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Abstract Rain precipitation in the last years has been very atypical in different regions
of theworld, possibly, due to climate changes.We analyzeStandardPrecipitation Index
(SPI) measures (1, 3, 6 and 12-month timescales) for a large city in Brazil: Campinas
located in the southeast region of Brazil, São Paulo State, ranging from January 01,
1947 to May 01, 2011. A Bayesian analysis of non-homogeneous Poisson processes
in presence or not of change-points is developed using Markov Chain Monte Carlo
methods in the data analysis. We consider a special class of models: the power law
process. We also discuss some discrimination methods for the choice of the better
model to be used for the rain precipitation data.

Keywords Bayesian inference · Change-points · Non-homogeneous Poisson
processes · Power law process · Rain precipitation · Standard Precipitation Index

Handling Editor: Bryan F. J. Manly.

B Emílio Augusto Coelho-Barros
eabarros@utfpr.edu.br

Jorge Alberto Achcar
achcar@fmrp.usp.br

Roberto Molina de Souza
rmolinasouza@utfpr.edu.br

1 Departamento de Medicina Social, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil

2 Departamento de Matemática, Universidade Tecnológica Federal do Paraná, Cornélio Procópio,
PR, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10651-016-0345-z&domain=pdf


406 Environ Ecol Stat (2016) 23:405–419

1 Introduction

In recent years it has been observed that rain precipitation had an atypical behavior,
often with excessive rainfall in some areas and very little rain in other regions, perhaps
caused by climate changes observed on the planet. In Brazil this atypical behavior has
been observed in the southeast region where it was rarely seen many drought events
and short of water in water reservoirs that supply the big cities and agriculture. This
temporal behavior of large drought events is common in northeastern region of Brazil,
but rarely seen in the southeast region, the region with the highest population, highest
industrialization and significant agricultural production.

A drought event results from lower levels of precipitations compared to standard
normal precipitations observed during a long period of time. To monitor drought
events, the literature present differentmethodologies such as percentage of normal pre-
cipitation and precipitation percentiles or the Palmer Drought Severity Index (PDSI),
that is ameasurement of dryness based on recent precipitation and temperature (Palmer
1965).

A popular index introduced in the literature and used by many countries around the
world, more simple, easy to calculate, statistically relevant and effective in analyzing
wet periods/cycles or dry periods/cycles is the Standardized Precipitation Index (SPI)
introduced by McKee et al. (1993, 1995). This index has been extensively used by
climatologists around the world (Karavitis 1998, 1999; Hayes et al. 1999; Lana et al.
2001; Sönmez et al. 2005; Livada and Assimakopoulos 2007; Chortaria et al. 2010;
Karavitis et al. 2011).

To calculate the SPI, it is required at least 20–30years of monthly values; optimal
measures requires 50–60years (Guttman 1994). The SPI is based on the probability
of precipitation for any time scale. The probability of observed precipitation is then
transformed into an index.

TheSPI quantifies the precipitation deficit for different timescales. These timescales
reflect the impact of a drought event on the availability of the different water resources.
Soil moisture conditions respond to precipitation anomalies on a relatively short scale;
groundwater, streamflow and reservoir storage reflect the longer-term precipitation
anomalies. For these reasons, McKee et al. (1993) originally calculated the SPI for 3,
6, 12, 24 and 48-month timescales.

The SPI calculation for any location is based on the long-term precipitation record
for a specified period. The SPI index is based on the cumulative probability of a rainfall
occurring at a climate station. The historic rainfall data of the station is fitted to an
asymmetrical distribution as a gamma distribution (usually this distribution gives good
fit for the rainfall data) with the gamma distribution parameters being estimated by
maximum likelihood estimationmethod. In thisway, based on the historic rainfall data,
an analyst can find the probability of the rainfall being less than or equal to a certain
amount. Thus, the probability of rainfall being less than or equal to the median rainfall
for a specified area will be about 0.5, while the probability of rainfall being less than or
equal to an amountmuch smaller than themedianwill be lower. Therefore if a particular
rainfall event gives a low probability on the cumulative probability function, then this
is indicative of a likely drought event. Alternatively, a rainfall event which gives a high
probability on the cumulative probability function is an anomalously wet event. In this
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Table 1 SPI values
2.0+ Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal

−1.0 to −1.49 Moderately dry

−1.5 to −1.99 Severely dry

−2 and less Extremely dry

way the distribution have a standard deviation and ameanwhich depends on the rainfall
characteristics of a specified area. Therefore it is difficult to compare rainfall events for
two or more different areas in terms of drought, as drought is really a “below-normal”
rainfall event. It is important to point out that what is “normal rainfall” in one area
can be surplus rainfall in another area, taking in account only rainfall amounts. The
SPI index is obtained from a transformation of the obtained cumulative probability
gamma function into a standard normal random variable Z with mean of zero and
standard deviation of one. A new variate is formed, and the transformation is done in
such a way that each rainfall amount in the old (gamma) function has a corresponding
value in the new (transformed) Z function. The probability that the rainfall is less
than or equal to any rainfall amount will be the same as the probability that the new
variate is less than or equal to the corresponding value of that rainfall amount. The
resultant transformed variate is always in the same units (Edwards 1997). Positive SPI
values indicate greater thanmedian precipitation and negative values indicate less than
median precipitation. Because the SPI is normalized, wetter and drier climates can be
represented in the same way; thus, wet periods can also be monitored using the SPI.

A classification system introduced by McKee et al. (1993) (see Table 1) is used to
define drought event intensities obtained from the SPI. They also defined the criteria
for a drought event for different timescales. A drought event occurs any time the SPI
is continuously negative and reaches an intensity of−1.0 or less. The event ends when
the SPI becomes positive. Each drought event, therefore, has a duration defined by
its beginning and end, and an intensity for each month that the event continues. The
positive sum of the SPI for all the months within a drought event can be termed the
drought’s “magnitude”.

In this paper, we consider as a main goal of the study, the SPI measures (1, 3, 6 and
12-month timescales) for a large industrial city in Brazil, Campinas, with more than
1million people located in the southeast region ofBrazil, SãoPaulo State, ranging from
January 01, 1947 toMay 01, 2011. The data set is available in the site of the CIIAGRO
(Índice Padronizado de Precipitação—SPI), a site related to climate in São Paulo State,
Brazil: http://www.ciiagro.sp.gov.br/ciiagroonline/Listagens/SPI/LspiLocal.asp.

In Fig. 1, we have the time series plots for the SP I − 1, SP I − 3, SP I − 6 and
SP I −12 in Campinas for the period ranging from January 01, 1947 toMay 01, 2011.

From the plots of Fig. 1, we observe very atypical values of SPI (<−2.0) indicating
severely dry period from the 600th to the 620th months which corresponds to the
period ranging from December 1996 to August 1998. That is, we observe a great
variability of the SPI measures in this period of 2years with alarming consequences.
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Fig. 1 Campinas SPI measures. a SP I − 1, b SP I − 3, c SP I − 6 and d SP I − 12

It is important to point out that the period from December 1996 to August 1998
is a period of a record breaking El Niño event (see NOAA technical report for the
El Niño effects in North America in http://www1.ncdc.noaa.gov/pub/data/techrpts/
tr9802/tr9802), which could be connected to this drought in Brazil.

To model this time series SPI data, we could consider a time series modeling
approach as for example using stochastic volatility (SV) models (Ghysels 1996; Kim
et al. 1998; Meyer and Yu 2000) with a Bayesian hierarchical approach. Alternatively,
in place to model the SPI time series, since a drought event occurs any time the SPI
is continuously negative and reaches an intensity of −1.0 or less, we consider the
calendar time or epochs of droughts less or equal to the threshold L = −1.0 for
Campinas, during the period ranging from January 01, 1947 to May 01, 2011, which
corresponds to a period of T = 770months.
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Fig. 2 Accumulated numbers of SP I ≤ −1.0 in each time versus time (month of occurrence). a SP I −1,
b SP I − 3, c SP I − 6 and d SP I − 12

InFig. 2,wehave theplots of the accumulatednumbers of drought event occurrences
for SP I − 1, SP I − 3, SP I − 6 and SP I − 12 series (SP I ≤ −1.0) in each time
versus time (month of occurrence).

From Fig. 2, we observe the existence of one or two change-points close to the time
period ranging from 600 to 620, which corresponds to approximately the period of
time between the years 1996 and 1998.

For modeling the number of violation occurrences of drought events in Campinas
city, we consider a point process to count violations. Let N (t) be the cumulative
number of violations that are observed during the interval (0, T ) and assume that
N (t) is modeled by a non-homogeneous Poisson process (NHPP). To have the inten-
sity function λ (t) = ∂m(t)

∂t = ∂E[N (t)]
∂t where m (t) is the mean value function, a

monotonic function of t , we could consider different parametrical forms introduced
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in the literature (Cox and Lewis 1966; Musa and Okumoto 1984; Musa et al. 1987).
Bayesian inference for non-homogeneous Poisson processes has been discussed by
many authors (Kuo and Yang 1996; Pievatolo and Ruggeri 2004; Cid and Achcar
1999).

Alternatively, in many applications, we could have the presence of change-points
for the intensity function of non-homogeneous Poisson processes. In this situation,
we have interest to get inference on these change-points where the non-homogeneous
Poisson process changes. Bayesian methods have been used by different authors to
get inference for change-points models (Matthews and Farewell 1982; Achcar and
Bolfarine 1989; Carlin et al. 1992; Dey and Purkayastha 1997; Achcar and Loibel
1998). Raftery and Akman (1986) considered a Bayesian analysis for Homogeneous
Poisson Processes (HPP) in the presence of a change-point. Ruggeri and Sivaganesan
(2005) introduces a Bayesian analysis for change-points in non-homogeneous Poisson
processes consideringPowerLawProcesses (PLP).Applications of non-homogeneous
Poisson processes in presence or not of change-points are introduced by Achcar et al.
(2008, 2010) to analyse ozone pollution data.

In this paper, we consider the use of Markov ChainMonte Carlo (MCMC) methods
(Gelfand and Smith 1990; Smith and Roberts 1993; Chib and Greenberg 1995) to
develop a Bayesian analysis for the change-point in NHPP assuming a popular class
of models commonly used in software reliability or operating safety policy: the PLP
processes.

The paper is organized in the following way: in Sect. 2, we introduce the likelihood
function in presence or not of change-points; in Sect. 3, we present a Bayesian formu-
lation of the model; in Sect. 4, we present a Bayesian analysis of the SPI data from
Campinas city; finally in Sect. 5, we present some discussion of the obtained results.

2 The likelihood function

Let {Nt }, t ≥ 0, be a non-homogeneous Poison process with mean value function
m (t; θ), where θ is a vector of parameters, representing the expected number of
events (Barlow and Hunter 1960) (here is the number of drought months to time t).
The full characterization of a process of this type is achieved by specification of the
functional form of m (t; θ), or equivalently, of its intensity function λ (t) = ∂m(t;θ)

∂t .
We consider the use of a special case of NHPP’s: the power law process (PLP)

defined (Crow 1974), by the mean value function,

mPLP (t; θ) =
(
t

σ

)α

, α, σ > 0, (1)

where θ = (α, σ ). The intensity function of this processes is given by,

λPLP (t; θ) =
(α

σ

) (
t

σ

)α−1

. (2)
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From 2, we observe that the intensity function λPLP (t; θ) has a flexible behavior
for the PLP according to the value of α. The intensity function is increasing for α > 1,
decreasing for α < 1 and constant (i.e. the NHPP is actually a Homogeneous Poisson
Process) for α = 1.

This process is considered to model the epochs of occurrence of drought violations
up to time T . The data set is denoted by DT = {n; t1, . . . , tn; T } where n is the
number of observed occurrence time ti , which we suppose to be ordered, that is,
0 < t1 < · · · < tn < T . Letting N (t) denote the observable number of violation
occurrences in (0, t], considered to be modeled as an NHPP, N (s + t) − N (s) given
θ has a Poisson distribution P [m (s + t; θ) − m (s; θ)] for t > 0 and independent
increments.

The likelihood function for θ considering the time truncatedmodel is given by (Cox
and Lewis 1966),

L (θ; DT ) =
[

n∏
i=1

λ (ti )

]
exp [−m (T )] . (3)

When the counting process undergoes changes over the time range (0, T ), we have
a single change-point τ making a transition between two NHPP’s processes. In this
way, the intensity function of the overall process is given by,

λ (t; θ) =
{

λ1 (t) , 0 ≤ t ≤ τ

λ2 (t) , t > τ
. (4)

where λ j (t) = λ
(
t; θ j

)
, j = 1, 2 is related with the intensity functions defined in (2)

and θ = (α1, σ1, α2, σ2, τ ). Equivalently, letting m j (t) = m
(
t; θ j

)
, the correspond-

ing mean value function is given by,

m (t; θ) =
{
m1 (t) , 0 ≤ t ≤ τ

m1 (τ ) + m2 (t) − m2 (τ ) , t > τ
. (5)

Observe that consideringPLPmodels in the presence of a change-point, the intensity
function (4) is given by,

λ (t; θ) =

⎧⎪⎪⎨
⎪⎪⎩

(
α1
σ1

) (
t
σ1

)α1−1
, 0 ≤ t ≤ τ

(
α2
σ2

) (
t
σ2

)α2−1
, t > τ

. (6)

with corresponding mean value function (5) given by,

m (t; θ) =

⎧⎪⎪⎨
⎪⎪⎩

(
t
σ1

)α1
, 0 ≤ t ≤ τ

(
τ
σ1

)α1 +
(

t
σ2

)α2 −
(

τ
σ2

)α2
, t > τ

. (7)
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Considering the data DT = {
n; t1, . . . , tN (τ ), tN (τ )+1, . . . , tn; T

}
for model (4)–

(5), the likelihood function for θ is given by,

L (θ; DT ) =
⎡
⎣N (τ )∏

i=1

λ1 (ti )

⎤
⎦ exp [−m1 (τ )]

⎡
⎣ N (T )∏
i=N (τ )+1

λ2 (ti )

⎤
⎦

× exp [−m2 (T ) + m2 (τ )] , (8)

where N (s) stands for the number of failures in the interval (0, s]. Observe that (3) is
a special case of (8) when there is not a change-point (e.g., τ = T ).

In presence of two change-points, τ1 and τ2 making a transition between three
NHPP’s processes, the intensity function of the overall process is given by,

λ (t; θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
α1
σ1

) (
t
σ1

)α1−1
, 0 ≤ t ≤ τ1

(
α2
σ2

) (
t
σ2

)α2−1
, τ1 ≤ t ≤ τ2

(
α3
σ3

) (
t
σ3

)α3−1
, t > τ2

. (9)

where θ = (α1, σ1, α2, σ2, α3, σ3, τ1, τ2), with corresponding mean value function
given by,

m (t; θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
t
σ1

)α1
, 0 ≤ t ≤ τ1

(
τ1
σ1

)α1 +
(

t
σ2

)α2 −
(

τ1
σ2

)α2
, τ1 ≤ t ≤ τ2

(
τ1
σ1

)α1 +
(

t
σ3

)α3 −
(

τ2
σ3

)α3 +
(

τ2
σ2

)α2 −
(

τ1
σ2

)α2
, t > τ2

.

(10)
Assuming that the data is observed up to a total time T , where the epochs of

occurrence of cases are denoted by ti , i = 1, . . . , n, 0 < t1 < t2 < · · · < tN (τ1) <

tN (τ1)+1 < · · · < tN (τ2) < tN (τ2)+1 < · · · < tn < T , the likelihood function for θ in
the presence of two change-points τ1 and τ2 is given by,

L (θ) =
⎡
⎣N (τ1)∏

i=1

λ1 (ti )

⎤
⎦ e−m1(τ1)

⎡
⎣ N (τ2)∏
i=N (τ1)+1

λ2 (ti )

⎤
⎦

× e−m2(τ2)+m2(τ1)

⎡
⎣ N (T )∏
i=N (τ2)+1

λ3 (ti )

⎤
⎦ e−m3(T )+m3(τ2). (11)
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3 A Bayesian analysis

In this section, we introduce a Bayesian analysis for the PLP model. Posterior sum-
maries of interest are obtained using Markov Chain Monte Carlo (MCMC) methods.
For a Bayesian analysis of the proposed model, we first assume NHPP’s not in the
presence of a change-point. We assume a uniform distribution U [a, b] in the interval
[a = 0, b = 100] for the parameters α and σ to have approximately non-informative
priors. We further assume prior independence among the parameters.

The joint posterior distribution for θ given the data DT is,

p (θ | Dt ) ∝ p (θ) L (θ | Dt ) (12)

where p (θ) denotes the joint distribution and L (θ | Dt ) is the likelihood function
given in (3). Simulated samples for the joint posterior distribution for θ are obtained
using standard MCMC methods, that is, from the full conditional posterior distribu-
tions p (θi | θ1, θ2, . . . , θi−1, θi+1, . . . , θn, DT ) for i = 1, . . . , n (Gelfand and Smith
1990). A great simplification is obtained using the library R2jags (Su and Yajima
2015) in software R (R Core Team 2015), where we only need to specify the joint
distribution for the data and the prior distributions for the parameters.

In a second stage for the Bayesian analysis, we assume the PLP model in the
presence of a change-point τ . In this case, we assume an uniform prior distribution for
the change-point in the interval (0, T ), and uniformnon-informative prior distributions
for the parameters α1, α2, σ1 and σ2, that is, U [0, 100]. We further assume prior
independence among the parameters.

In presence of two change points, we assume uniform non-informative priors for
the change points parameters τ1 ∼ U [400, 600] and τ2 ∼ U [600, T ], and uniform
non-informative priors U [0, 100] for the parameters α1, α2, α3, σ1, σ2 and σ3.

4 Analysis of the SPI data from Campinas

Consider the precipitation data of Campinas corresponding to the drought occurrences
for SP I − 1, SP I − 3, SP I − 6 and SP I − 12 (SP I ≤ −1.0) from January 01,
1947 to May 01, 2011. This corresponds to a total of T = 770months. The Bayesian
analysis is made considering three cases. In the first case, we consider NHPP’s with
PLP intensity function without the presence of one change-point. In the second case,
we consider the same NHPP’s but now assuming the presence of a change-point. In
the third case, we consider the same NHPP’s but now assuming the presence of two
change-points.

The selection of the best model is made using some existing Bayesian adequacy
measures such as the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002)
which is an approximation for the Bayes factor. Smaller values of DIC indicate better
models. We also discriminate the models by comparing plots of the accumulated
numbers of SP I ≤ −1.0 in each time with the estimated mean value functions versus
time of occurrence. The Bayesian analysis for all models was made using the library
R2jags (Su andYajima 2015) in softwareR (RCore Team 2015). Convergence of the
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Table 2 Posterior means
(standard deviation) for α and σ

(PLP–NHPP not presence of
change points)

α̂ σ̂ DIC

SP I − 1 1.0526 7.5730 751.30

(0.0877) (3.0005)

SP I − 3 1.0042 6.7560 705.25

(0.0868) (2.7845)

SP I − 6 1.0498 8.8409 675.38

(0.0939) (3.5996)

SP I − 12 1.2474 18.3014 652.47

(0.1144) (6.2272)

Gibbs sampling algorithm was monitored by usual time series plots for the simulated
samples and also using some existing Bayesian convergence methods considering
different initial values (Gelman and Rubin 1992).

4.1 NHPP model not in the presence of change-points

Assuming the PLP model, we consider uniform non-informative prior distributions
for the parameters α and σ considering the four SPI series (SP I − 1 with n = 137
observations, SP I−3with n = 124 observations, SP I−6with n = 116 observations
and SP I − 12 with n = 111 observations). A burn-in sample of size 10, 000 was
considered to eliminate the effect of the initial values. The posterior summaries of
interest and theMonte Carlo estimate for DIC based on 2000 simulated Gibbs samples
(by taking every 100th simulated value) are given in Table 2.

4.2 NHPP model in the presence of one change-point

Assuming the PLP model in presence of one change-point, we also consider uniform
non-informative prior distributions for the parameters α1, α2, σ1, σ2 and τ . A burn-in
sample of size 10, 000 was considered to eliminate the effect of the initial values. The
posterior summaries of interest and the Monte Carlo estimate for DIC based on 2000
simulated Gibbs samples (by taking every 100th simulated value) are given in Table 3.

4.3 NHPP model in the presence of two change-points

Assuming the PLP model in presence of two change-points, we also consider uniform
non-informative prior distributions for the parameters α1, α2, α3, σ1, σ2, σ3, τ1 and τ2.
A burn-in sample of size 10, 000 was considered to eliminate the effect of the initial
values. The posterior summaries of interest and the Monte Carlo estimate for DIC
based on 2000 simulated Gibbs samples (by taking every 100th simulated value) are
given in Table 4.

From the obtained Monte Carlo estimates for the Deviance Information Criterion
(DIC) given in Tables 2, 3 and 4, we observe smaller values of DIC assuming the PLP
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Table 3 Posterior means (standard deviation) for α1, α2, σ1, σ2 and τ (PLP–NHPP presence of one change
point)

α̂1 α̂2 σ̂1 σ̂2 τ̂ DIC

SP I − 1 1.1984 1.2936 11.6938 56.4024 652.52 739.52

(0.1035) (0.2662) (4.0724) (27.8015) (16.9473)

SP I − 3 1.0803 1.3638 8.5861 47.7410 565.89 705.11

(0.2432) (0.3056) (5.8506) (30.3880) (167.57)

SP I − 6 0.7811 1.1760 3.5134 13.9759 558.49 655.92

(0.0913) (0.3112) (2.1747) (16.1642) (6.7836)

SP I − 12 0.8579 1.0061 7.0486 6.1740 559.93 620.91

(0.1136) (0.2483) (4.1647) (8.2344) (4.8884)

model in presence of two change-points, that is an indication of better fitted model
for the SPI data set. We also observe better fit of the PLP model in presence of two
change-points by comparing plots of the accumulated number of SP I ≤ −1.0 in each
time with the estimated mean value functions versus time of occurrence (see Fig. 3).

5 Discussion of the results

The use of non-homogeneous Poisson processes assuming a specified parametrical
form for the intensity function could be very useful to analyze precipitation data of
cities throughout the world and explain some atypical drought event periods. This data
would provide information about the epochs of occurrence of drought event violations
of environmental standards during a specific period of time, as is the case of the SPI
measures (1, 3, 6 and 12-month timescales) for the Campinas city, Brazil.

With the use of Markov Chain Monte Carlo methods, we obtain in a simple way
the posterior distribution summaries of quantities of interest. The use of the library
R2jags in software R gives a great simplification in the computational work to
simulate the samples from the posterior distributions of interest.

A common problem with precipitation or other environmental data is the presence
of one or more change-points, possible due to climate changes in the last years. In this
case, we also observe that better NHPP models could be of great use. It is interesting
to point out that other parametrical forms for the intensity function in the NHPP could
be used in a similar way as it was considered using PLP intensity forms.

Important interpretations could be given from the obtained results. Considering
the PLP–NHPP in presence of two change points (the best fitted model), we observe
from the results of Table 4, that: (i) The credibility intervals for α j , j = 1, 3 in
the four SPI measures (SP I − 1, SP I − 3, SP I − 6 and SP I − 12) cover the
value 1, thus behaving similarly to a homogeneous PP, that is, a constant rate for a
corresponding exponential distribution for the inter-arrival times for the SPI measure
threshold L = −1.0 (a normal standard of rainfalls) whereas α2 does not cover the
value 1, with Bayesian estimates close to the value 2 for all SPImeasures, an increasing
intensity (2) which indicates an atypical behavior of rainfall for the period between the
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Table 4 Posterior means (standard deviation) for α1, α2, α3, σ1, σ2, σ3, τ1 and τ2 (PLP–NHPP presence
of two change points)

SP I − 1 α̂1 σ̂1 τ̂1 DIC = 717.58

0.9864 6.4222 552.0760

(0.1019) (2.9832) (11.2752)

α̂2 σ̂2 τ̂2

2.0600 56.1728 632.6092

(0.4228) (27.7165) (14.6925)

α̂3 σ̂3

1.3428 55.2291

(0.2717) (27.8700)

SP I − 3 α̂1 σ̂1 τ̂1 DIC = 660.11

0.8502 3.9576 558.8111

(0.0924) (2.2045) (6.0918)

α̂2 σ̂2 τ̂2

2.1417 57.1688 620.6246

(0.4297) (27.4622) (10.0222)

α̂3 σ̂3

1.4342 56.0449

(0.2791) (27.8015)

SP I − 6 α̂1 σ̂1 τ̂1 DIC = 572.89

0.7765 3.4736 562.8702

(0.0952) (2.2488) (1.4886)

α̂2 σ̂2 τ̂2

2.2520 55.9966 617.0276

(0.4569) (27.6367) (1.3207)

α̂3 σ̂3

1.3676 57.6732

(0.2575) (27.4421)

SP I − 12 α̂1 σ̂1 τ̂1 DIC = 499.81

0.8607 7.2052 563.0705

(0.1155) (4.2379) (1.2856)

α̂2 σ̂2 τ̂2

2.1979 49.5556 622.9102

(0.4483) (27.3415) (1.0153)

α̂3 σ̂3

1.0946 58.9024

(0.2306) (27.4333)
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Fig. 3 Plots of the accumulated number of SP I ≤ −1.0 in each time with the estimated mean value
functions versus time of occurrence. a SP I − 1, b SP I − 3, c SP I − 6 and d SP I − 12

two change-points (larger period of droughts). This means that for the period ranging
from the two estimated change-points given respectively by the approximations (four
SPI measures) 560th and 620th months, corresponding to the period ranging from
February, 1996 to August, 1998 we have many occurrences of the SPI measures less
than the threshold L = −1.0 (similarly to a reliability deterioration model used in
reliability studies). (i i) It is interesting to observe that the Bayesian estimate for σ1 is
close to 6.4 and that the Bayesian estimates for σ2 and σ3 are close to 56. Although it
is hard to interpret this parameter, we could find estimates of the mean value function
(10) for each specified value of time t .

It is important to point out that other modeling approaches could be considered
for the climate dataset as the spline model introduced in Ramsay and Silverman’s
(2006) Functional Data Analysis, but this modeling and comparison of results could
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be the goal of a future paper. Finally, it is important to point out that the class of
models used for the analysis of the rainfall dataset of Campinas could be used in many
other applications with ecological or environmental data as air or water pollution data,
temperature changes, level of sea changes and many other applications.
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