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Abstract Large-scale remote sensing-based inventories of forest cover are usually
carried out by combining unsupervised classifications of satellite pixels into forest/non
forest classes (map data) with subsequent time-consuming visual on-screen imagery
classification of a probabilistic sample of pixels taken as the ground truth (reference
data). In this paper the estimation of forest change from a sample of reference data
is approached by: (i) exploiting map data to construct strata in which changes are
occurred, and then adopting the stratified sampling joined with the HT estimator
with most sampling effort devoted to strata where changes are occurred irrespective
of their size, as suggested in most remote sensing literature regarding land change
assessments; (ii) adopting a spatial scheme ensuring spatially balanced samples, as
suggested in most recent statistical literature regarding spatial surveys, and exploiting
the map data in the difference estimator. The results of a comparison performed on
an artificial population of reference data generated from a real population of map
data recorded in Sardinia (Italy) discourage the use of unbalanced stratified samples
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that achieve the worst precision. The best results are obtained by means of spatially
balanced samples or stratification with nearly proportional allocation to strata.

Keywords Auxiliary information · Difference estimator · Forest monitoring ·
Horvitz–Thompson estimator · Simulation study · Spatially balanced sampling ·
Stratification

1 Introduction

Land cover changes are the expression of recurrent, consecutive land reorganizations
in order to better adapt land-use and spatial structure to the varying changing environ-
mental conditions and demands of human societies. Assessing forest cover change is
one of the current main monitoring requirements of international environmental fora.
For instance, Reducing Emission from Deforestation and forest Degradation (REDD)
is a United Nations measure offering incentives to developing Countries for reducing
emissions by increasing and improving forested lands: in this scenario, periodic and
accurate estimates of forest changes are crucial (UN-REDD 2013).

Large-scale remote sensing-based inventories of forest cover are usually carried out
by a combination of unsupervised classification of satellite imagery and subsequent
manual (visual on-screen) imagery classification with the highest accuracy taken as
ground truth (e.g. Hansen et al. 2013). Because visual on-screen operations are time
expensive procedures, they can be carried out, as a rule, only for a probabilistic sample
of pixels and forest cover is estimated from that sample. Under this protocol, the data
arising from the unsupervised classification of the satellite pixels, henceforth referred
to as map data, are available over the whole study region. Map data are likely to
be good proxies of the on-screen classifications, henceforth referred to as reference
data, which are instead available only for the sampled pixels (e.g. Sannier et al. 2014;
Corona et al. 2015).

To accomplish the goal of efficiently estimating forest changes, any survey should
be planned to provide reliable estimates of forest cover at any occasion of interest.
Once an unbiased and efficient estimator of forest cover is adopted, the very natural
way to estimate the change between two occasions is to take the difference of the forest
cover estimates at the two occasions. In this case, the variance of the change estimator
decreases as the covariance of the estimators at the two occasions increases. Thus,
irrespective of the criterion adopted to estimate forest cover at the two occasions, a
convenient way to plan remote-sensing based surveys is to maintain the same sample
of pixels over time so that a positive covariance between the estimators of forest
cover is induced. Many remote-sensing based surveys of forest cover as well as many
land-cover and land-use surveys adopt this solution, which is usually referred to as
the pure panel. Examples have been provided at global scale by the Global Forest
Resources Assessment-FRA (http://www.fao.org/forestry/fra/remotesensing/en/), at
continental scale by the Land Use/Cover Area frame statistical Survey in Europe-
LUCAS (http://ec.europa.eu/eurostat/web/lucas/overview) and at Country scale by
Sannier et al. (2014) and by the AGRIT project (http://www.itacon.it), among others.
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A question is how to efficiently choose the sample of pixels where on-screen clas-
sification will be carried out. The question moves in the wide framework of spatial
sampling. When sampling spatial units, the achievement of a so called spatially bal-
anced sample (SBS), i.e. a sample in which units are well spread throughout the
survey region, is the main target in most cases advised by statistical community. SBSs
are usually constructed by avoiding or reducing the selection of contiguous units.
There is a huge statistical literature on the ways of achieving SBS and some of them
have appeared recently. We don’t dwell here on these proposals because we’ll come
back to them later in the paper. On the other hand, in the remote sensing literature
regarding land cover change assessment, completely reversed guidelines have been
repeatedly provided, suggesting to unbalance the sample by a relative intensification
of the sampling effort in the—usually small—strata where changes more likely occur
(e.g. Richards et al. 2000; Baldauf et al. 2009; Stehman 2013; Olofsson et al. 2014).
The purpose of this paper is to provide insights for choosing between these two oppo-
site alternatives.

The paper is organized as follows. In Sect. 2 preliminaries and notations are given to
state the problem. Map and reference data at the two survey occasions are defined and
their different roles in estimation are outlined. The forest changes for both map and
reference data are rewritten as the population means of the changes occurred within
pixels. That allows to estimate the change directly from the differences recorded in
the sampled pixels instead as the difference between the forest cover estimates at the
two survey occasions (that is theoretically equivalent but more cumbersome to treat
owing to the presence of the covariance between the estimators at the two occasions).
In Sect. 3 the sampling strategy suggested by Olofsson et al. (2014) is considered.
Stratification is carried out on the basis of changes occurred in themapdata and samples
of pixels are selected from each stratum by means of simple random sampling without
replacement (SRSWOR). Then the Horvitz–Thompson (HT) criterion is adopted to
estimate forest change. In Sect. 4, a strategy suggesting the achievement of SBSs
is considered, irrespective of the changes occurred in map data. Among the several
schemes providing SBSs, the so-called one-per stratum-stratified sampling (OPSS)
is adopted owing to its simplicity and efficiency. Then the map data information is
exploited at estimation level adopting the difference (D) criterion to estimate forest
change. In Sect. 5 the two strategies are compared on the basis of themap data recorded
in a study area of 400 km2 settled in Sardinia (Italy) from which reference data are
artificially generated (high-change population). Results of the simulation are reported
in Sect. 6, while discussion and conclusions are reported in Sect. 7. In this last section
reference is also made to results from a low-change population settled in Central Italy,
whose details are omitted from brevity, that lead to conclusions very similar to the
ones from the Sardinia test case.

2 Statement of the problem

Consider a survey area A covered by a grid of N satellite pixels. Denote by U the
population of the N pixels. The pixel-level information about forest change from
occasion 1 to occasion 2 is constituted by four dichotomous variables x1 j , x2 j , y1 j , y2 j .
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The variables x1 j and x2 j arise from forest/non-forest satellite classification performed
at both survey occasions: xt j is equal to 1 if the j-th pixel at time t is classified as forest
and is equal to 0 otherwise (t = 1, 2). Similarly the variables y1 j and y2 j arise from
forest/non forest on-screen interpretation: yt j is equal to 1 if the j-th pixel at time t is
interpreted as forest and is equal to 0 otherwise (t = 1, 2). The x1 j s and x2 j s arise
from satellite spectral classes regrouped into forest and non-forest thematic classes,
and are readily available from satellite maps for all the pixels in the population. On the
other hand, the y1 j s and y2 j s arise from time consuming forest expert works, based
on satellite imagery in combination with available very high resolution imagery and
Google Earth, and map archives like Bing Maps, Google Maps, national maps, local
maps, etc. (e.g. Sannier et al. 2014). For these reasons, the x1 j s and x2 j s are referred
to as the map data and can be used as auxiliary information in the estimation of forest
cover, while the y1 j s and y2 j s are higher quality data, referred to as reference data,
and will be taken as ground truth, stated that field data cannot be collected owing
to the difficulty of access in dense forests. Owing to the high cost of reference data
collection, these data cannot be known for all the pixels in the population but only for
a sample of them.

Because all the map data are known at both survey occasions for each j ∈ U, their
population means

X̄1 = 1

N

∑

j∈U
x1 j and X̄2 = 1

N

∑

j∈U
x2 j

are also known and represent the fraction of grid area classified as forest from the
satellite map at both survey occasions. Therefore their difference DX = X̄2 − X̄1 is
known and represents the increase of the fraction classified as forest between the two
times. The difference DX can be rewritten directly as

DX = 1

N

∑

j∈U
dX j

where dX j = x2 j − x1 j is the change occurred in the map data at pixel j .
Because the reference data cannot be known for each j ∈ U owing to the recording

costs, their population means

Ȳ1 = 1

N

∑

j∈U
y1 j and Ȳ2 = 1

N

∑

j∈U
y2 j

are unknown and represent the fraction of grid area interpreted as forest from experts.
Therefore, their difference DY = Ȳ2 − Ȳ1 is unknown and represents the increase of
the fraction classified as forest between the two survey occasions. The difference DY

can be rewritten directly as

DY = 1

N

∑

j∈U
dY j
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where dY j = y2 j − y1 j is the change occurred in the reference data at pixel j . The
difference DY is taken as the forest change and constitutes the target parameter to be
estimated from a sampling strategy.

On the basis of empirical investigations, Sannier et al. (2014) provide evidence
that satellite classifications closely guess expert interpretations. The close matching
between map and reference data suggests the use of dX j s as accurate and effective
proxies for the dY j s to be exploited as auxiliary information.

3 Change estimation from stratified sampling

Map data information can be exploited at design level to construct strata on the basis of
the changes recorded in the satellite map between the two survey occasions. Therefore,
the population of N pixels is partitioned into four strataUF F ,UF N ,UN F ,UN N of size
NF F , NN F , NF N , NN N , respectively, in accordance to the four possible combinations
of values attained by the x1 j s and x2 j s.. In particular, the stratum

UF F = {
j : j ∈ U, x1 j = 1, x2 j = 1

}

is constituted by the NF F pixels classified as forest at both survey occasions, the
stratum

UF N = {
j : j ∈ U, x1 j = 1, x2 j = 0

}

is constituted by the NF N pixels classified as forest in the first survey occasion and as
non forest in the second, the stratum

UN F = {
j : j ∈ U, x1 j = 0, x2 j = 1

}

is constituted by the NN F pixels classified as non forest in the first survey occasion
and as forest in the second, and the stratum

UN N = {
j : j ∈ U, x1 j = 0, x2 j = 0

}

is constituted by the NN N pixels classified as non forest at both survey occasions.
In accordance with the familiar protocol of the stratified sampling, the final sam-

ple S of fixed size n is constituted by four samples SF F ,SF N ,SN F ,SN N of size
nF F , nF N , nN F , nN N selected from the corresponding strata by means of SRSWOR.
Accordingly, the HT estimator of the forest change is given by

ˆ̄DY =
∑

l

wl d̄Y l (1)
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where the index l = F F, F N , N F, N N labels the four strata, wl = Nl/N is the
weight of the stratum l and

d̄Y l = 1

nl

∑

j∈Sl

dY j

is the mean of the dY j s in the sample of pixels selected from the stratum l.

From the well-known theory of HT estimation under stratified sampling, ˆ̄DY is
unbiased with variance

V( ˆ̄DY ) =
∑

l

w2
l

Nl − nl

Nl

S2
Yl

nl
(2)

where

S2
Yl = 1

Nl − 1

∑

j∈Ul

(dY j − D̄Y l)
2

is the variance of the dY j s within the stratum l and

D̄Y l = 1

Nl

∑

j∈Ul

dY j

is their mean.
From Eq. (2), the precision of D̄Y depends on the variability within the four strata

as well as on the apportionment of the sample S to strata. As to the first source of
uncertainty, it depends on how many the map changes dX j s that determine the strata
match the interpreted changes dY j s. If there was a perfect correspondence between
them, the within-stratum variances were 0 and (1) would estimate the forest change
without error. Regarding the second source of uncertainty, a suitable option is to
primarily establish a fraction f of sample observations to be assigned to the strata
where changes are occurred in map data, i.e. UF N and UN F , in such a way that
nc = n f are assigned to these strata and n − nc to the strata with no changes, i.e UF F

and UN N . Following Olofsson et al. (2014), a large fraction f should be devoted to
strata were changes are occurred.

Then, once nc is established, a suitable option is to assign the sample units to single
strata proportionally to their relative size, i.e.

nF N = nc
NF N

NF N + NN F
(3a)

nN F = nc
NN F

NF N + NN F
(3b)

nF F = (n − nc)
NF F

NF F + NN N
(3c)

nN N = (n − nc)
NN N

NF F + NN N
(3d)
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4 Change estimation from spatial balance

When sampling units from a grid, there is a wide variety of spatial sampling schemes
which are available besides the trivial use of SRSWOR. The achievement of SBSs, in
which units arewell spread throughout the survey area, has been themain target by long
time. SBSs can be achieved using spatial versions of the traditional sampling schemes
such as stratified or systematic sampling (e.g. Thompson 2002, Chapter 11,12) or by
schemes explicitly constructed to avoid or reduce the selection of contiguous units
such as the generalized random-tessellation stratified sampling by Stevens and Olsen
(2004), the drawn-by-drawn sampling excluding the selection of contiguous units by
Fattorini (2006), the local pivotal method of first type by Grafström et al. (2012), the
spatially correlated Poisson sampling by Grafström (2012) and the doubly balanced
spatial sampling by Grafström and Tillé (2013).

In this setting, the choice of effective strategies to perform forest cover estimation
is a challenging issue. In this paper we based on some results from a comparison
study recently performed by Fattorini et al. (2015). In presence of effective auxiliary
information, as usually occurs in forest cover estimation, the D estimator is likely to
outperform the HT estimator. Moreover all these schemes are likely to provide good
and similar performance of the D estimator. Accordingly, the use of the OPSS seems
suitable. OPSS has performance similar to the more complex explicitly-constructed
spatial schemes but, contrary to these schemes, it straightforwardly provides SBS
samples and can be well understood and readily planned even by non statisticians.
On the other hand, when using the above-mentioned spatial schemes, the sample
selection is computationally intensive and become practically impossible to apply for
large populations of pixels, as those occurring in forest cover estimation. In this case,
suboptimal implementations of the schemes are necessary (Grafström et al. 2014 and
references therein).

Under OPSS, the populationU of N pixels is partitioned into n blocks of contiguous
pixelsU1, . . . ,Un , each constituted by N/n pixels, and one pixel is randomly selected
from each block. The scheme probably constitutes the first and most simple way
to weaken the selection of contiguous units (Thompson 2002, Chapter 11, 12) and
has a long standing in statistical literature (Breidt 1995). Under OPSS the first order
inclusion probabilities of pixels are n/N , as in the case of SRSWOR,while the second-
order inclusion probabilities are 0 for two pixels belonging to the same block and are
n2/N 2 otherwise.

Because under OPSS the spatial stratification is automatically performed by the
scheme, ensuring a sample of pixels well spread throughout the study region, the
auxiliary information is exploited at estimation level, adopting the difference (D)
estimator (Särndal et al. 1992, Chapter 6). Denoting by j1, . . . , jn the labels of the
pixels selected from U1, . . . ,Un , respectively, the D estimator of forest change turns
out to be

˜̄DY = D̄X + 1

n

n∑

l=1

e jl (4)

where e j = dY j − dX j is the error performed in predicting the change dY j occurred
at pixel j in the reference data by means of the change dX j observed in the map data.
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The D estimator is unbiased with variance

V( ˜̄DY ) = N − n

N

1

n2

n∑

l=1

S2
El (5)

where

S2
El = n

N − n

∑

j∈Ul

(e j − Ēl)
2

is the variance of the e j s within the stratum l and

Ēl = n

N

∑

j∈Ul

e j

is their mean.

5 Analytical checking from an artificial population

The performance of the sampling strategy in which map data are exploited to partition
thepixel population into change andno-change strata and theHTcriterionof estimation
is subsequently adopted to be compared with the sampling strategy in which spatial
balance is achieved by OPSS and then the map data are exploited at estimation level
bymeans of the D criterion. The comparison was performed on an artificial population
of reference data generated from real map data.

5.1 Population

For generating a reference data population, we started from a real area, located in
the Province of Nuoro within Sardinia island (Italy), constituted by a quadrat of size
400 km2. The area was partitioned into a grid U of N = 40, 000 pixels of size 1 ha.
For this area, the Landsat classification (forest/non forest) was available for each pixel
at the years 2000 and 2012, say

x00 j and x12 j , j ∈ U

from which dX j = x12 j − x00 j was also available for each j ∈ U. From these data, the
fraction for the forest area at the years 2000 and 2012 turned out to be X̄00 = 0.5846
and X̄12 = 0.3776 with D̄X = −0.2070.

The map data at the years 2000 and 2012 were subsequently used to generate the
reference data, say

y00 j and y12 j , j ∈ U
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Fig. 1 a Changes occurred
between the years 2000–2012 on
the satellite map constituted by
40,000 quadrat pixels of size
1ha for a quadrat area of size
20km located in Sardinia. b
Changes in the reference map
artificially constructed from the
satellite map

from which dY j = y12 j − y00 j was also generated for each j ∈ U. To generate the
reference data it was supposed that, at both years, α was the probability that a pixel
classified as forest from satellite information was interpreted as forest and β the prob-
ability that a pixel classified as non-forest from satellite information was interpreted
as non-forest. Thus, at both years, the interpreted forest cover at pixel j was generated
from a Bernoulli random variable with parameter α if the pixel was classified as forest
from satellite information and from a Bernoulli random variable with parameter 1−β

if the pixel was classified as non-forest. From some empirical investigations by Sannier
et al. (2014), it is apparent that map data match reference data very well. Therefore α

and β are quite high in most real situations. In this framework we presumed α = 0.90
and β = 0.85. Finally, to avoid excessive, unrealistic fragmentation of the map, when
a cluster of ten or fewer contiguous pixels of one class was completely surrounded by
pixels of the other class, the cluster was assigned to the other class.

The resulting population of reference data had forest coverage Ȳ00 = 0.5950 and
Ȳ12 = 0.3980 with forest change D̄Y = −0.2060. The correlation coefficient between
the real map data and the artificial reference data were 0.80 at the year 2000 and 0.69
at the year 2012. Figure 1a shows the real changes occurred in map data from the two
years while Fig. 1b shows the artificial changes occurred in reference data.
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5.2 Sampling

Samples of sizes n = 100, 400 and 2000, corresponding to sampling fraction of 0.25,
1 and 5%, were presumed for both the strategies.

Regarding the first strategy, i.e stratified sampling joined with HT estimator, the
fraction of sample observations to be assigned to the stratawhere a change has occurred
varied from f = 0.10 to f = 0.90 with steps of size 0.10. High f values over 0.7
were in accordance with Olofsson et al. (2014), that suggest to increase the sample
size for rare change classes. For any choice of f , the sample sizes within the four
strata were determined in accordance to Eq. (3a–d)

Regarding the second strategy, i.e OPSS joined with D estimator, samples of size
100were obtained by partitioning the populations into 100 quadrat blocks of 400 pixels
each, and randomly selecting one pixel per block. Similarly sample of size 400 were
obtained partitioning the populations into 400 quadrat blocks of 100 pixels each and
samples of size 2000 were obtained partitioning the populations into 2000 rectangular
blocks of 5×4 pixels each.

5.3 Performance indicators

Owing to the simplicity of the sampling schemes adopted, there was no need for
simulation to determine the performance of the two sampling strategies. Both of them
gave rise to design-unbiased estimators, so that their precision can be determined from
their variance expressions, rather than approximated by Monte Carlo distributions, as
customary in more complex cases. More precisely, the variances of the HT estimator
(1) and the D estimator (4) were determined using Eqs. (2) and (5), respectively. From
these quantities, the values of the relative standard error (RSE) were determined as
the ratio

√
V /

∣∣D̄Y
∣∣, i.e. the square root of the variance to the absolute value of the

forest change.

6 Results

Table 1 reports the percent values of RSEs for both the strategies and for any sample
size. The RSE values roughly decrease at a

√
n-rate, ranging from 13 to 30% for

n = 100, from 6 to 14 % for n = 400, and from 3 to 6% for n = 2000.

Table 1 Percent values of relative standard errors achieved from the two estimation strategies (Stratification
+HTwith different f values, OPSS+D) adopted for estimating the forest change in an artificial population
of 40,000 pixels with sample sizes n = 100, 400, 2000

n Stratification + HT OPSS + D

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100 17.05 14.07 13.30 13.32 13.91 14.97 16.78 20.06 28.18 13.46

400 8.51 7.03 6.63 6.65 6.92 7.46 8.39 10.05 13.98 6.68

2000 3.76 3.08 2.91 2.91 3.04 3.28 3.70 4.45 6.22 2.88
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Regarding the comparison of the two strategies, the best performance is achieved
by OPSS joined with the D estimator together with the stratified sampling joined with
HT estimator when the fraction of sample observations assigned to FN and NF strata
is of 30 or 40%. These three strategies achieved very similar RSEs of about 13% for
n = 100, 7% for = 400 and 3% for n = 2000. It is worth noting that the stratum FN
is constituted by 10,885 pixels and the stratum NF is constituted by 2604 pixels, so
that the two strata together contain about the 34% of the population. Therefore, the
optimal choices of f are those nearest to the weight of the two strata in the population,
i.e the best choices are akin to a proportional allocation of sample observations to
strata. Unbalanced samples devoting large fractions of sample observations (80–90%)
to strata where changes in map strata are occurred show the worst performance for
any sample sizes.

7 Discussion and conclusions

Land cover change over time is one of the main landscape properties (e.g. Cimini et al.
2013; Hansen et al. 2013). To assess it by sampling on remotely sensed imagery, the
results of our study are in favor of spatial balance of the sampled pixels or, similarly,
stratification with proportional allocation of pixels to strata.

Albeit large literature from remote sensing community proposes to unbalance the
sampling effort in those portions of the survey area where changes are likely to occur,
from our study it is clearly apparent, on the contrary, that spatial balance—achieved
in this case by the straightforward use of OPSS—provides the best performance
while stratification with unbalanced assignment is generally worse, and achieves per-
formance comparable to that provided by spatial balance only for nearly balanced
assignments. The deterioration of the precision entailed by unbalanced assignments
is relevant and should strongly discourage their use. From Table 1, the RSEs achieved
under the maximum disequilibrium between strata ( f = 0.90) are about two times
those achieved under spatial balance or nearly proportional assignments (13 vs 28%
for n = 100, 7 vs 14% for n = 400, 3 vs 6% for n = 2000).

These conclusions are clear: SBS with the use of map data at estimation level by
means of D estimator, and stratification based onmap data with proportional allocation
and the use of HT estimator are both advisable in land cover change estimation and
provide similar performance.

The consideration about the latter option is quite obvious. Indeed, while spatial
balance ensures that the sampled pixels are evenly spread throughout the study region,
the use of stratification with proportional allocation ensures that the sampled pixels are
evenly allocated to the strata determined by map data. However, because these strata
identify zones of changes and no changes in map data, they substantially constitute
spatial strata. Therefore, the evenly apportionment of sample pixels to these strata is
likely to ultimately provide a spatial balance, just like the use of an SBS scheme. At the
same time, because the map data constitute very good proxies for the reference data,
stratification based on map data is likely to be as effective in producing homogeneous
strata, and hence enhancing the HT estimator, as the direct use of map data to predict
reference data in the D estimator.
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These considerations seem to justify the similar performance of the two strate-
gies, at the same time discouraging unbalanced stratifications. Interestingly, on this
issue Grafström and Tillé (2013) also provide theoretical evidence in favour of spatial
balance, proving that spatial balance is the optimal strategy that minimizes the antici-
pated variance of the HT estimator (and, mutatis mutandis, of the D estimator) under
a spatially auto-correlated model.

It is worth noting that very similar conclusions were achieved from a study area of
the same dimension of 400 km2 settled in Central Italy. For this area, the map data
were available and showed a small forest change of about 0.2% while the weight of
the two strata where changes occurred was of 10%. From the map data, the population
of the reference data was artificially generated performing the same steps of Sect. 5.1.
In relative terms, the results are the same as those achieved from the Sardinian case.
The smallest RSE values are achieved by OPSS with D estimators. They are very
similar to those obtained with stratification and HT estimator, when the allocation of
sample to strata is proportional. On the other hand highly unbalanced assignments
( f = 0.90) provide the worst RSEs that are about three times greater. Unfortunately,
in absolute term the performance of the forest change estimators, even at their best, is
disastrous. The smallest RSEs are of about 1800% for n = 100, 900% for n = 400,
and 400% for n = 2000. It is indeed a well know results of spatial sampling that RSE
approaches infinity as the relative size of the area under estimation approaches zero.
Thus, it should be clear that very small changes cannot be estimated reliably. That
invariably holds, irrespective of any guideline suggesting the use of SBSs or, that is
even worse, suggesting to unbalance the sampling effort in those portions of the survey
area where changes are likely to occur.

Owing to the presence of map data as highly effective proxies for reference data, we
have suggested the use of difference estimator joined with OPSS to straightforwardly
achieve spatial balance and efficiency. However, in presence of less effective auxiliary
information, such as raw imagery data (e.g. color values) or LiDAR data, the use
of spatial schemes such as the local pivotal method of first type (Grafström et al.
2012) or the doubly balanced spatial sampling (Grafström and Tillé 2013) would
provide suitable alternatives to the very simple use of OPSS. Indeed, these schemes
are more complex to apply, but ensure well spread samples not only with respect to
the geographical coordinate but also in the space spanned by the auxiliary variables.
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