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Abstract We develop a new statistical procedure to monitor relative species abun-
dances and their respective preferences for different habitat types, using opportunistic
data. Following Giraud et al. (Biometrics 72(2):649–658, 2015), we combine the
opportunistic data with some standardized data in order to correct the bias inherent to
the opportunistic data collection. Species observations are modeled by Poisson distri-
butions whose parameters quantify species abundances and habitat preferences, and
are estimated using Bayesian computations. Our main contributions are (i) to tackle
the bias induced by habitat selection behaviors, (ii) to handle data where the habitat
type associated to each observation is unknown, (iii) to estimate probabilities of selec-
tion of habitat for the species. As an illustration, we estimate common bird species
habitat preferences and abundances in the region of Aquitaine (France).
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1 Introduction

Citizen science programs have been increasingly developed for biodiversity monitor-
ing during the last 20 years. These programs usually enroll a large number of volunteers
to work on a given scientific issue. For example, breeding bird surveys aim at esti-
mating population trends of bird species in a given area (Link and Sauer 1998); the
bird observations by the volunteers of the program populate a database describing
the number of individuals of every focus species observed at a given time and place.
Since the observational effort is usually much larger in citizen science programs than
in “professional” scientific programs, citizen science programs usually gather much
more observations than classical programs.

The issues tackled by citizen science programs can be very diverse, including the
estimation of the spatial distribution of a set of species at different spatial scales (Royle
et al. 2005; Fithian et al. 2014; Giraud et al. 2015), the study of certain ecological
behaviors such as habitat selection (e.g., Biggs and Olden 2011), or the monitoring of
population trends of endangered species (Link and Sauer 1998). Although some citi-
zen science programs rely on data collected with standardized protocols and sampling
designs (e.g. the North American Breeding Bird Survey; Link and Sauer 1998), many
others rely on the opportunistic collection of observations by the volunteers, with
unknown observation intensity. In the following, we will refer to this sort of uncon-
trolled data collection by “opportunistic data collection”. In this paper, we focus on
the estimation of some relative abundances based on such opportunistic data.

The opportunistic nature of these data raises important statistical issues, as shown
in Dickinson et al. (2010) and in the review Isaac et al. (2014). A major issue is due
to the non-uniform observation intensity: the collected data cannot be considered as
an unbiased sample of the individuals present on this area. Any statistical approach
relying on such datamust tackle this data collection bias in someway. Several approach
to this problem have been developed recently, notably based on data filtering (Roy
et al. 2012), on defining a proxy for observation intensity and its variations through
space and time (Telfer et al. 2002; Ball et al. 2011; Roy et al. 2012), and on the use of
replicated visits leading to occupancy–detection models (van Strien et al. 2013). Some
recent papers (Giraud et al. 2015; Fithian et al. 2014) proposed to handle this bias by
combining this biased opportunistic dataset with a (possibly much smaller) dataset
collected in the same area by a more classical program with a known observational
effort (hereafter called “standardized dataset”). Under some restrictive assumptions
(discussedbelow), such a combinationprovides someunbiased estimates of the relative
abundance for the species monitored in at least one of the two programs. An attractive
feature of these estimation schemes is to provide relative abundance estimation for
species monitored in the opportunistic dataset, but not in the standardized dataset. This
allows, in principle, to use opportunistic data collection to monitor some rare species
that would be much more costly to monitor with a classical standardized program.

The approach proposed in Giraud et al. (2015) provides some relative abundance
estimates, for a set of species at a collection of sites. The statistical modeling accounts
for unequal and unknown detectability and reporting rates for the monitored species,
both in the opportunistic and the standardized dataset, and for the unequal and unknown
observational intensity in the opportunistic dataset. Yet, a crucial hypothesis is that
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the animals are distributed uniformly within each site. When a site gathers several
areas with different habitat, and if the proportions of these different habitats differ
among sites, this assumption is likely to be violated due to habitat selection behavior.
Similarly the observational effort in opportunistic data is not equally distributed across
the different habitat types due to observer preference for some habitats (Tulloch and
Szabo 2012). This lack of homogeneity induces some important bias in the estima-
tion, as shown in Bellamy et al. (1998), Mason and Macdonald (2004), Fuller et al.
(2005) and Fithian et al. (2014). For example, if the volunteers participating to a bird
monitoring program are mostly interested in waterbirds, they will strongly select for
humid habitat within each site. If humid habitat is rare yet present within a site, most
of the observations in this site will be performed in this rare habitat, and the resulting
waterbird abundance in this site will be strongly overestimated.

The aim of our paper is to extend the approach of Giraud et al. (2015) by handling
(unknown) habitat preferences that might influence both observers and observed ani-
mal behaviors. The whole monitored area is described by several habitat categories for
which both observers and animals have different preferences. The habitat type asso-
ciated to each observation is not assumed to be known exactly (e.g. the exact location
of the observation is only known approximately, or an observed species observation
may not be attributed unambiguously to a surrounding habitat). It can be seen as a
hidden variable. Preferences of the observers and of each species for each habitat
types are also unknown. Our approach provides estimation for all these quantities. By
taking the habitat stratification into account, compared to what is obtained in Giraud
et al. (2015), we produce (i) some more accurate relative abundance estimates; in
particular, for given site, it allows to decompose a species relative abundance in a
habitat-specific component (e.g., forest birds are relatively more abundant because
forests are over-represented in that site) and an additive site-specific component, (ii)
relative abundancemaps at a finer spatial scale, and (iii) some estimates of the resource
selection functions of the species (Manly et al. 2002), which has major implications
for biological conservation. To sum-up, our main contributions are:

• To incorporate habitat type preferences in the statistical modeling of Giraud et al.
(2015);

• To handle data where the habitat type associated to each observation is unknown
(which allows to gather data at different spatial scales);

• To estimate the relative probabilities of selection of habitat for the monitored
species.

We develop our statistical modeling in Sect. 2. In this new model, the respective
habitat selection behaviors of observers and animals are modeled using hidden vari-
ables. The spatial distribution of observers in the sites, as well as the habitat selection
within the sites is modeled differently for the two datasets (opportunistic and standard-
ized). Animals are assumed to distribute according to their preferences for different
habitat types within a site. We illustrate our approach using simulated data to demon-
strate that it recovers the values of model parameters that were used to simulate the
data. Finally, using a real dataset concerning birds in the Aquitaine region (France),
we assess the performance of the model for estimating species relative abundances as
well as their habitat selection parameters.
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2 Model and parameters

In this section, we introduce our statistical modeling of the available data. These
data are the outcome of some ecological features (species abundances) and some
observational bias (detectability, partial reporting, heterogeneous observational effort,
etc). Both the ecological features and the observational bias are affected by some
ecological variables (for example habitat type, population and/or road density, altitude,
as presented in Mair and Ruete 2016), which will be called habitats, from now on.
Our modeling takes into account this double source of bias induced by the habitat. We
first describe the ecological ingredients, which are independent from the considered
datasets, and then the observational ingredients which are dataset dependent.

Species abundances and habitat selection probability The space-time is divided into
units, we call henceforth sites, which correspond to the scale at which we will predict
the relative abundances. More concretely, each site refers to the couple of a spatial
domain and a time interval (although note that for real data applications we will focus
only on spatial relative abundances variability, so a site will be simply a spatial region).
We index the sites by j ∈ [[1, J ]]. The species we focus on, are indexed by i ∈ [[1, I ]],
and we denote by Ni j the number of individuals of species i in the site j . Our aim
is to estimate the relative abundances Ni j/Ni1 for all i and j , so that we can plot a
relative abundance map and/or its temporal dynamics for each species. The choice of
the reference site 1 (among sites that are visited by all datasets) is arbitrary.

The habitat types of a given site j are not homogeneous. Each site j is composed
with several spatial domains, each presenting a specific habitat type. We index by
h ∈ [[1, H ]] the habitat types. Species are not uniformly distributed in the spatial
domain of j : each species prefers some habitat types to some others and hence is
more or less frequent in the different habitat types. In order to avoid biases in our
estimation, we must take this heterogeneity into account. Our modeling assumes that
the fraction of the animals of the species i present in the habitat type h inside the site j
is proportional to the area Vhj of the habitat type h inside the site j (which is assumed
to be known) weighted by a number Sih ∈ [0, 1] representing the preference toward
the habitat type h for the species i . More precisely, we assume that the density of the
species i at location x in the site j is given by

Ni j Sih(x)
∑

h′ Sih′Vh′ j
,

with h(x) the habitat type at location x . Following the concept definitions clarified in
Lele et al. (2013), the parameters Sih can be interpreted as the probability of selection
of habitat h by species i . As an example, if Sih is twice the value of Sih′ then the
probability that an individual with species i is present at a given point with habitat h
is twice the value of this probability for habitat h′. These probabilities of selection of
habitat are unknown and we will estimate them.

Observations and reporting As in Giraud et al. (2015), our relative abundance esti-
mation is based on two datasets : (i) a standardized dataset, labeled by k = 0, collected
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under a programwith a known sampling effort and (ii) an opportunistic dataset, labeled
by k = 1, characterized by a completely unknown sampling effort. The datasets gather
counts of animals for all sites j . We emphasize that each site j must be surveyed by
both datasets, and each species i must be surveyed by at least one of the two datasets
(at least one species must be surveyed in both datasets).

We assume that we have informations about the locations of the observations at a
finer scale than the site j . Each site j is divided into several (possibly many) cells
indexed by c and for each observation, we know in which cell c the observation
occurred. We emphasize that the cell paving can completely differ between the two
datasets. In each dataset, only a (possibly very small) fraction of the cells have been
visited at least once by the observers, so we do not have counts for all cells c, but
only for a (possibly very small) fraction of them. For a cell c visited in the dataset
k, we denote by Xick the corresponding count for the species i . This count Xick is
not homogeneously proportional to the abundance of the species i in c. Actually,
the counts are biased by the inhomogeneous observational effort (total amount of
observation time, number of observers, number or density of traps, etc) and the unequal
probability of reporting of the species i (varying detectability, partial reporting, etc).
Following Giraud et al. (2015), we denote by Eck the observation intensity (or effort)
in the cell c for the dataset k, and by Pik the probability of detection/reporting of
the species i in the dataset k. When the species i are not monitored in the dataset k,
the probability of detection/reporting Pik is set to 0. Within a cell c, the observers do
not scan the space uniformly. Actually, they have some preferences for some habitat
types (which are not the same for the two datasets). These preferences induce some
specific biases, which must be properly addressed. Similarly as for the probability of
selection of habitat, the preference of the observers of the dataset k for the habitat h is
represented by a real number qhk ∈ [0, 1]. For the dataset k, we model the observation
intensity at location x within the cell c by

qh(x)k Eck
∑

h′ qh′kVh′c
,

where Vhc is the known area of cell c covered by habitat h. Note that in our model
we assume that observers all have the same preference for each habitat. Writing Ac

for the spatial domain of the cell c and taking into account both the probabilities of
selection of habitat and the observers habitat preferences, we obtain the modeling for
the count of the species i in the cell c for the dataset k

Xick ∼ Poisson

(∫

Ac

Ni j
Sih(x)

∑
h′ Sih′Vh′ j

× Eck
qh(x)k

∑
h′ qh′kVh′c

× Pik dx

)

= Poisson

(

Ni j Eck Pik
∑

h

qhk
∑

h′ qh′kVh′c
× Sih

∑
h′ Sih′Vh′ j

Vhc

)

.

(1)

In the abovemodel, recall that the volumesVhj andVhc are known. For the standardized
dataset, the observation intensities Ec0 are assumed to be known (up to a common
multiplicative constant), and we assume that (i) either the habitat type associated
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to each observation X jc0 is known, (ii) or the ratios qh0/q10 are known for all h
(generally equal to 1). All the other parameters are unknown. Their identifiability and
the implementation of model (1) are detailed in Appendix A.2.

We point out that, here, we do not take into account a dependence of the detectability
with habitat types (due notably to different levels of visibility in different types of habi-
tat). We refer to Sect. A.5.2 for an extension of this model, integrating a dependence
of detection probability with habitat types.

Note finally that when neglecting differences in habitat selection probabilities both
for observers and observed individuals, the total number Xick of observations of indi-
viduals of species i in cell c of domain j for the dataset k follows the following
model:

Xick ∼ Poisson(Ni j Eck Pik/Vj ), (2)

which is the model introduced and studied in Giraud et al. (2015), with an appropriate
scaling of the observation intensities Eck .

3 Numerical results

We test our modeling framework both with some simulated data and with some real
data. The likelihood of (1) cannot bemaximized easily, sowe opt for a non-informative
Bayesian estimation approach as implemented in the JAGS software (Plummer 2003).
In addition, it is straightforward to model overdispersion in a Bayesian context, for
example by supposing a random normal variation in habitat preferences. This program
is called within R (R Core Team 2014) using the rjags package (Plummer 2014). We
choose uninformative priors (Gamma distributions with very large variance) for the
unknown parameters and the JAGS sampler provides samples distributed according to
the posterior distributions for these parameters. The details about the implementation
of the estimation procedures are given in Appendix A.2.

3.1 Illustration with simulated data

We illustrate the ability of our estimation procedure to recover the actual parameter val-
ues with some simulated datasets, andwe compare the results of our procedure to those
computed using Model (2) (studied in Giraud et al. (2015)). More precisely, Model
(2) is a particular case of our Model (1), and involves a lower number of unknown
parameters. When taking into account habitat preferences, we therefore expect a gain
in accuracy but a loss in precision of our estimation of relatives abundances, which is
illustrated now.

We simulate two datasets according to Model (1): A standardized one (k = 0)
with known relative effort intensities E j0/E10 and an opportunistic one (k = 1) with
unknown relative effort intensities. For this simulated dataset we consider 20 different
species at 30 different sites that are covered by 2 types of habitat. For standardized
(resp. opportunistic) data, 10 (resp. 30) cells are visited in each site. The other parame-
ters, such as species abundances, detectionprobabilities, habitat selectionprobabilities,
or efforts in the opportunistic dataset are sampled according to uniform distributions.
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These two datasets are simulated only once, and the results described further do not
show an important dependence on the simulated datasets.

In order to illustrate the impact of the habitat modeling and the gain of using
opportunistic data, we compare the three following estimation frameworks:

[Opp+Stand with hab] Our model (1) with unknown habitat selection probabilities
and using both opportunistic and standardized data, denoted
below by [Opp+Stand with hab];

[Stand only with hab] Our model (1) with unknown habitat selection probabilities
and using only standardized data (which corresponds to Equa-
tion (1), with k = 0 only). It is denoted by [Stand only with
hab];

[Opp+Stand no hab] Model (2) (introduced in Giraud et al. 2015) which neglects
differences in selection probabilities, using both opportunistic
and standardized data. This model is denoted by [Opp+Stand
no hab].

In Fig. 1, we plot the posterior distributions of relative species abundances obtained
for these three frameworks, and the reference relative species abundance values that
we estimate are given in red. This figure shows, as proved in Giraud et al. (2015),
the improvements brought by opportunistic data, since the estimation obtained by
combining the two datasets is both more precise and more accurate. It also illustrates
that neglecting habitat preferences can lead to biased estimation of species relative
abundances. Figure 5 in Appendix A.4 also gives the posterior distributions of habi-
tat selection probabilities, that give good approximations of the real values given in
red. Figure 2 gives the boxplots of the relative differences between the estimated and
real relative abundances, for each of the three models. Here, the estimated relative
abundances is defined as the mean of the associated posterior distribution, and similar
results are obtained using the median of these distributions. Again, we observe that
the estimation combining both datasets and taking habitat types into account produces
better results; and ignoring habitat types induces a significant bias. Finally, when simu-
lating 50 standardized and 50 opportunistic datasets (indexed by n) according toModel
(1) we obtain that the empirical L2 distance 1

50∗I∗J
∑50

n=1
∑

i, j

[
N̂ [model],(n)
i j −N (n)

i j

]2

between our estimation and real relative abundances is equal to 0.07 in the [Opp+Stand
with hab] framework, to 201.25 in the [Stand only with hab] framework, and to 1.70
in the [Opp+Stand no hab] framework, which confirms improvement brought both by
taking habitat into account and by combining standardized and opportunistic data.

3.2 Real data

3.2.1 Datasets and habitats

Datasets To investigate whether taking the habitat types into account improves the
estimation of real data, we consider the same datasets as in Giraud et al. (2015). These
are two different datasets of common birds observations in Aquitaine (south-western
French region): standardized data are provided by the French National Hunting and
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Fig. 1 Posterior distributions of the relative abundances Ni2/Ni1 for all i , estimated with [Stand only with
hab] (in black), [Opp+Stand with hab] (in blue) and [Opp+Stand no hab] (dotted line). The reference values
are given in red

Fig. 2 Boxplots of the relative differences
(N̂ [model]

i j /N̂ [model]
i1 )−(Ni j /Ni1)

Ni j /Ni1
between the estimated and “real”

relative abundances, using data and models [Opp+Stand with hab], [Stand only with hab], and [Opp+Stand
no hab]
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Wildlife Agency (ONCFS, Office National de la Chasse et de la Faune Sauvage), by
the French National Hunters’ Association (FNC, Fédération Nationale des Chasseurs)
and by the French Departemental Hunters’ Associations (FDC, Fédérations Départe-
mentales des Chasseurs), while opportunistic data are provided by the French program
Faune-Aquitaine, managed by the protection association Ligue pour la Protection des
Oiseaux (LPO). Our estimation is assessed using a validation dataset, produced by
the French Museum of Natural History. These datasets provide us 15535 standard-
ized and 693581 opportunistic observations of 34 bird species, which have been made
on 66 quadrats. These data are used in the rest of the article, to estimate 6 habitat
preferences parameters per species, as well as 65 relative abundances per species.
More details concerning datasets are given in Appendix A.1. Note in particular that
we gather observations which were made during 4 years and that our estimations were
made under the assumption that relative abundances are constant from one year to the
other (although they are modeled by stochastic variables that could account for some
temporal variation in the Bayesian framework). However we recall that in Model (1),
sites j can be seen as the couple of a spatial domain and a time interval, so temporal
variation could also be studied using this type of data (preferably on a longer time
period).

Habitats Land use (habitat) types were based on corine landcover typologies that
were grouped in 7 categories in order to reduce complexity and ensure identifiability
(see Appendix A.2): urbanized area, intensive agriculture with homogenous landscape
(arable land or permanent crop), open natural landscape (natural or pasture), farmland
with heterogenous landscape, mixed forest, deciduous forest, and coniferous forest.

3.2.2 Assessing estimation performances

In this section, we compare the estimation performances of the same three statis-
tical models as in the Sect. 3.1: [Opp+Stand with hab], [Stand only with hab] and
[Opp+Stand no hab]. We obtain estimation for the main parameters of interest of the
model, namely the relative abundances Ni j/Ni1 for all i, j , and the habitat selection
probabilities Sih/Si1 for all i, h and qh2/q12 for all h. Our goal here is to compare the
three estimation schemes, so we do not to discuss the ecological aspects of our esti-
mates. Yet, in Appendix A.5, we provide some abundances maps and habitat selection
probabilities for some species of interest.

To assess the performances of the three models, we investigate their ability to
predict the STOC observations XST OC

i j , that give the total number of observations
of an individual of species i in each quadrat j surveyed in the STOC dataset. Since
some species (21 among 34, see Appendix A.1 for the exact list) are not surveyed in
the ACT dataset, we consider separately the results for the species surveyed in ACT
and the results for the others. For each species i and each of the three models, we
compute a predictor X̂model

i j of XST OC
i j (defined in Appendix A.3 as the expectation

of XST OC
i j knowing the estimates of the unknown parameters of the model). Then

for each species i and each model we compute the Pearson correlation between the
vector (X̂model

i j ) j and the vector (XST OC
i j ) j . The medians (as well as the first and third
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Table 1 Medians of Pearson correlation coefficients (as well as first and third quartiles) between the STOC
observations and the estimates of species relative abundances computed with the models [Opp+Stand with
hab], [Stand only with hab], and [Opp+Stand no hab]

Data and model Correlations (in ACT) Correlations (not in ACT)

[Opp+Stand with hab] 0.49 (0.30, 0.54) 0.39 (0.12, 0.54)

[Stand only with hab] 0.29 (0.03, 0.46) –

[Opp+Stand no hab] 0.44 (0.32, 0.68) 0.31 (0.19, 0.42)

Fig. 3 Posterior of the relative abundances N̂ [model]
i j /N̂ [model]

i1 of species i monitored in the ACT program
and j = 62, and using data and models [Opp+Stand with hab] (blue), [Stand only with hab] (black), and
[Opp+Stand no hab] (dotted line)

quartiles) of these correlations (calculated for each species i) are given in Table 1.
We notice that the results for the Model (2) slightly differ from the results obtained
in Giraud et al. (2015), this can be explained by the fact that we use non-informative
Bayesian estimation performedwith JAGS instead of maximum likelihood estimation.

Figure 3 shows the posterior distributions of the relative abundances N [model]
i j /

N [model]
i1 obtained for the three considered situations.
We observe an improvement of the predictions when we take the habitat into

account. Actually, when wemove from theModel (2) without habitat modeling (intro-
duced in Giraud et al. 2015), to the Model (1) with habitat modeling, the median of
the correlations between the vectors (X̂model

i j ) j and (XST OC
i j ) j increases from 0.44

to 0.49 for the species surveyed in the standardized dataset (ACT) and from 0.31 to
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0.39 for the other species. Both the bias and variance contribute to the fit as measures
by the correlation between observations and predictions, so the reduction of the bias
obtained by modeling the habitat is stronger than the increase of the variance induced
by the inflation of the number of parameters. This feature is confirmed by the dif-
ference between the BIC value for the model [Opp+Stand with hab] and the model
[Opp+Stand no hab]:

�BIC = BIC(Opp + Stand with hab) − BIC(Opp + Stand no hab) = − 8867.

This improvement can be explained by the strong differences in habitat selection
parameters Sih thatwehave estimated (seeFig. 7), confirming that habitat biases cannot
be ignored. This feature is also supported by the shape of the posterior distribution
of the model with habitat [Opp+Stand with hab] which is much more spiked than the
shape of the posterior distribution of the model without habitat [Opp+Stand no hab].

In addition, as in Giraud et al. (2015), we observe that adding the opportunist
data in our estimation improves the estimation. In particular, we observe that for our
dataset, the improvement brought from the use of opportunistic data is stronger than
the improvement brought from habitat modeling. In the next paragraph, we investigate
the importance of the habitat structure in the spatial variation of the abundance.

3.2.3 Models of spatial repartition

In our model (1), we incorporate two sources of abundance variation. Part of the
variation in abundance is explained by the habitat structure. This part is driven by the
habitat selection probability Sih . The remaining of the abundance variation comes from
some other factors, acting differentially on the different sites j . We investigate below
whether the spatial repartition of individuals is mainly explained by habitat structure,
or if some other factors have a major role. In the first case, most of the spatial variation
would be explained by the variations of the ratio Sih(x)/

(∑
h SihVhj

)
; while in the

second case, a major part of the spatial variation would be explained by the variations
of the Ni j with j . In order to compare the relative importance of both effects, we
compare the models derived from (1) by first neglecting the variation in the habitat
selection probabilities Sih (setting them all to 1); second by neglecting the variation in
j of the Ni j , replacing all of them by a single value Ni . As explained before, when all
the habitat selection probabilities Sih are equal, the model (1) reduces to the model (2)
of Giraud et al. (2015). So to investigate the relative importance of the habitat types
with respect to the other factors, we compare the model [Opp+Stand with hab] and
[Opp+Stand no hab] with the [One Quadrat with hab] model where

[One Quadrat with hab] Xick∼Poisson

(

Ni Eck Pik
∑

h

qhk
∑

h′ qh′kVh′c

Sih
∑

h′ Sih′Vh′
Vhc

)

,

where Vh is the total area of habitat h in the considered space.

For each model, we compute as previously the Pearson correlations between the
observations of the STOC dataset and the estimation of these observations using each
of the three models. The median and the quartiles for all the species are given in
Table 2.
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Table 2 Medians (as well as first and third quartiles) of Pearson correlation coefficients between estimation
of species relative abundances using different models of species spatial repartition

Data and model Correlations

[Opp+Stand with hab] 0.45 (0.23, 0.54)

[One Quadrat with hab] 0.15 (–0.03, 0.36)

[Opp+Stand no hab] 0.38 (0.26, 0.52)

We observe that, in our case, the overall fit for the [one quadrat] model is poorer.
This point is confirmed by the BIC values

�BIC = BIC([Opp + Stand no hab]) − BIC([One Quadrat with hab]) = − 813853.

The habitat type therefore does not seem to be the main driver of the spatial variation
formost of the species considered in the specific spatial domain (though this ecological
result can be different when considering other species on an other space, notably with
more diverse types of habitats). The study of the impact of habitat structure on the
estimates for each species relative abundance is presented in Sect. 4.

4 Discussion

Main results. We have developed a new statistical approach relying on the joint use
of two datasets collected respectively by an opportunistic data collection program and
by a classical standardized monitoring program with a known (and ideally controlled)
observation intensity. By combining these two datasets, our approach estimates the
relative abundance of a set of species in a set of sites, while accounting for the different
detectability of the species in the two programs, variable habitat preferences by both
the species and the observers, and unknown observation intensity in the opportunistic
data collection program. The use of opportunistic data in this approach results in a
considerably increased precision in comparison to the estimation that would be based
only on the standardized data. Note also that our approach allows the estimation of
the relative abundances of some species monitored only with the opportunistic data
collection program, as long as there are at least several other species monitored by
the two programs. Our approach extends the statistical modeling developed in Giraud
et al. (2015), by taking into account the variable preferences of habitat types by both
the species and the observers. We show that by accounting for habitat preferences by
both the species and the observers in the citizen science program, our approach results
in a lower bias and a better prediction of standardized observations using the relative
abundances estimates. This is illustrated by a simulated dataset, as well as a practical
case study.

A useful byproduct of this approach is the estimation of the relative preferences of
each species for each habitat type: more precisely, the estimated value of the habitat
selectionparameters Sih corresponds to the relative probability of selectionof habitath,
which is exactly the definition of a resource selection function (RSF, Lele et al. 2013),
a tool widely used in biological conservation and wildlife management to identify
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important habitats for a given species on a study area (Boyce and McDonald 1999).
Existing statistical approaches for the fit of RSF rely on the comparison of an unbiased
sample of the habitat used by the focus species, and an unbiased sample of either the
unused habitat or the habitat available to the species (see a list of possible statistical
approaches in Manly et al. (2002), especially chapter 4 for the case where habitat
is defined by several categories). The collection of such data can be expensive, and
when the study area is large and/or the focus species is rare it can become prohibitive
(see the conclusion of MacKenzie (2005)). However, endangered rare species are
precisely those for which information on selected places is the most crucial. The
situation is generally worsened when several rare and endangered species are under
study. Citizen science programs relying on opportunistic data collection are a very
attractive alternative in this context because of the large observation effort carried out,
but are often notoriously flawed by an unequal and unknown observation effort, which
make their use in such studies difficult (Phillips et al. 2009). If at least a part of the
species monitored in the opportunistic data collection program are also monitored in
a more classical standardized program, our approach provides a way to correct for
the biases caused by the unequal observation effort in opportunistic data collection
programs, and therefore to benefit of the largeobservation effort for theRSFestimation.
Our approach therefore allows the batch estimation of the RSF for all species in the
opportunistic data collection program.

Limitations Our approach relies on the hypothesis that the preferences of a given
species for a given habitat type does not vary into space and time. Several authors
have shown that this might not always be the case: animals sometimes show a func-
tional response of habitat selection, i.e. an habitat selection pattern that depends on
habitat availability (Mysterud and Ims 1998); an habitat type can therefore be pre-
ferred by a species in a context and avoided in another (e.g. Calenge et al. 2005).
Similarly, our approach supposes that the observers in the citizen science program
show a constant preference in space and time. However, the observers preferences can
also be characterized by functional responses. For example, in an opportunistic data
collection program focusing on birds, observers may be more interested by waterbirds
in humid regions and therefore prefer to spend their time close to lakes and ponds in
such regions, as this is where they are more likely to observer the species of interest.
On the other hand, in a mountainous region, observers might be more interested into
raptors and avoid lakes and ponds. Such functional response of the observers can bias
the resulting estimates, and should be seriously considered when fitting this model.

Possible extensions So far, we assumed that the detectability Pik of species i in dataset
k does not depend on the habitat type, which might be unrealistic since, in particu-
lar, the range of vision of an observer can be different from one habitat type to the
other. If so, our estimation of habitat selection parameters Sih can be biased. Due to
identifiability constraints, our model cannot include an unknown list of parameters αh

taking into account the dependence of detectability on the habitat (since they will be
undistinguishable from the species habitat selection probabilities Sih). However, it is
possible to include these parameters in themodel and define an informative prior distri-
bution for these detectabilities, if information is available elsewhere. Another solution
is to use additional data concerning the detectability associated to each considered
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habitat. In Appendix A.5.2 we demonstrate how to implement this approach with the
dataset used in this paper, by using additional data that give the respective numbers of
observations made with different distance ranges for different kinds of habitats. Based
on an idea similar to the statistical approach underlying the abundance estimation
based on distance sampling (Buckland et al. 1993), we demonstrate how to estimate
and account for the variable detectability between habitat types when estimating the
species relative abundance in each site.

Issues when implementing the model Several issues must be carefully handled when
implementing our model for specific datasets. A key step in the implementation of
our model lies in the choice of the habitat types and their number. This choice, which
is dataset dependent, must be handled with care. First, the choice of the habitat types
must be meaningful for the monitored species. For example, assume that some of the
monitored species have a very different selection probability for two given habitat
types, say “deciduous forest” and “coniferous forest”. If the proportion of “deciduous
forest” and “coniferous forest” varies from one site to the other, then the merging of
these twohabitat types into a single habitat type “forest”would induce a significant bias
in the estimation. To avoid such biases,wemaybe tempted to select a very large number
of habitat types, ensuring a strong homogeneity of each type. Yet, the multiplication
of the habitat types is limited by the number of available observation points in each
habitat type. Actually, in order to avoid a detrimental increase of the variance, we need
to have enough observation points in each habitat type. These observations can be both
in the opportunistic or in the standardized dataset. So, when choosing the habitat types
(and their number), one must find a good balance between defining meaningful habitat
types for the monitored species and having enough observations in each habitat type.

Another major degree of freedom in the implementation of the model, is the choice
of the number of species. On the one hand, increasing the number of species helps
the estimation, since the ratio between the number of observations and the number
of parameters then decreases. On the other hand, including some rare species, or
including some species which require to add some new habitat types, can harm the
estimation by increasing the variance.

For a fair comparison of the statisticalmodelswith andwithout habitatmodeling,we
have implemented our model with very flat priors on all the parameters. In practice,
we may have access to some existing estimates of some parameters. For example,
for some species, we can have some estimates of some habitat selection probabilities
(Manly et al. 2002). In this case, it is worth to incorporate this knowledge by designing
some more informative priors on the habitat selection probabilities.
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A Appendix

A.1 Datasets

For the first (standardized) dataset we used the ACT (Alaudidae, Columbidae, Tur-
didae) monitoring survey (see Boutin et al. (2003) for more details concerning this
dataset and its protocole) in which 13 species of birds are monitored (see Table 3).
The observers are professionals from the technical staff of the participating organisms.
The Aquitaine region was discretized into 66 quadrats, in which a 4-km-long route
was randomly placed in non-urban habitat (see Fig. 4). Each route was traveled twice
between April and mid-June and included 5 points separated by exactly 1 km: at each
travel, each point was visited for exactly 10 min. The species of every bird heard or
seen was recorded, and for each point and each species, we have access to the max-
imum of the counts from the two visits (in order to take advantage of the maximum
detectability and to avoid effects due to migration, as explained in Pollock 1982). This
protocol was repeated for several years and we use data from 2008 to 2011, which
finally leads to 239 visits of quadrats (some of the quadrats were not visited each year),
therefore leading to 13∗5∗239 = 15535 data, corresponding to the reporting of 7899
birds observations (some species are not always detected).

For opportunistic data, we used the dataset collected by the website www.
fauneaquitaine.org (handled by the LPO), on which anyone can register and report
the species, number of detected individuals, date, and location associated to any bird
observations made in Aquitaine. The level of precision of the location is variable:
exact location, locality indication, or municipality indication. For numerical analyses,
to deal with this inhomogeneity in location information, we will use the municipal-
ity in which each observation was made, which is always given. As previously, we
selected all such records between April and mid-June for the years 2008–2011. This
led to 693,581 birds observations in 1622 municipalities (see Fig. 4), monitoring 34
species. Note that observers can go anywhere, for an unknown amount of time, and
that they report their observations with an unknown probability (that might depend on
the observed species); therefore these data do not provide any information concerning
observation effort.

For the validation dataset used to assess the predictive power of our approach,
we used the data from the STOC program (Suivi temporel des oiseaux communs),
which is a French breeding bird survey carried out by the French Museum of Natural
History (MNHN,MuseumNational d’HistoireNaturelle). The protocole of this survey
(see Jiguet et al. 2012 for more details) is the following: each observer is assigned a
2×2 km square whose position is uniformly randomly chosen within 10 km of his/her
house. The observer then distributes on the considered square, 10 observation points
that have to be representative of the different habitats areas on the square, and each
point is visited twice between April and mid-June, during 5 min. Every observation of
each species (hearing or seeing) is reported and the maximum count among the two
visits is kept, as for the ACT program. As previously, we use all such records for the
years 2008–2011. This leads to 86526 birds observations in 38 squares (see Fig. 4),
monitoring 34 species (the same than for the LPO dataset).

Table 3 provides the list of the 34 bird species under study.
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Fig. 4 Positions of data collection

A.2 Identifiability and models implementation

A.2.1 Reparametrization of the model

Let us recall our model for the observations, where c is a cell of the site j :

Xick ∼ Poisson

(∫

Ac

Ni j
Sih(x)

∑
h′ Sih′Vh′ j

× Eck
qh(x)k

∑
h′ qh′kVh′c

× Pik dx

)

= Poisson

(

Ni j Eck Pik
∑

h

qhk
∑

h′ qh′kVh′c

Sih
∑

h′ Sih′Vh′ j
Vhc

)

.

For standardized data, we can assume either that qh0/q10 is known for all h (generally
equal to 1), or that each cell for the standardized dataset is small enough to be composed
with only one habitat. In addition, we assume that Ec0/E10 is known for all c for the
standardized dataset. To implement our model while ensuring identifiability of the
parameters, we use the following change of variables

Ñi j = Ni j Pi0E10
∑

h′
Sih′
Si1

Vh′ j
, P̃ik = Pik P10

Pi0P1k
, Ẽck = Eck P1k

P10E10

Vc
∑

h′
qh′k
q1k

Vh′c
,

q̃hk = qhk
q1k

, S̃ih = Sih
Si1

where Vc = ∑
h Vhc. Using this change of variables, we get that for all i , c and k,

Xick ∼ P
(

Ñi j Ẽck P̃ik
∑

h

q̃hk S̃ihVhc

)
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with

Ñi j

Ñi1
= Ni j

Ni1

∑
h′ S̃ih′Vh′1

∑
h′ S̃ih′Vh′ j

, P̃i0 = 1, P̃11 = 1, ˜qh0 = 1, ˜q11 = 1, S̃i1 = 1

for all i , c, k, and Ẽc0 is known for all c.
In particular for standardized data, for which we can assume that the habitat asso-

ciated to each cell c is known (denoted by h(c)), we get:

Xic0 ∼ P
(
Ñi j Ẽc0 S̃ih(c)

)
,

where Ẽc0 is known for each cell c. This is a generalized linearmodel with I J+ I (H−
1) unknown parameters (the quantities Ñi j as well as habitat selection parameters
S̃ih/Si1 for h > 1). These parameters are identifiable if and only if the matrix Y with
size C × (J + H − 1) giving for each cell c visited by the STOC dataset, the site
and habitat associated to this cell (when this habitat is not the first habitat), has rank
J + H − 1. More precisely, the matrix Y is such that for all c ∈ [[1,C]], Ycj (c) = 1,
YcJ+(h(c)−1) = 1 if h(c) > 1, and Ycl = 0 elsewhere.

A.2.2 Implementation with JAGS

The computer code associated to the Sect. 3.1 is given in the numerical Additional
File SimulatedData.Rnw. This program calls three models that are written in sepa-
rate files: one for our model (Additional file ModelSimulatedData.txt), one for the
model in which we use only standardized data (Additional file ModelStandardized-
SimulatedData.txt), and one for the model in which differences in habitat preferences
are neglected (Additional file ModelWithoutHabitatSimulatedData.txt). To make our
estimations we used 10000 iterations (n.i ter ), with a thinning value to 10, 1 chain and
1000 iterations for adaptation (n.adapt). The computation time is about one hour per
generated dataset for the three models, using a 2 cores Intel i5 processor.

The computer code associated to the Sect. 2 is given in the numerical Additional
File RealData.Rnw. This program calls four models that are written in separate files:
one for our model (Additional file ModelWithHabitat.txt), one for the model in which
we use only standardized data (Additional file ModelStandardizedOnly.txt), one for
the model in which differences in habitat preferences are neglected (Additional file
ModelWithoutHabitat.txt), and one for the model in space is considered as one single
quadrat (Additional file ModelOneQuadrat.txt). To make our estimations we used
10000 iterations (n.i ter ), with a thinning value to 10, 1 chain and 1000 iterations for
adaptation (n.adapt). The estimations is about one hour per model, using a 2 cores
Intel i5 processor.
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A.3 Some details on the numerics: the prediction of the STOC data

Let CSTOCj denote the set of all the observation points c in the quadrat j surveyed in
the STOC dataset. The STOC counts for the species i in the quadrat j are

XSTOC
i j =

∑

c∈CSTOC
j

XSTOC
ic .

Let us denote by h(c) the habitat type of the observation point c. In our model (1), the
average number of individuals of the species i in the square c ∈ CSTOCj is given by

∫

Ac

Ni j Sih(c)
∑

h′ Sih′Vh′ j
dx = Ni j Sih(c)Vc

∑
h′ Sih′Vh′ j

.

Taking into account a variable observational effort ESTOC
c on each observation point

c, we then predict XSTOC
i j from the estimation based on our Model (1) by

X̂model
i j = N̂model

i j

∑

c∈CSTOC
j

ESTOC
c

Ŝmodel
ih(c) Vc

∑
h′ Ŝmodel

ih′ Vh′ j
,

where the observational effort ESTOC
c is given by the number of years of observation

at the observation point c.
For the one quadratmodel with habitat [OneQuadrat with hab] displayed in Table 2,

the prediction is given by

X̂model
i j = N̂model

i

∑

c∈CSTOC
j

ESTOC
c

Ŝmodel
ih(c) Vc

∑
h′ Ŝmodel

ih′ Vh′
,

with Vh′ the area of the habitat type h′ in the whole quadrat.
When the Model (2) is used for estimation, then the predictions are given by

X̂model
i j = N̂i j

∑

c∈CSTOC
j

ESTOC
c

Vc
Vj

.

A.4 Additional results on simulated data

In this section we provide additional results to the ones presented in Sect. 3.1 for
simulated data. Figure 5, as a complement to Fig. 1, provides the posterior distributions
of the habitat selection probabilities Si2 for all i , showing that these posterior are a
good approximations to the reference values that we wish to estimate.
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Fig. 5 Posterior distributions of the habitat selection probabilities Si2 for all i (Si1 = 1 for all i , each
graph corresponds to a different value of i). The reference values are given in red

A.5 Additional results on real data

A.5.1 Some ecological results

In this section we provide additional results answering to natural ecological moti-
vations. In Fig. 6 we give maps of the estimated densities of the Eurasian nuthatch,
with and without habitat structure. The important differences between these two maps
highlight the necessity of taking into account habitat. In Fig. 7 we give the mean pref-
erences of all considered species, for each habitat type. The values of these preferences
present important differences (the highest being 10 times larger than the lowest), which
is crucial to take into account when predicting reaction of species to environmental
change for instance.

A.5.2 Taking into account habitat dependent detectability

We so far assumed that the detectability Pik of species i in dataset k does not depend
on the habitat, which might be unrealistic since, in particular, the range of vision (or
hearing) can be different from one habitat to the other. If so, our estimation of habitat
selection parameters Sih but also of species relative abundances can be biased. Due
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Fig. 6 Relative density maps of the European nuthatch, without (left), and with (right) taking into account

habitat structure. For each quadrat the gray level indicates the relative density
N̂model
i j V1

N̂model
i1 Vj

where Vl is the

area of quadrat l

Fig. 7 Mean species estimated habitat selection probabilities, without (left) and with (right) habitat depen-
dent detectability

to identifiability constraints, we cannot add and estimate an unknown list of parame-
ters αh taking into account the dependence of detectability on the habitat (since they
will be undistinguishable from the species habitat selection probabilities Sih). Our
proposition is to use an auxiliary dataset that can provide informations concerning the
detectability associated to each considered habitat. We test this idea using a dataset
provided by VigieNature that gives for different kinds of habitats the respective num-
bers of observations made in different distance ranges. The program associated to this
section is given in the file alpha.R.

For each habitat h, we can assume that detection probability is equal to 1 when
observed individuals are “close enough” to the observer, sincewe onlywant to quantify
the loss in detectability in each habitat due to the limitation in the range of vision (or
hearing) in this habitat. More precisely, we assume that the detection probability is
equal to 1 when the observed individual is less than 25m far from the observer. Then if
we denote by Yh the number of observed individuals in habitat h and by Y1h the number
of observed individuals in habitat h, at distance less than 25 m from the observer, we
can quantify the detectability in habitat h by the quantity
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Table 4 The detectability associated to each habitat, taking account differences in ranges of vision

Corine land cover habitat Detectability αh

Urbanized area 1

Intensive agriculture 1.72

Open natural landscape 1.71

Farmland with heterogenous landscape 1.72

Mixed forest 1.47

Deciduous forest 1.47

Coniferous forest 1.47

αh = Yh/Y1h
Y1/Y11

.

The result of these calculations is given in Table 4. As expected, the detectability is
lower in urbanized area and forest than in open and agricultural landscapes. The impact
of taking habitat detectability into account is illustrated in Fig. 7. This figure shows
that difference between the highest and the lowest mean habitat selection probabilities
is even higher than predicted without taking account habitat detectability (the former
being about 15 times larger than the latter).
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