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Abstract A new spatially balanced sampling design for environmental surveys is
introduced, called Halton iterative partitioning (HIP). The design draws sample loca-
tions that are well spread over the study area. Spatially balanced designs are known
to be efficient when surveying natural resources because nearby locations tend to be
similar. The HIP design uses structural properties of the Halton sequence to partition a
resource into nested boxes. Sample locations are then drawn from specific boxes in the
partition to ensure spatial diversity. The method is conceptually simple and compu-
tationally efficient, draws spatially balanced samples in two or more dimensions and
uses standard design-based estimators. Furthermore, HIP samples have an implicit
ordering that can be used to define spatially balanced over-samples. This feature is
particularly useful when sampling natural resources because we can dynamically add
spatially balanced units from the over-sample to the sample as non-target or inaccessi-
ble units are discovered. We use several populations to show that HIP sampling draws
spatially balanced samples and gives precise estimates of population totals.
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1 Introduction

A spatial sampling design determines where sample locations are placed in a study
area. The main objective of a spatial design is to draw sample locations in such a way
that valid scientific inferences can be made to all regions of a study area (McDonald
2014). A common feature in natural resource sampling is that nearby locations tend to
be similar because they interact with one another and are influenced by the same set
of factors (Stevens and Olsen 2004). This means sample efficiency can be increased
by spreading sample locations over the study area. Stevens and Olsen (2004) called
well spread samples “spatially balanced samples” and measured spatial balance using
the Voronoi tessellation of a sample. A sample is considered spatially balanced if
the total inclusion probability in each Voronoi polygon is approximately equal to
one. Grafström and Lundström (2013) provide the theoretical motivation for spatially
balanced samples and show that they are effective in a variety of situations.

Spatially balanced sampling designs are commonly used for sampling natural
resources (Grafström and Lundström 2013) and a variety of designs have been
proposed. Stevens and Olsen (2004) introduced a spatially balanced design that is
frequently used in environmental monitoring, called Generalized Random Tessella-
tion Stratified (GRTS) design. GRTS recursively divides the study area into nested
square boxes of equal size until the total inclusion probability in each box is less than
or equal to one. All the boxes that contain at least one sampling unit are then given
a one-dimensional address using a base four hierarchical numbering scheme. These
addresses are then placed in order on the real line and a systematic sample is drawn
using Brewer andHanif’s (1983) design. The sampled addresses are thenmapped back
to their respective two-dimensional locations, to yield the sample locations. GRTS can
be applied to point, linear and continuous resources and can draw unequal probability
samples. Another useful property of GRTS is its reverse hierarchical ordering, which
orders an observed sample so that contiguous sub-samples are also spatially balanced.
This makes the design particularly useful in environmental monitoring because we can
dynamically add units from a spatially balanced over-sample to the sample as non-
target or inaccessible units are discovered (Stevens andOlsen 2004; Larsen et al. 2008).
The true inclusion probabilities of this inverse sampling strategy may not be known,
but inference can be based on inclusion probabilities conditional on the achieved sam-
ple size (Stevens and Olsen 2004). This feature does not eliminate the non-response
or the bias of an inference, but it is popular with field researchers because the largest
sample that their budget permits can be analysed.

The Local Pivotal Method (LPM), introduced by Grafström et al. (2012), is an
application of the Pivotal Method (Deville and Tillé 1998) that gives spatially bal-
anced samples. LPM obtains a sample of size n from N points by iteratively updating
each point’s inclusion probability until n points have inclusion probabilities equal to
one. At each iteration, a point competes with its neighbour for inclusion in the sample.
The winning point has its inclusion probability increased and the losing point has its
decreased. These competitions make it very unlikely for a sample to simultaneously
include neighbouring points and thus forces the sample to be spatially balanced. LPM
can be applied to point resources in multiple dimensions and can draw unequal prob-
ability samples. LPM can also draw samples from continuous resources (Grafström
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et al. 2017a, b), but the authors are not aware of an LPM over-sampling approach. A
drawbackof the original implementation of the secondLPMversion, calledLPM2,was
that its computational complexity was O(N 2), making it computationally prohibitive
on large point resources. However, the linear searches in LPM2 can be replaced by k-d
trees to reduce the average complexity of LPM2 to O(N log N ) (see lpm2_kdtree in
Grafström and Lisic (2016)). Alternatively, a rapid implementation of the LPM, called
suboptimal LPM, can be used (Grafström et al. 2014). This method reduces the search
space for finding a point’s nearest neighbour. By considering h possible neighbours,
rather than all possible points, the complexity of the algorithm is reduced to O(hN )

making it computationally feasible on large point resources.
Another spatially balanced design is called Balanced Acceptance Sampling (BAS)

(Robertson et al. 2013) and its modified version (Robertson et al. 2017). BAS uses
a quasi-random number sequence, called the random-start Halton sequence (Halton
1960; Wang and Hickernell 2000), to draw spatially balanced samples from point and
continuous resources. BAS can draw equal and unequal probability samples in mul-
tiple dimensions, is conceptually simple and performs well on continuous resources
(Robertson et al. 2013). However, BAS has two drawbacks when sampling point
resources. First, acceptance/rejection sampling is required to draw its sample and
hence, targeted inclusion probabilities are not necessarily achieved. Robertson et al.
(2017) provided a simple modification to BAS that reduced the differences between
targeted and actual inclusion probabilities. However, the danger of not achieving tar-
geted inclusion probabilities is inflated variance of estimators.

The second drawback of BAS is its sampling frame for point resources. BAS con-
structs its frame by replacing the point resource in [0, 1)d with N non-overlapping
boxes of equal size, with one point in each box (see the left panel of Fig. 1). The BAS
sample is then drawn as follows. First, a random-start Halton sequence is defined

{x1, x2, . . . , xk} ⊂ [0, 1)d , (1)

where k is chosen so that n boxes contain at least one random-start Halton point. The
points from the resource within these n boxes define the BAS sample (see the right
panel of Fig. 1). However, if the point resource is large or lacks grid structure, BAS
becomes inefficient or computationally prohibitive because the boxes tend to be small
and the number of points in (1) is enormous. This drawback is illustrated for small N
in the right panel of Fig. 1 and is discussed further in Sect. 4.

In this article we introduce a new spatially balanced sampling design, called Halton
Iterative Partitioning (HIP). Our design is an alternative to BAS that shares its desirable
properties, without the previously mentioned drawbacks. We achieve this by using
structural properties of the Halton sequence, rather than points from the sequence, to
draw our sample. HIP iteratively partitions a resource into nested boxes using a quasi-
periodic property of the Halton sequence. Points are then drawn from particular boxes
in a specific order to achieve a spatially balanced sample. The partition can be defined
in two or more dimensions if spatial balance over more than geographic locations is
sought. Our design is conceptually simple, computationally efficient on large N point
resources with computational complexity O(N log N ), has a rapid implementation for
equal probability point resources and is embarrassingly parallel. It can be applied to
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Fig. 1 Left: An N = 36 point resource without grid structure and the corresponding frame of boxes
constructed by BAS. Right: A BAS sample of n = 13 (points from the shaded boxes) and the required
k = 500 random-start Halton points needed to draw the sample

continuous and point resources and achieves targeted inclusion probabilities/density.
Linear resources, for example rivers, can be sampled if they are discretized (see for
example Robertson et al. 2017). A HIP sample has a specific ordering that ensures
contiguous sub-samples are spatially balanced. This feature makes HIP particularly
useful for spatially balanced over-sampling if non-target or inaccessible units are
discovered.

The rest of the article is organized as follows. In Sect. 2 the Halton sequence
is defined and its quasi-periodicity is explained. The HIP design is introduced in
Sect. 3 and its spatial balance is illustrated in Sect. 4. Section 5 considers design-based
estimation and variance estimation techniques, which are applied to three populations.
Concluding remarks are given in Sect. 6.

2 Halton sequence

The Halton sequence, defined for vectors {xk}∞k=0 in [0, 1)d (Halton 1960), is a
quasi-random number sequence that distributes points evenly in low dimensions
(e.g. d ≤ 10). The i th coordinate of each point in the sequence has an associated base,
bi , and all bases are pairwise co-prime. The co-prime condition means that the only
positive integer that evenly divides bi and b j is one, for all i, j = 1, 2, . . . , d (i �= j).
In this article, b1 = 2, b2 = 3, and bd is the dth prime number. The i th coordinate of
the kth point in the sequence is Price and Price (2012), Robertson et al. (2017)

x (i)
k = φbi (k) =

∞∑

j=0

{⌊
k

b j
i

⌋
mod bi

}
1

b j+1
i

, (2)

where �x� is the floor function — the largest integer that is less than or equal to x .
The 4th point in the three-dimensional Halton sequence, for example, is

x4 = (φ2(4), φ3(4), φ5(4)) = (1/8, 4/9, 4/5).
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Each point’s subscript denotes the integer that is mapped using (2) to a point in [0, 1)d .
We call these subscripts Halton indices.

2.1 Properties of the Halton sequence

We now describe properties of the Halton sequence that are pertinent to the HIP
sampling design. Let B = ∏d

i=1 b
Ji
i , where Ji is any non-negative integer. It can be

shown that B consecutive points from a Halton sequence with bases bi , will have
exactly one point in each of the boxes defined by

d∏

i=1

[
mib

−Ji
i , (mi + 1)b−Ji

i

)
, (3)

where mi is an integer satisfying 0 ≤ mi < bJii , for all i = 1, 2, . . . , d (Halton 1960;
Price and Price 2012). We call these boxes Halton boxes and examples are given in the
left panels of Fig. 2. If xk is in a particular Halton box, then k must take a specific mod
B value from the set {0, 1, . . . , B−1} (Halton 1960; Price and Price 2012). Therefore,
the points xk, xk+B , xk+2B , . . .must be in the same Halton box and hence, each box is
associated with a particular Halton index (mod B). In this sense, the Halton sequence
is quasi-periodic with period B. The Halton index k for a particular box with lower
bounds �1, . . . , �d is obtained by solving the system of d congruences

k = ai (mod bJii ),

where

ai =
Ji∑

j=1

{
��i b j

i � mod bi
}
b j−1
i

and i = 1, 2, . . . , d. For example, the Halton index for [1/4, 1/2) × [1/3, 4/9) with
B = 36 requires solving

k = 2 (mod 4)

k = 1 (mod 9),

which gives k = 10 (mod 36).
The form of (3) means that small Halton boxes are nested in larger parent boxes.

The indices of the nested boxes must be congruent mod B, where B is the number of
parent boxes, because each box has a specific mod B index. This nested structure is
illustrated in the left panels of Fig. 2 and Web Table 2, where B = 36 Halton boxes
are shown. The pairs of Halton boxes with indices congruent mod 12 are nested in the
mod 12 Halton boxes with (J1, J2) = (2, 1) and those with indices congruent mod 6
are nested in the six Halton boxes with (J1, J2) = (1, 1).
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Fig. 2 Left panels: Halton boxes for B = 2 × 3 = 6, B = 22 × 3 = 12 and B = 22 × 32 = 36. A point
xk from the Halton sequence will be in the box numbered k mod B. For example, x59 will be in the boxes
numbered 5 (mod 6), 11 (mod 12) and 23 (mod 36). Right panels: Nested partitions of an equal probability
point resource containing N = 36 points. Halton indices from B = 6, 12 and 36 Halton boxes are mapped
to their corresponding boxes in the nested partition. The bottom panels show equal probability HIP samples
from the two resources with B = 36, n = 4 and k = 35, which gives S35 = {35, 0, 1, 2}. The necessary
splits to draw the HIP sample are shown and the diamonds indicate the sampled units. In the continuous
case (left), each point was drawn from uniform distribution over its box
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3 Halton iterative partitioning sampling

TheHalton Iterative Partitioning (HIP) design draws its sample of n points by partition-
ing the resource into B = ∏d

i=1 b
Ji
i ≥ n boxes. The partition is constructed iteratively

so that the B boxes have the same nested structure as Halton boxes. However, the
size of each box is chosen so that the inclusion density/probability of each box is
constant. This means boxes will tend to be larger in regions where the inclusion den-
sity/probability is low and smaller where the inclusion density/probability is high.
Each box in the partition is uniquely numbered using the Halton index of its corre-
sponding Halton box (mod B) (see Fig. 2) and the HIP sample is obtained by drawing
n points from consecutively numbered (mod B) boxes in the partition. Nested parti-
tions of this form can be constructed for point and continuous resources with equal
or unequal inclusion density/probability. We discuss each case in the subsections that
follow. For simplicity, HIP designs are explained for two-dimensional resources.

3.1 Continuous resources

Consider drawing a HIP sample of n points from a continuous resource Ω ⊂ [0, 1)2
with an inclusion density function of the form

π(x) = n f (x1, x2),

whereΩ has positive Lebesguemeasure and f (x1, x2) : Ω → R≥0 is a bounded prob-
ability density function. The HIP design iteratively partitions the continuous resource
into B = 2J1 × 3J2 nested boxes, where J1 and J2 are chosen so that 2J1 ≈ 3J2 to
ensure each dimension has approximately the same number of splits. Furthermore, the
number of spatially different samples is O(B), so B � n is necessary.We recommend
a fine-grained partition with B = 28 × 35 = 256× 243 = 62,208. The partition itself
is implicit and only n of the B boxes need to be computed, requiring no more than
n(J1+2J2) data splits. Hence, choosing a large B value does not substantially increase
the computational effort required to draw a HIP sample. The partitioning strategy is
illustrated for B = 36 boxes in the left panels of Fig. 2, where Ω = [0, 1)2 and π(x)
is the uniform inclusion density function.

Before the partition is formed, the indices of the boxes to be sampled are selected

Sk = {k, (k + 1) mod B, . . . , (k + n − 1) mod B}, (4)

where k is a random integer from the set {0, 1, . . . , B − 1}. The partition is then
iteratively formed to find the boxes with indices in Sk . Initially, [0, 1)2 is split into
two boxes along x1 at 0 < q < 1

H0 = [0, q) × [0, 1) and H1 = [q, 1) × [0, 1), (5)

such that the inclusion density in each box is equal. These boxes are then partitioned
using x2 to give six boxes of the form
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H0 = [0, q) × [0, r) H3 = [q, 1) × [0, r ′)
H4 = [0, q) × [r, s) H1 = [q, 1) × [r ′, s′)
H2 = [0, q) × [s, 1) H5 = [q, 1) × [s′, 1),

(6)

where Hk denotes the box with Halton index k. Each box’s index is computed using
its corresponding Halton box by setting q = 1/2, r = r ′ = 1/3 and s = s′ = 2/3
(see Sect. 2.1). The values r < s and r ′ < s′ are chosen so that the inclusion density
in each box is constant

∫

Hk

π(x)dx = n

6
,

for k = 0, 1, . . . , 5.
The method then repeats on each box in (6). Each box is split into two boxes using

x1, followed by a partition into three boxes using two splits along x2, where each split
is chosen so that the inclusion density is evenly divided among the boxes. These 36
boxes have unique mod 36 Halton indices and the boxes nested in a particular Hk from
(6) have indices congruent to k mod 6 (see the left panels of Fig. 2). This iterative
partitioning and numbering continues until the number of boxes in the partition is
greater than n. For the remaining iterations, it is computationally wasteful to split
every box, and so we only split the boxes that contain sub-boxes with indices in Sk .
This is illustrated in the bottom right panel of Fig. 2. Here 13 splits were made to
define the n = 4 boxes with indices in S35, rather than using the 35 splits needed to
define all B = 36 boxes.

The HIP sample is obtained by sampling the boxes numbered by Sk . For each
k ∈ Sk , one point is drawn from box Hk using acceptance/rejection sampling with the
density function

fk(x) =
{

B
n π(x) if x ∈ Hk

0 otherwise.

IfΩ = [0, 1)2 and π(x) is the uniform inclusion density, a HIP sample will be similar
to n consecutive points from a Halton sequence, because both samples draw points
from the same boxes and B is large. Otherwise, HIP draws more points from regions
where the inclusion density is high because the boxes are larger in low density regions.

We now show that a HIP sample achieves the targeted inclusion density. Letω ⊂ Ω

be a Lebesgue measurable set and let nω denote the number of points in ω from a HIP
sample of size n. The probability of selecting a particular Sk is 1/B and each Halton
index is included in n of the Sk’s. Hence, the expected sample size in ω is

E(nω) = 1

B

B−1∑

k=0

∑

j∈Sk

∫

Hj∩ω

f j (x)dx

= 1

n

B−1∑

k=0

∑

j∈Sk

∫

Hj∩ω

π(x)dx
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= 1

n

B−1∑

k=0

n
∫

Hk∩ω

π(x)dx

=
∫

ω

π(x)dx,

as required.
To simplify sampling, fk can be replaced with a uniform density over Ω ∩ Hk . In

this case, the expected sample size in ω is

E(nω) = n

B

B−1∑

k=0

m(ω ∩ Hk)

m(Ω ∩ Hk)
≈

∫

ω

π(x)dx,

for large B, where m(.) denotes the Lebesgue measure.

3.2 Point resources

Consider drawing a HIP sample of size n from N points in [0, 1)2, where the i th point
has an inclusion probability 0 < πi < 1 such that

∑N
i=1 πi = n. Before the partition

is formed, a small amount of random noise is added to the point resource so that
the probability of two points sharing the same coordinate value is zero. The partition
is similar to the continuous resource partition in Sect. 3.1. Rather than keeping the
inclusion density in each box constant, this partition keeps the inclusion probability in
each box as similar as possible. The iterative partition is illustrated in the right panels
of Fig. 2 for an N = 36 equal probability point resource.

Initially the points are partitioned into two boxes H0 and H1, of the form (5), where
q minimizes

⎛

⎝
∑

i :xi∈H0

πi −
∑

j :x j∈H1

π j

⎞

⎠
2

.

These boxes are then partitioned using splits along x2 to give six boxes of the form
(6) such that

∑

k∈{0,...,5}

⎛

⎝
∑

i :xi∈Hk

πi − n/6

⎞

⎠
2

is minimized. The method then repeats on each box to define a nested sequence of B
boxes with unique Halton indices mod B, such that the total inclusion probability of
each box is as similar as possible and less than or equal to one. The optimal number
of boxes B ≥ n, is found by considering candidate values from Web Table 1 and
choosing the value with the best average spatial balance for the resource.
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Each box Hk is then assigned an inclusion interval

Ik =
[
k−1∑

i=0

di ,
k∑

i=0

di

)
(k > 0),

where I0 = [0, d0) and

dk =
∑

i :xi∈Hk

πi ,

for k = 0, 1, . . . , B − 1. The boxes whose intervals contain a point from

{(s + λα) − n�(s + λα)/n� : λ = 0, 1, . . . , n − 1}, (7)

have one point drawn from them using selection probabilities δi , where s is randomly
chosen from ∈ [0, n), α = max{dk} and

δi = πi/dk : xi ∈ Hk .

Because α ≥ dk for all k and B ≥ n, n different boxes have one point drawn from
them. The inclusion probability of xi ∈ Hk is dkδi = πi , as required.

3.3 Rapid HIP design for equal probability point resources

If an equal probability point sample is required, it is not necessary to construct all
B = 2J1 × 3J2 boxes as in the previous section. We call this approach rapid HIP and
recommend its use for equal probability point resources. The partitioning method is
similar to the approach described in Sect. 3.1, but instead of keeping the inclusion
density of each box constant, the number of points in each box is held constant.
To achieve this, some points may be removed from the point resource during the
construction. We choose the number of boxes in the partition as the largest B value
in Web Table 1 that satisfies n ≤ B ≤ N . However, several candidate B values could
be tested for a particular resource, where the value that yields the best average spatial
balance is chosen.

Before the partition is formed, the set of indices Sk of the boxes to be sampled are
selected. The partition is then iteratively constructed to find the boxes with indices in
Sk . If N is odd, randomly remove one point from the resource. Partition the remaining
N1 points into two boxes H0 and H1, of the form (5), where q is chosen to give N1/2
points in each box. Randomly remove N1/2 mod 3 points from H0 and from H1,
leaving a total of N2 points in the resource so that N2/2 = 0 (mod 3). Partition H0
and H1 to give six boxes of the form (6), where r, s, r ′ and s′ are chosen to give N2/6
points in each box.

The method then repeats on each box in (6). If N2/6 is odd, randomly remove one
point from each box leaving a total of N3 points in the resource so that N3/6 = 0
(mod 2). Split each box using x1 to give N3/12 points in each box. For each of these
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12 boxes, randomly remove N3/12 mod 3 points leaving a total of N4 points in the
resource so that N4/12 = 0 (mod 3). Partition each box using two splits along x2 to
give 36 boxes with N4/36 points in each. This iterative partitioning and numbering
continues until the number of boxes is greater than n. For the remaining iterations,
only boxes that contain sub-boxes with indices in Sk are split. This is illustrated in the
bottom right panel of Fig. 2. Here 13 splits were made to construct the n = 4 boxes
with indices in S35, rather than using the 35 splits needed to construct all B = 36
boxes.

The HIP sample is obtained by randomly drawing one point from each box with a
Halton index inSk . Letλdenote the number of points in eachbox so that N j = λB ≤ N
is the number of the points in the final partition. The inclusion probability of the i th
point is

πi =
(
N1

N

)(
N2

N1

)
. . .

(
N j

N j−1

)(
n

B

) (
1

λ

)

= n

N

as required, where Ni ≥ Ni+1 is the number of points remaining after the i th iteration
of partitioning.

3.4 Permutation of Halton indices

The HIP design draws points from particular boxes in its nested partition. Equation (4)
determines which boxes can be sampled and there are B different choices. Hence,
regardless of the number of points in each box, the number of spatially different HIP
samples can be relatively low, O(B). To increase the robustness of HIP sampling, the
number of spatially different samples is substantially increased to O(B2) by permuting
the Halton indices before the sample is drawn. The permutation method is given in
Web Section 1 and does not affect the spatial balance or theoretical properties of HIP
sampling. Numerical results in the following sections were generated using the rapid
HIP design with permuted Halton indices.

4 Spatial balance

Wemeasured the spatial balance of a point sample of size n using the Voronoi polygon
approach introduced by Stevens and Olsen (2004). For a sample, {x1, x2, . . . , xn} ⊂
[0, 1)2, the Voronoi polygon for xi is

ωi = {x ∈ [0, 1)2 : ‖x − xi‖ ≤ ‖x − x j‖ for all j = 1, 2, . . . , n}.

A sample is spatially balanced if

vi =
∑

j :x j∈ωi

π j ≈ 1,
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for i = 1, 2, . . . , n. If a point is on the boundary of multiple polygons, its inclusion
probability is divided evenly among the polygons. The measure of spatial balance is
expressed as the mean squared error

MSE = 1

n

n∑

i=1

(vi − 1)2 .

To compare different sampling designs, the average MSE was computed using 1000
samples. We report relative spatial balance by dividing the average MSE of the pro-
posed design by the average MSE under simple random sampling. Values less than
one indicate better spatial balance in the proposed design when compared with simple
random sampling. Random and grid point resources in [0, 1)2 were considered with
N ranging from 900 to 100,000.

We compared the spatial balance of (rapid) HIP with four competitive spatially
balanced designs, LPM2 and suboptimal LPM in the R package BalancedSampling
(Grafström and Lisic 2016), GRTS and GRTS 2n over-sampling in the R package
spsurvey (Kincaid and Olsen 2016). For the large point resources with N ≥ 90, 000,
we used LPM2 with k-d trees and the suboptimal LPM design. The parameter
h = 500 (number of candidate neighbours/competitors) was used in suboptimal LPM
(Grafström et al. 2014). In the GRTS 2n over-sampling approach, we selected a 2n
over-sample and calculated the spatial balance of the first n points in reverse hierar-
chical order. Results for BAS are not presented. It was efficient to implement BAS
on the grid point resources and similar results to HIP were obtained. However, it was
computationally prohibitive to implement BAS on the random point resources. The
fraction of [0, 1)2 that defined the acceptance region for these resources was less than
1e-5, making the acceptance/rejection sampling technique that BAS uses extremely
inefficient. For example, the number of random-start Halton points needed to draw
20 units from the 1000 random point resource was approximately 2.5 million points.
Results for the other designs are given in Fig. 3.

The designs we considered have relative spatial balance values less than one mean-
ing these designs had better spatial balance than simple random sampling on both
random and grid point resources. The GRTS 2n over-sampling approach produced
worse results than GRTS. Hence, observing the first n points of a GRTS 2n over-
sample in reverse hierarchical order was not as effective as observing a GRTS sample
of size n. We investigate this further in the following subsection.

LPM2 and HIP had better or similar spatial balance when compared with GRTS.
The results for HIP and LPM2 were similar on the small grid structure of N = 900
points. However, for the N = 1000 random points resource, LPM2 had the best spa-
tial balance. Because neighbouring points compete for inclusion in an LPM2 sample,
the method is extremely effective when N is small (Grafström et al. 2012). For the
N = 10, 000 point resources, LPM2 performed slightly better than HIP and when
N ≥ 90, 000 their performances were similar. Although LPM2 (with k-d trees) and
HIP have complexities O(N log N ), HIP is embarrassingly parallel meaning compu-
tationally efficient parallel implementations on large point resources are possible.
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Fig. 3 Relative spatial balance of designs for sampling random and grid point resources as a function of
sample size

For the two large point resources with N ≥ 90, 000, suboptimal LPM was also
used. HIP, suboptimal LPM and LPM2 (with k-d trees) had similar performances for
n < 180, but for larger sample sizes HIP and LPM2 performed noticeably better. Sub-
stantially increasing the parameter h (number of candidate neighbours/competitors)
in suboptimal LPM may give better spatial balance for these larger sample sizes, but
this made the method too computationally demanding to generate the required results.

4.1 Over-sampling

A practical problem in environmental sampling is the difficulty in obtaining an accu-
rate sampling frame and in some instances available frames include many non-target
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Fig. 4 Relative spatial balance of sub-samples of the form {x(1), x(2), . . . , x(n∗)}, where x(i) is the i th
point in an ordered over-sample of size 300 and n∗ is the sub-sample size. In the GRTS 2n approach, an
ordered over-sample of 600 points was drawn and the first 300 points were considered

units (Stevens and Olsen 2004). Another problem is that parts of the resource may be
inaccessible because of physical location, safety or denied access from the land owner
(Stevens and Olsen 2004). Both of these problems result in fewer units being observed
than planned by the researcher. To achieve the desired sample size, an over-sampling
(usually 2n) strategy can be used (Stevens and Olsen 2004; Larsen et al. 2008), where
we dynamically add units from the over-sample to the sample as non-target or inacces-
sible units are discovered. Inference is then based on inclusion probabilities conditional
on the achieved sample size (Stevens andOlsen 2004). This inverse sampling approach
does not eliminate the non-response or the bias of an inference, but it does allow for
adaptive sample sizes and researchers can obtain the largest spatially balanced sample
that their budget permits.

For a spatially balanced over-sampling approach, we require the over-sample to be
ordered so that sub-samples of the form

{x(1), x(2), . . . , x(n∗)} (8)

are spatially balanced, where x(i) is the i th point in an ordered over-sample of size
2n and n∗ is the sub-sample size. In the GRTS design, units are observed in reverse
hierarchical order to ensure sub-samples of the form (8) are spatially balanced (Stevens
and Olsen 2004). An ordered HIP over-sample is implicitly defined because the same
hierarchical partition is used to draw a sample of size n∗ or 2n provided 2n ≤ B,
with a specific ordering determined by the Halton indices. The authors are not aware
of an over-sampling strategy for LPM. Results for (rapid) HIP, GRTS and GRTS 2n
over-sampling are given in Fig. 4.

The relative spatial balance values for HIP, GRTS and GRTS 2n were less than one
indicating that each sub-sample drawn from the ordered over-sample was spatially
balanced. The GRTS and GRTS 2n methods performed similarly, showing that the
reverse hierarchical ordering strategy was effective for most sub-sample sizes. How-
ever, at the full over-sample size n∗ = 300, GRTS performed better than GRTS 2n,
which agrees with the results in Fig. 3. HIP sampling had far better spatial balance
than both GRTS approaches and is more flexible because the over-sample size does
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not need to be specified prior to sampling. If a GRTS over-sample is too small, no
additional points can be drawn using GRTS.

5 Estimation

Consider a point resource, {xi }Ni=1 ⊂ R
d , and let yi denote the response value at

the i th point. The Horvitz–Thompson estimator (Horvitz and Thompson 1952) of the
population total τ is

τ̂ =
∑

i∈S

yi
πi

,

whereS ⊂ {1, 2, . . . , N } is a sample andπi is the inclusion probability of the i th point.
The variance of τ̂ can be estimated using the Sen-Yates-Grundy estimator (Sen 1953;
Yates and Grundy 1953), but this estimator is biased and tends to be unstable because
spatially balanced designs’ second order inclusion probabilities of neighbouring points
are close to zero (Grafströmet al. 2012;Robertson et al. 2013). The localmean variance
estimator (Stevens and Olsen 2003) is commonly used for spatially balanced designs
and can be used for HIP. This estimator is

V̂NBH(̂τ ) =
∑

i∈S

∑

j∈Di

wi j

(
y j
π j

− τ̂Di

)2

, (9)

where Di is a neighbourhood containing at least four nearest neighbours to the i th
point, τ̂Di is an estimate of the population total on Di and wi j are weights. Details
on how to define neighbourhoods and compute weights can be found in Stevens and
Olsen (2003).

Grafström and Schelin (2014) proposed a variance estimator for their LPM design,

V̂LPM(̂τ ) = 1

2

∑

i∈S

(
yi
πi

− y ji
π ji

)2

, (10)

where ji ∈ S is the index of the nearest neighbour in the sample to the i th point.
This estimator does not require neighbourhood definitions or computation of weights
and hence, is much simpler than V̂NBH(̂τ ). In the following subsection we show that
V̂LPM(̂τ ) is also an appropriate variance estimator for HIP.

5.1 Numerical simulations and discussion

Wedemonstrate the performance ofHIP sampling using two point resources: N = 900
points on a 30× 30 grid and N = 10, 000 points on a 100× 100 grid. The population
total of three artificial populations was estimated for each point resource, where the
response value for each grid point was calculated via a continuous function. Three
functions with different spatial structure were considered (see Web Figure 1) and are
given in Web Section 2. Comparisons are made with simple random sampling (SRS),
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GRTS and LPM2. For each design, the variance of τ̂ was estimated using the simulated
mean square error

VSIM = 1

1000

1000∑

i=1

(̂τi − τ)2, (11)

where τ̂i is the Horvitz–Thompson estimate for the i th sample (exact values are given
for SRS). The average performances (over 1000 runs) of V̂NBH(̂τ ) and V̂LPM(̂τ ) were
also computed. Results for V̂LPM(̂τ ) are not presented for GRTS because this esti-
mator substantially under-estimated the simulated variance for GRTS. The authors
attribute this to the poorer spatial balance of GRTS and would not recommend using
V̂LPM(̂τ ) for GRTS. There was little difference between the results for N = 900 and
N = 10, 000 (see Web Table 3) so we focus our discussion on the N = 900 case.
These results are presented in Table 1.

Table 1 shows that spatially balanced sampling is effective on the problems con-
sidered, with GRTS, LPM2 and HIP producing estimates of the population total with
better precision than SRS. The best gains in precision were made on population 1,
where a strong spatial trend is present (see Web Figure 1(a)).

HIP and LPM2 performed better than GRTS on the problems considered, but there
was negligible difference between HIP and LPM2. The spatial balance of LPM2
was slightly better than HIP on these problems (see Fig. 3), but these small gains in
spatial balance did not increase LPM2’s precision. The local mean variance estimator
provided a conservative estimate of the variance of τ̂ for these designs. A tighter
estimate for LPM2 and HIP was given by V̂LPM(̂τ ). This estimator performed well
for most sample sizes, but was conservative for some of the smaller sample sizes.
The authors recommend using V̂LPM(̂τ ) as an estimate of V(̂τ ) for HIP. Researchers
interested in model-based estimators for spatially based designs are referred to Foster
et al. (2017). A fuller discussion of model-based designs is beyond the scope of this
article.

The local mean variance estimator was optimistic for the GRTS 2n over-sampling
approach, with an average estimate smaller than the simulated variance. The authors
attribute this to the poor spatial balance of the first n points from an ordered GRTS
2n over-sample (see Fig. 3). Hence (9) should be used with caution for GRTS 2n
over-sampling. Provided B ≥ 2n, the variance estimators (9) and (10) can be used for
HIP over-sampling because an ordered HIP over-sample of size n∗ ≤ 2n is also a HIP
sample of size n∗.

6 Conclusion

In this article we introduced the HIP sampling design. This design uses structural
properties of the Halton sequence to iteratively partition a resource into nested boxes.
Sample points are then drawn from specific boxes to give a spatially balanced sample.
TheHIP design can be applied to point and continuous resources with equal or unequal
inclusion probability/density. We have shown that HIP draws spatially balanced sam-
ples and performs well when compared with competing designs. The main advantages
of HIP sampling over existing designs is that it is computationally efficient, embar-
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rassingly parallel on large point resources and can be used for spatially balanced
over-sampling. This makes HIP particularly useful for sampling natural resources
because imperfect sampling frames and accessibility problems result in fewer units
being observed than planned. Although the spatially balanced over-sampling strat-
egy achieves the desired sample size and is popular with field researchers, it will not
eliminate the non-response or the bias of an inference. Design based estimators were
provided and were effective on three populations with different spatial structures.
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