation

lo
g(
S
M
R
)

lo
g(
S
M
R
)

(b)

Fig. 2 The relationship between log SMR and deprivation index. a Male. b Female

the ui for the neighborhoods of i th dong that share administrative borderline. qi is the
number of neighborhoods of i th dong. Since ui is conditionally specified, σ 2

u should
be interpreted not as the marginal variance but as the conditional variance (Wakefield
2007). Therefore it is not reasonable to compare σ 2

u and σ 2
v directly, because σ 2

v is
specified as the marginal variance. vi is introduced to explain the area-specific het-
erogeneity, and can capture additional variability beyond what is captured by Poisson
distribution. xi denotes the deprivation index of i th dong.

We consider two different priors in order to check whether the results from our
ecological model are robust against the prior specification. Prior 1 is specified follow-
ing the recommendation in Wakefield (2007), so that the prior is specified for total
variability instead of specifying priors for each of the variance components, because
the total variability is a quantity with available prior knowledge. Let σ 2

v = (1− p)τ−1

and σ 2
u = pτ−1 where τ = 1/(σ 2

v + σ 2
u ) and p = σ 2

u /(σ 2
u + σ 2

v ). Then p ∼
Beta(1, 1), τ ∼ Gamma(1, 0.0260), and the improper uniform prior, dflat(), was used
for the regression coefficients β0 and β1. Prior 2 is very commonly used and obtained
from GeoBUGS user manual ver 1.2 (Thomas and Best 2004), with the assumption
that β0 ∼ dflat(), β1 ∼ N (0, 105). For the inverse of variance components 1/σ 2

u and
1/σ 2

v ,Gamma(0.5, 0.0005) and Gamma(0.5, 0.0005) were used, respectively.
To begin with, we perform ecological analysis using Winbugs ver 1.4. In order to

check whether both random effects are necessary, we compute the deviance informa-
tion criterion (DIC) (Spiegelhalter et al. 2002) for four models: (1) the model with
only ui , (2) only vi , (3) both ui and vi and (4) in addition to ui and vi , including
longitude and latitude as linear covariates.

As shown in Tables 1 and 2, the models with both ui and vi have the smallest DIC,
and are selected to be the best models. To see which random effect has a dominant
effect, we need to compare σ 2

v and the marginal variance of ui , but the latter quantity
is difficult to compute. Thus, using similar method to what was done in Haneuse and
Wakefield (2004), we use E(s2u |y1, . . . , yn) where s2u = (n − 1)−1�n

i=1(ui − ū)2 and
ū = n−1�n

i=1ui as an approximate estimate of marginal variance for ui . From Table 1,
we observe that the area-specific heterogeneity seems more dominant than the spatial
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Fig. 3 Residual relative risk: exp(ui + vi ). a exp(ui + vi ) of Male. b exp(ui + vi ) of Female

component for male. The situation is reversed for females, as shown in Table 2. The
estimate of β1 is small but significant in both genders. β1 from the smallest DICmodel
formale is 0.051 (Prior 1). Thismeans that givenui andvi , the expectednumber ofmale
tuberculosis patients increases by 5% when one unit of deprivation index increases,
which is a significant number for the public health agency. The increase in the expected
number of female tuberculosis patients is 3%, which is a little smaller than that of the
male case. These interpretations do not depend on the choice of priors. The spatial
component explains 27.0 and 52.8% of the residual variability for male and female,
respectively. In order to see the relative contribution of the deprivation index(xi ), ui
and vi , we compute Var(xiβ1) and compare it with the estimates for E(s2u |y1, . . . , yn)
and Var(vi ). Var(xiβ1) is 0.022 and 0.008 for male and female, respectively. The
contribution by the deprivation index is similar to that of ui for males, but it is less
than the half of ui for females. From the spatial ecological model using Prior 1, the
residual relative risk exp(ui + vi ) is illustrated in Fig. 3a, b, respectively. The two
figures show the tuberculosis risk after adjusting for the deprivation index.

From the ecological analysis results above, can we say that as the individual social
economic level deteriorates (i.e. the individual deprivation index is higher), the indi-
vidual risk for tuberculosis increases? In order to be able to fill the gap from ecological
analysis to individual interpretation, we need to deal with the ecological bias issue.

An operational procedure to deal with them was given by Diggle and Elliott (1995)
and Wakefield (2007). To be complete, we summarize it here:

1. Specify an individual level model.
2. Derive the ecological level model from the individual-level model.
3. Check the sources of ecological bias by comparing the derived ecological model

and ordinary ecological model.

In the following section, we take the above steps for Seoul tuberculosis data. While
the aggregate model is derived from the individual model, we identify explicitly which
assumptions are used. Some assumptions can be justified from the data, but others
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cannot be justified because of the lack of individual-level data. In the latter case,
sensitivity analysis is desirable.

4 An individual level analysis for Seoul tuberculosis data

Let Yi j be a Bernoulli random variable that denotes whether j th person in i th dong is
a tuberculosis patient. xi j is the deprivation index of ban (submunicipal level division
in Korea) where j th person in i th dong lives, and xi is the average deprivation index
of i th dong. Let

Yi j |xi j , xi , ui , vi ∼ Ber(pi j ) (2)

where

pi j = E
(
Yi j |xi j , xi , ui , vi

) = exp
(
α0 + αind

1 xi j + αcon
1 xi + ui + vi + γki j

)
. (3)

Model (3) is appropriate for rare disease such as tuberculosis. The prevalence of
tuberculosis is known to be approximately 159/100,000 according to WHO Global
tuberculosis report in 2014 (World Health Organization 2014). exp(γki j ) is used to
denote the risk associated with the j th person who live in i th dong and belong
to kth age-level. αcon

1 denotes the contextual effect, which is often considered in
social epidemiology or infectious disease epidemiology (Salway andWakefiled 2005).
Greenland (2001) emphasized that even though the primary objective of research is
to estimate the contextual effect, the ecological level model should be derived from
an individual-level model including xi as well as xi j . Some statistical arguments for
the non-separability of αind

1 and αcon
1 in ecological analysis are given in Greenland

(2002).
Consider the individuals in kth age group only:

pki j = exp
(
α0 + αind

1 xi j + αcon
1 xi + ui + vi + γk

)

Then,

pki =
∑

j

pki j/Nik ≈ E
(
exp(α0 + αind

1 xi j + αcon
1 xi + ui + vi + γk)|xi , ui , vi

)

= exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2 + ui + vi + γk

)
(4)

where Nik is the population of kth age category in i th dong and α1 = αind
1 + αcon

1 .
The expectation is taken with respect to xi j , and we assume that the exposure follows
a normal distribution:

xi j ∼ N
(
xi , s

2
i

)
. (5)
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The term 1
2 s

2
i (α

ind
1 )2 in the Eq. (4) is obtained from the moment generating function

of this normal distribution. The normal assumption will be examined in the sensitivity
analysis later. Then, the mean number of the tuberculosis patients in the i th dong is
given by

μi =
∑

k

Nik p
k
i

(6)

=
∑

k

Nik exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2 + ui + vi + γk

)

=
(

∑

k

Nik exp(γk)

)

exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2 + ui + vi

)

= ei exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2 + ui + vi

)
. (7)

Equations (6) and (7) use the large sample approximation (4) in each dong. Note that
ei = ∑

k Nik exp(γk) is the same quantity that appeared in (1) and is treated as the
offset variable.

The derived ecological model is given by

Yi |xi , ui , vi ∼ Poisson

(
ei exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2 + ui + vi

))
. (8)

This Poisson approximation is valid for the sum of independent, non-identical
Bernoulli variables under the rare disease assumption. The rigorous technical con-
dition was first given in Le Cam (1960), and a simple explanation can be found in
Steele (1994). This approximation has been used in ecological studies, for example,
in Wakefield (2007). If we compare the model (8) with the ecological model (1),
the potentially problematic term is 1

2 s
2
i (α

ind
1 )2. The relationship between α1 and β1

depends on the relationship between s2i and xi , but s2i is unknown to us, so we can-
not check the relationship between mean and variance based on the data. Sensitivity
analysis with respect to the change in s2i is desirable, which will be considered in the
following section.

In the derivation of the ecological model from the individual model, no missing
covariate is assumed in the individual level model. However, some important variables
that relate to lifestyles, such as smoking, are not available in our dataset. Since smoking
status is deemed to be important in analyzing lung-related disease, we need to consider
this variable as a missing binary covariate in the individual-level model. This will be
discussed in Sect. 7.

123



Environ Ecol Stat (2018) 25:341–362 351

5 Sensitivity to the functional relationship between s2i and xi

In this section, we consider pure specification bias issue. Various scenarios can be
considered for the relationship between s2i and xi .

– Scenario (1) If the mean level of the deprivation index (xi j ) is high, its variability
can be high, and if the mean level of the deprivation index is low, its variability can
be low. This implies that there exist wealthy towns in which only the rich live (low
variability), but that the rich and the poor can coexist in areas with high poverty
rates.

– Scenario (2) If the mean level of the deprivation index (xi j ) is high, its variability
can be low, however if the mean level of the deprivation index is low, its variability
can be high. This implies that there are poor towns that consist only of poor
population, but the rich and the poor can coexist in some wealthy towns.

– Scenario (3) The rich and the poor coexist regardless of the deprivation index.

These scenarios can be captured approximately by the following linear model:

s2i = a + bxi

The same linear model was used for the sensitivity analysis in Wakefield (2003). The
first, second and third scenarios correspond to the case with b > 0, b < 0 and b = 0,
respectively. Then the derived ecological model becomes

Yi |ui , vi ∼ Poisson

(
ei exp

(
α0 + α1xi + 1

2

(
αind
1

)2
(a + bxi ) + ui + vi

))

= Poisson

(
ei exp

(
α0 + 1

2

(
αind
1

)2
a +

(
α1 + 1

2

(
αind
1

)2
b

)
xi

+ ui + vi ))

The correspondence between the ecological model and the derived model from the
individual model is given by β0 = α0 + 1

2a(αind
1 )2 and β1 = α1 + 1

2b(α
ind
1 )2. The

role of αind
1 is important because it determines the difference between β0 and α0, and

β1 and α1. Note that under Scenario 3, β1 is equal to α1(= αind
1 + αcon

1 ). In practice,
using ecological data, we can obtain an estimate for β1, which can be used in the
equation to solve for αind

1 . Let αcon
1 = καind

1 for some known value κ > 0. Since
β1 = α1 + 1

2b(α
ind
1 )2 = (1+ κ)αind

1 + 1
2b(α

ind
1 )2 is a quadratic equation with respect

to αind
1 , it can give two solutions for αind

1 . Since αind
1 is believed to be a small nonzero

value in our application (Jee et al. 2009), we take αind
1 with the same sign as that of β1.

This is reasonable because β1 = (1+κ)αind
1 when b = 0 and αind

1 varies continuously
as b changes near the origin. In making a choice of αind

1 we need to be cautious and
take into account subject knowledge about the size of αind

1 if available. Note that small
β1 does not necessarily imply that αind

1 is small. For example, αind
1 = 1, κ = 0.1 and

b = −2, β1 becomes 0.1. In other words, β1 can be small even when αind
1 is not so

small according to the values of b. Therefore it is important to note that small β1 does
not directly imply that αind

1 is small.
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Fig. 4 Sensitivity analysis. a Sensitivity analysis (male). b Sensitivity analysis (female)

Note that a, b and κ are not identifiable from the aggregate data. Their values should
be based purely on subject matter knowledge. We perform sensitivity analysis of the
effect on αind

1 of changing b and κ over some reasonable range.We plot the estimate of
αind
1 with its pointwise 95% credible interval in Fig. 4 by moving b over− 10 to 10 for

different κ = 0, 0.1, 0.5. To select a reasonable range of b, we need the within-area
variances s2i . For example,Wakefield (2003) derived plausible values of b by using the
interquartile range of s2i . However, in our situation, s

2
i are not available. Therefore, we

decide to make a conservative choice for the range of b. Considering the total range of
xi (− 7.061, 8.776), (− 10, 10) seems sufficiently wide to include plausible values of
b. The three values for κ reflect that αind

1 has a dominant effect compared to αcon
1 . As

a conservative choice for κ , we consider κ up to 0.5 which implies that the contextual
effect by xi on the tuberculosis risk corresponds to 50% of the effect by xi j when xi j
and xi are defined on the same scale. For each fixed b and κ , the pointwise credible
interval is obtained by solving β∗

1 = (1 + κ)αind
1 + 1

2b(α
ind
1 )2 with respect to αind

1
where β∗

1 correspond to the leftmost and rightmost points of 95% credible set for β1.
Since β1 itself is a small value, the change of αind

1 is also small and the credible set
does not touch 0 over b ∈ [− 10, 10] for different κ . For example, consider κ = 0.5.
For male, αind

1 lies within (0.031, 0.040) (Fig. 4a) and for female, αind
1 lies within

(0.019, 0.022) (Fig. 4b). Thus, in Seoul tuberculosis data, when the ecological result
is conveyed to the individual level, it can be argued that the functional relationship
between xi and s2i is not likely to have a big influence on the effect of deprivation
index.

6 Sensitivity to the distribution assumption on xi j

Since the normal distribution for xi j is a convenient choice rather than a theoreti-
cally supported choice, it is meaningful to check whether our analyses results have
robustness property against the distribution misspecification. In line with this, we first
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consider some flat shape or leptokurtic distributions for xi j . These distributions are
possible forms that can occur in practice for various exposure variables.

If αind
1 is small and the moment generating function of xi j is continuously differ-

entiable, we can use the following approximation:

M(αind
1 ) = E[exp(αind

1 xi j )]
= M(0) + M ′(0)αind

1 + O((αind
1 )2)

≈ exp(αind
1 E(xi j ))

= exp(αind
1 xi ). (9)

We will see that this small αind
1 approximation leads to small pure specification bias

through some examples. Wakefield and Salway (2001) also noted that for small α1 the
pure specification bias is expected to be small when xi j follows normal and gamma
distributions. Some specific examples are considered below.

6.1 Uniform distribution

Suppose that

xi j ∼ Uniform(xi − δ, xi + δ). (10)

where E(xi j ) = xi , and 2δ denotes the range of the uniform distribution. This uniform
within-area exposure distribution was discussed in Greenland (1992). The derived
ecological model becomes

pki =
∑

j

pki j/Nik

≈ E
(
exp(α0 + αind

1 xi j + αcon
1 xi + ui + vi + γk)|ui , vi

)

= exp
(
α0 + αcon

1 xi + ui + vi + γk
) (

exp
(
αind
1 (xi + δ)

)

− exp
(
αind
1 (xi − δ)

))
/
(
2αind

1 δ
)

.

At first glance, this functional form involving xi is very different from that from the
normal distribution. However, consider when αind

1 is small and xi and δ are bounded.
Then,

exp
(
αind
1 (xi + δ)

)
− exp

(
αind
1 (xi − δ)

)
≈ exp

(
αind
1 xi

) (
2αind

1 δ
)

by Taylor expansion. Thus,

pki ≈ exp
(
α0 +

(
αind
1 + αcon

1

)
xi + ui + vi + γk

)
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Fig. 5 The true value for αind1 is on x-axis, and the difference β1 −α1 is on y-axis. In both cases, δ is fixed

at 4. a 1/σ 2
u = 111.467. b 1/σ 2

u = 25.361

in this case, β1 corresponds to α1(= αind
1 + αcon

1 ).
To check the robustness of this approximation, a numerical study is performed.

We first generate yi from Poisson(ei exp(α0 + αcon
1 xi + ui + vi )(exp(αind

1 (xi + δ)) −
exp(αind

1 (xi − δ)))/(2αind
1 δ)) which is the aggregated model from the individual level

modelwith (10). xi and ei are taken fromSeoulmale tuberculosis data.We use δ = 1, 2
and 4. To select a reasonable value of δ, we need the within-area information on xi j .
However, this information is not available, so we consider δ up to 4 where 2δ covers
more than half of the total range of xi . We also use α0 = − 0.047,Var(vi ) = 0.031
and the reciprocal of the conditional variance of ui , 1/σ 2

u , is fixed at 111.467, which is
obtained from 1/Var(E(ui |y)) of Seoul male tuberculosis data. We also tried different
values of 1/σ 2

u , for example, 1/σ 2
u = 25.361 in Fig. 5b, the values obtained from

R-INLA. The results are similar for different values of 1/σ 2
u , therefore for brevity

we report only two cases in Fig. 5. To generate ui from ICAR, we refer to Rue
and Held (2005). For the generated data, we fit the ecological Poisson model with
mean ei exp(β0 + β1xi + ui + vi ) and report β1 − α1 for different values of αind

1 =
0.01, 0.05, 0.1, 0.15, 0.2 and κ = 0.5 (αcon

1 = καind
1 ). Each simulation setting is

repeated 100 times and the results are summarized in Fig. 5a, b, respectively. Figure 5
shows box-plots where αind

1 is on the x-axis and the difference β1 −α1 is on the y-axis
when δ = 4. It is observed that αind

1 is sufficiently small, and β1 is very close to
α1 under the misspecification of xi j . Thus, in Seoul male tuberculosis data, if αind

1
is believed to be a small positive value, it can be argued that β1 ≈ 0.05 means that
α1 is also close to 0.05 even though (10) is true. If αind

1 is dominant compared to
αcon
1 , the argument can be stronger, i.e. αind

1 is close to 0.05 because α1 ≈ αind
1 . The

results for different κ are omitted for brevity because they are similar to the case
with κ = 0.5.
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6.2 Laplace distribution

Suppose that

xi j ∼ Laplace(xi , θi ) (11)

where E(xi j ) = xi and Var(xi j ) = 2θ2i = s2i . By using the moment generating

function of the Laplace distribution E(exp(αind
1 xi j )) = exp(αind

1 xi )

1−(αind
1 )2θ2i

for |αind
1 | < 1

θi
, we

have

pki =
∑

j

pki j/Nik

≈ E
(
exp

(
α0 + αind

1 xi j + αcon
1 xi + ui + vi + γk

)
|ui , vi

)

= exp
(
α0 +

(
αind
1 + αcon

1

)
xi + ui + vi + γk

)

because
exp(αind

1 xi )

1−(αind
1 )2θ2i

≈ exp(αind
1 xi ) when αind

1 is small. Thus, in this case, β1 corre-

sponds toα1 again. Like in the previous example,when the effect size ofαind
1 is believed

to be small (but nonzero) and the range of its associated covariate is bounded, this
approximation leads to results that are quite robust against the distribution misspec-
ification for xi j . To check the robustness of this approximation, a numerical study is

performed.We first generate yi from Poisson(ei exp(α0+αcon
1 xi +ui +vi )

exp(αind
1 xi )

1−(αind
1 )2θ2i

)

which is the aggregated model from the individual level model with (11). Most of the
parameters are taken from Seoul male tuberculosis data. For s2i , we considered three
models: s2i = 1.5 or 1.5 + 0.05xi or 1.5 + 0.1xi . Different values were also studied
for the intercept and the slope, which gave similar pattern of results, and therefore
details are omitted in this paper. For the generated data, we fit the ecological Poisson
model with mean ei exp(β0+β1xi +ui +vi ) and report β1−α1 for different values of
αind
1 = 0.01, 0.05, 0.1, 0.15, 0.2 and κ = 0.5 (αcon

1 = καind
1 ). Each simulation setting

is repeated 100 times and the results are summarized in Fig. 6a–c, respectively. Figure
6 shows box-plots where αind

1 is on the x-axis and the difference β1 − α1 is on the
y-axis. Like in the previous example, it is observed that αind

1 is sufficiently small, β1 is
very close to α1 under the various scenarios about the relationship between s2i and xi .
Thus, in Seoul male tuberculosis data, if αind

1 is known to be a small nonzero value,
it can be argued that β1 ≈ 0.05 means that α1 is also close to 0.05 even though (11)
is true. If αind

1 is dominant compared to αcon
1 , the argument can be stronger, i.e. αind

1
is close to 0.05 because α1 ≈ αind

1 . The results for different κ are omitted for brevity
because they are similar to the case with κ = 0.5. In case of female, we checked
similar results of sensitivity analysis and attached the related figures in the Appendix.
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Fig. 6 Data generated from the aggregated model from the individual level model with the Laplace distri-
bution is analyzed with the ecological Poisson model (1). The true value of αind1 is on x-axis, and the bias

β1 − α1 is on y-axis. Three scenarios are considered: s2i = 1.5, s2i = 1.5 + 0.05xi , and s2i = 1.5 + 0.1xi
are considered for the leftmost, middle and rightmost figures, respectively. a s2i = 1.5. b s2i = 1.5+0.05xi .

c s2i = 1.5 + 0.1xi

7 Sensitivity analysis for missing binary covariate

It iswell known that smoking can affect the occurrence of tuberculosis, so it is desirable
to incorporate smoking variable in the individual model. Since we do not have data on
the smoking status, in order to account for this, we perform sensitivity analysis with
respect to the missing smoking variable.

Let zi j denote the smoking status of j th person in i th dong. Then,

Yi j |xi j , xi , zi j , ui , vi ∼ Ber(pi j )

where

pi j = E(Yi j |xi j , xi , zi j , ui , vi )
= exp

(
α0 + αind

1 xi j + αcon
1 xi + α2zi j + ui + vi + γki j

)
.
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Consider the individuals in kth age group only.

pki j = exp
(
α0 + αind

1 xi j + αcon
1 xi + α2zi j + ui + vi + γk

)

=
(
(1 − zi j ) exp

(
α0 + αind

1 xi j + αcon
1 xi

)
+ zi j exp

(
α0 + α2 + αind

1 xi j

+αcon
1 xi

))
exp(ui + vi + γk)

Then,

pki =
∑

j

pki j/Nik

=
∑

j :Zi j=0

pki j/Nik +
∑

j :Zi j=1

pki j/Nik

≈
(

(Nik0/Nik) exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2) + (Nik1/Nik) exp(α0

+α2 + α1xi + αind
1 ψ + 1

2
s2i

(
αind
1

)2
)

)
× exp(ui + vi + γk)

=
(
(Nik0/Nik) + (Nik1/Nik) exp

(
α2 + αind

1 ψ
))

exp

(
α0 + α1xi + 1

2
s2i

(
αind
1

)2

+ ui + vi + γk) (12)

where Nik is the population size of kth age category in i th dong. Nik0 is the population
size with zi j = 0. Nik1 is the population where zi j = 1. By definition, Nik0 + Nik1 =
Nik . The expectations are taken with respect to xi j given zi j = 0 and xi j given
zi j = 1, respectively. Here, we assume that the exposure distribution conditioned
on zi j follows N (xi + ψzi j , s2i ), which implies that ψ is the difference of average
deprivation index between smoker and non-smoker groups. Kim et al. (2017) gives
a hint about a reasonable value for ψ in Seoul. Their supplemental Fig. 1 provides a
linear regression fitting result for the association between male smoking prevalence
and deprivation index in Metropolitan at the district level. Approximately 1.2 unit of
deprivation index increases as one unit of male smoking prevalence increases. If this
value is not far from that of dong level, because males are dominant in the smoker
group, we use 1.2 as a proxy value for ψ as shown in the Appendix. We also consider
values larger than 1.2 in the sensitivity analysis.

Suppose that Nik0 = (1−mi )Nik and Nik1 = mi Nik where mi is the smoking rate
in i th dong. This assumes that the smoking rate is approximately constant across the
age groups. Then,

μi =
∑

k

Nik p
k
i

=
(

∑

k

Nik exp(γk)

)
(
(1 − mi ) + mi exp

(
α2 + αind

1 ψ
))

exp (α0 + α1xi

123



358 Environ Ecol Stat (2018) 25:341–362

+1

2
s2i

(
αind
1

)2 + ui + vi

)

= ei
(
(1 − mi ) + mi exp

(
α2 + αind

1 ψ
))

exp (α0 + α1xi

+1

2
s2i

(
αind
1

)2 + ui + vi

)
(13)

= ei exp

(
α∗
0i + α1xi + 1

2
s2i

(
αind
1

)2 + ui + vi

)
(14)

where exp(α∗
0i ) = (

(1 − mi ) + mi exp(α2 + αind
1 ψ)

)
exp(α0). Equations (13) and

(14) are based on the large sample approximation (12) in each dong.
Ifmi are constant,

(
(1 − mi ) + mi exp(α2 + αind

1 ψ)
)
will be absorbed in the inter-

cept, so our sensitivity analysis in Sect. 5 can be applied here. When mi is an
area-specific quantity, their effect will be absorbed into the area-specific random effect
vi . Thus, it can be argued that the use of area-specific random effect can make our
model robust to the missing covariate. In this case, one concern is that the normal
assumption for vi is robust to the model where

(
(1 − mi ) + mi exp(α2 + αind

1 ψ)
)
can

deviate from the normal distribution.
To check the robustness of this misspecification, a numerical study is performed.

Each simulation setting are repeated 100 times. We first generate yi from Poisson
(ei

(
(1 − mi ) + mi exp(α2 + αind

1 ψ)
)
exp(α0+α1xi+ui+vi ))which is the aggregated

model from the individual level model with (14) with s2i = 0. In order to focus
on the effect of the misspecification of vi , we do not consider within-area exposure
variability here. mi is generated from N (0.458 + cxi , 0.0052) where c = 0, 0.02
or 0.04. 0.458 is the average smoking rate of Seoul male in 2008 (Korea Centers
for Disease Control and Prevention 2008), and c > 0 reflects that smoking rate is
higher in disadvantaged social classes. For example, c=0.04 implies that on average
0.04 unit of smoking rate increases as one unit of deprivation index increases. For
α2, we use 0.01, 0.05 and 0.1. For brevity, we report the result when α2 = 0.1 only
because the results are quite similar for different α2. The other parameters are the
same as the previous settings. For the generated data, we fit the ecological Poisson
model with mean ei exp(β0 + β1xi + ui + vi ) and report β1 − α1 for different values
of αind

1 = 0.01, 0.05, 0.1, 0.15, 0.2. Figure 7a–c are box-plots where αind
1 is on the

x-axis and the difference β1−α1 is on the y-axis. All the simulation results considered
here show that β1−α1 is close to 0.We also tried 0.417, which was the smoking rate of
Seoul male in 2013. Since the simulation results are similar to those of 2008, they are
omitted for brevity. From the simulation, we argue that in Seoulmale tuberculosis data,
the variability due tomi does not show a substantial difference between β1 and α1 even
when misspecified normal distribution is used for vi . However, it is notable that the
bias β1−α1 increases with the coefficient c. Therefore, in the case that the deprivation
index affects the smoking rate strongly, i.e. c is large enough, this sensitivity analysis
warns us to be careful in the interpretation of β1 ≈ α1.
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Fig. 7 Box plots of β1−α1 versus αind1 . For the three figures, α2 is fixed at 0.1. ami ∼ N (0.458, 0.0052).

b mi ∼ N (0.458 + 0.02xi , 0.005
2). c mi ∼ N (0.458 + 0.04xi , 0.005

2)

8 Concluding remarks

It is ideal toworkwith individual level data in order to correctly dealwith the ecological
bias issue, however, obtaining individual data is not feasible in a lot of ecological
studies. In case when individual level data are not available, sensitivity analysis can
be an alternative way to provide some justification for assumptions that are made
for conveying the findings from the ecological model to the individual level model.
In particular, it is useful to compare the fitted ecological model with the derived
ecological model from the individual level. However, there are still limitations of
sensitivity analysis because it is impossible to fully consider all possible scenarios.
Wakefield (2007) also pointed out that there may still be undiscovered factors that can
distort the ecological analysis. For example, in Sect. 5, the deprivation index in the
individual level may depend on age group.

By analyzing Seoul tuberculosis data, we found that the deprivation index is likely
to have a small positive effect on the occurrence risk of tuberculosis at the individual
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Fig. 8 Data generated from the aggregated model from the individual level model with the Laplace distri-
bution is analyzed with the ecological Poisson model (1). The true value of αind1 is on x-axis, and the bias

β1 − α1 is on y-axis. Three scenarios are considered: s2i = 1.5, s2i = 1.5 + 0.05xi , and s2i = 1.5 + 0.1xi
are considered for the leftmost, middle and rightmost figures, respectively. a s2i = 1.5. b s2i = 1.5+0.05xi .

c s2i = 1.5 + 0.1xi

level in Seoul. We considered this in various aspects by performing sensitivity anal-
ysis: (1) contextual effect, (2) the functional relationship between mean and variance
of the individual level exposure, (3) different distribution assumption for the individ-
ual exposure variable and (4) missing binary covariate correlated with the individual
exposure variable. Intensive numerical studies support our theoretical analysis. Since
the direction of the effect of the deprivation index is consistent across various scenar-
ios, our finding is considered to be robust to some degree. Ultimately, this sensitivity
analysis should be corroborated by confirmatory epidemiological studies to investigate
association at an individual level (Fig. 8).
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Appendix

In Sect. 7, we assume that xi j |zi j ∼ N (xi + ψzi j , s2i ). Note that

E(xi j ) = E(E(xi j |zi j )) = xi + ψE(zi j ) = xi + ψmi

where mi denotes the smoking rate in i th dong. The difference of mean deprivation
indices between two different dongs (i and i ′) becomes

E(xi j ) − E(xi ′ j ) = (xi − xi ′) + ψ(mi − mi ′).

Therefore, we have

ψ = E(xi j ) − E(xi ′ j ) − (xi − xi ′)

(mi − mi ′)
.

Take two dongs where mi > mi ′ . If we assume that ψ > 0 and xi monotonically
increases with mi , then

ψ ≤ E(xi j ) − E(xi ′ j )

(mi − mi ′)
.
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