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Abstract The literature onmodelling a predator’s prey selection describes many intu-
itive indices, few of which have both reasonable statistical justification and tractable
asymptotic properties. Here, we provide a simple model that meets both of these cri-
teria, while extending previous work to include an array of data from multiple species
and time points. Further, we apply the expectation–maximisation algorithm to com-
pute estimates if exact counts of the number of prey species eaten in a particular time
period are not observed. We conduct a simulation study to demonstrate the accuracy
of our method, and illustrate the utility of the approach for field analysis of predation
using a real data set, collected on wolf spiders using molecular gut-content analysis.
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1 Introduction

The indices most commonly used to describe a predator’s food preferences, or selec-
tivity, are relatively old (Ivlev 1964; Jacobs 1974; Chesson 1978; Strauss 1979;
Vanderploeg and Scavia 1979; Chesson 1983), and yet many applied papers continue
to use them. A quick search of papers published in 2014 returns hundreds of publica-
tions that cite these fundamental papers, a few being Clements et al. (2014), Hansen
and Beauchamp (2014), Hellström et al. (2014), Lyngdoh et al. (2014), Madduppa
et al. (2014). These indices, though intuitive, lack the statistical rigour of a full model,
focus on a snapshot in time, and rarely allow more than one prey species to be con-
sidered (Lechowicz 1982). Other authors are using the Monte Carlo based method of
Agustí et al. (2003) (see Davey et al. 2013; King et al. 2010), but this is also unable
to take into account multiple prey species across multiple time points. We propose an
intuitive statistical model to estimate and statistically test differences in a predator’s
prey preferences across an array of time points and between multiple prey species.

A comprehensive overview by Lechowicz (1982), later summarised byManly et al.
(2002), details some of the benefits and faults of themost popular indices. According to
these reviews, a majority of the indices give comparable results, save the linear index
L by Strauss (1979), despite the fact that most of the methods differ by range and
linearity of response. While Lechowicz recommends one index, E∗ by Vanderploeg
and Scavia (1979) as the “single best” (Lechowicz 1982), albeit imperfect, index,
Manly et al. (2002) instead take the approach of excluding the subset of indices which
do not “estimate any biologically meaningful value” (Manly et al. 2002). Lechowicz
(1982) recommends the index E∗, an element of the Manly et al. (2002) suggested
indices, because the index value 0 denotes random feeding, the index has a range
restricted to [−1, 1] (though E∗ = 1 is nigh impossible), and the index is based on the
predator’s choice of prey as a function of both the availability of the prey as well as the
number of available prey types (assumed known). The downside to this index is its lack
of reasonable statistical properties (Lechowicz 1982), thus making the computation
of standard errors and thus hypothesis testing difficult. This is, in fact, a common fault
amongst most of the indices.

Manly et al. (2002) recognized the need for more formal statistical inference and
proposed the use of generalised linear models (GLM). The well established litera-
ture on GLMs allows for formal hypothesis testing. Much of this work focuses on
general resource selection and doesn’t directly address the problems of food selec-
tion. By combining the food selectivity literature with formal statistical modelling,
our new method (1) focuses specifically on the problem of predators’ food selection,
while maintaining the intuitiveness of the indices summarised by Lechowicz (1982)
and Manly et al. (2002), (2) offers formal statistical justification, enabling proper
inference and hypothesis testing similar to that of GLMs (Manly et al. 2002), (3)
accommodates data collected from multiple prey species across multiple time points,
(4) provides parameter estimates even when exact counts of prey species eaten are not
fully observed, and (5) providesmeaningful single number summaries of the predators’
food preferences.

Our model assumes that numbers of each prey species captured and the numbers
consumed by an individual predator follow independent Poisson distributions with
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separate rates that might possibly vary between species and over time. Further, we are
able to estimate the rates of interest even when exact counts of each prey species eaten
within any given time period are not observed. When exact counts are unobserved, we
instead rely on the researcher being able to detect prey DNA within the predator’s gut
(Schmidt et al. 2014; Raso et al. 2014;Madduppa et al. 2014) andmake a simple binary
conclusion: this predator ate someof that prey species during this timeperiod or did not.

This paper is organised as follows. Section 2 describes our statistical model, for
both fully observed count data and for the non-observed count data for which we
use the expectation–maximisation (EM) algorithm to estimate parameters of interest,
and the statistical tests used to make statements about the parameters of interest. In
Sect. 3, we offer a simulation study that demonstrates the accuracy of our methods.
Section 4 provides a real data set, which investigates the eating preferences of wolf
spiders (Araneae: Lycosidae), found in the Berea College Forest in Madison County,
Kentucky, USA, to demonstrate how those interested in assessing trophic interactions
with gut-content analyses could apply our methods. A brief discussion concludes the
paper in Sect. 5. Alongside our model, we offer an R (Core Team R 2014) package
named spiders that implements the methods discussed.

2 Methods

We assume that samples of both the predators and prey are captured from the study
area on T occasions. Depending on the species involved and the design of the study
the predators and prey may be sampled in the same way or using different methods.
In the spider experiment described in Sect. 4, for example, prey are captured using
pitfall traps that are dispersed throughout the study areawhereas the predators (spiders)
were captured by hand. Predators and prey species are collected and counted at each
time period. We denote the number of predators and the number of traps in each time
period t ∈ {1, . . . , T } by Jt and It , respectively. Prey species will be indexed by
s ∈ {1, . . . , S}. Let X jst represent the number of prey species s that predator j ate
during period t , where j ∈ {1, . . . , Jt }. Let Yist represent the number of prey species
s found in trap i during period t , i ∈ {1, . . . , It }.

The number of prey species s that predator j ate during period t is assumed to

follow a Poisson distribution with rate parameter λst , X jst
iid∼ P(λst ). The parameter

λst represents the rate at which the predator ate prey species s during time period t .
The number of prey species s found in trap i during period t is assumed to follow

a Poisson distribution with rate parameter γst , Yist
iid∼ P(γst ). The use of Poisson

distributions makes the following implicit assumptions: 1) traps independently catch
the prey species of interest, 2) predators eat independently of each other.

By modelling λst , γst we are able to test claims about a predator’s eating prefer-
ences. Formal statistical statements about the relative magnitudes of the parameters
λ = (λ11, . . . , λST )t and γ = (γ11, . . . , γST )t offer insights to the relative rates at
which predators eat particular prey species. We consider four variations on the relative
magnitude of cst = λst/γst . These four hypotheses each allow cst to vary by time,
prey species, both, or neither.
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Fig. 1 This hierarchy of
hypotheses suggests the order in
which the discussed models
should be tested. One begins
with the most complex models at
the bottom and sequentially,
following the arrows, tests
simpler hypotheses using the
formal test described in Sect. 2.3
until a final model is established

c

cs ct

cst

1. cst = c
2. cst = cs
3. cst = ct
4. cst = cst

The first hypothesis states that the relative rates of sampling for the predator and the
traps are the same for all species on all occasions. One imagines this is the case if
the prey move randomly and the predator simply eats prey which comes within its
reach, thus suggesting no selection for a particular prey item. The second hypothesis
states that predators sample different prey species at different rates, but each rate is
steady across time. This implies that the predator expresses preferences for one prey
species over another, but is unresponsive to changes due to time. Conversely, the third
hypothesis implies that each prey species is sampled similarly within each time period,
while the rates across time are allowed to change. This would happen if the average
amount of prey consumed by the predators changed over time while the relative rates
of sampling remained the same, or if there were changes in the efficiency of the traps,
or both. The final hypothesis assumes a predator’s selection varies by both time and
prey species. This would make sense if environmental and biological variables, such
as weather, prey availability, and/or palatability were affecting predators’ selection
strategies.

Because the four hypotheses are nested, a natural testing order is suggested in Fig. 1.
For instance, suppose interest lies in the predator’s dietary preferences with respect to
prey species s1 and s2 across three time periods. The hypothesis that the predator has
the same preference for the two prey species can be tested with

H0 : λt = ctγt ,∀t
H1 : λst = cstγst .

The alternative here allows for the predator’s preferences to vary independently for
the two species and across the three time points. Similarly, the hypotheses

H0 : λs = csγs,∀s
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H1 : λst = cstγst

would test if the predator’s eating varies by prey species, but not by time, against the
most parameter rich model cst . The above two tests should be performed before any
of the simpler models are tested.

2.1 Fully observed count data

The likelihood function that allows for estimation of these parameters is as follows.
Since we assume X jst is independent of Yist we can simply multiply the respective
Poisson probability mass functions, and then form products over all s, t to obtain the
likelihood

L(λ, γ |x, y) =
T∏

t=1

S∏

s=1

⎧
⎨

⎩

Jt∏

j=1

fX (x jst |λ)

It∏

i=1

fY (yist |γ )

⎫
⎬

⎭ . (1)

Writing all four hypotheses as λst = cstγst , we can, in the simplest cases, find analytic
solutions for the maximum likelihood estimates (MLEs) of cst , γst , and by invariance
λst . Such solutions exist for the simplest model, cst = c, provided that the data are
balanced so that Jt = J and It = I . The solutions are

ĉ = I
∑

s,t X ·st
J

∑
s,t Y·st

and γ̂st = X ·st + Y·st
I
(∑

st X ·st∑
st Y·st + 1

) ,

where X ·st = ∑Jt
j=1 X jst and Y·st = ∑It

i=1 Yist .
In all other cases, analytic solutions are not readily available and instead we rely on

the fact that the log-likelihood l(λ, γ ) = log L is concave to maximise the likelihood
numerically. To compute MLEs, we maximise the log-likelihood, using coordinate
descent (Luo and Tseng 1992), by iteratively solving the likelihood equations (i.e. the
equations obtained by setting the partial derivatives of the likelihood with respect to
the parameters equal to zero). This yields the following equations for updating c in
the models c, ct , and cs respectively

ĉ =
∑

s,t X ·st∑
t Jt

∑
s γst

, ĉt =
∑

s X ·st
Jt

∑
s γst

, ĉs =
∑

t X ·st∑
t Jtγst

, and ĉst = X ·st
Jtγst

.

The equation for updating γ̂st is

γ̂st = X ·st + Y·st
Jt cst + It

,

where cst would be replaced by c, ct , or cs depending on the chosen model.
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2.2 Unobserved counts

In many applications, such as DNA-based gut-content analysis, it is not possible to
count the number of individuals of eachprey species that are in a predator’s gut. Instead,
it is only possible to detect whether or not a predator consumed the prey species during
a given time period, based on the rate at which prey DNA decays in the predator gut
(Greenstone et al. 2013). In this case we can still make inference about the predators’
preferences for the different prey species by using an expectation–maximisation (EM)
algorithm to compute MLEs.

We denote the binary random variable indicating whether the j th predator did in
fact eat at least one individual of prey species s in time period t by Z jst = 1(X jst >

0). Given the Poisson assumptions above, these variables are independent Bernoulli
observations with success probability pst = P(Z jst = 1) = 1 − exp{−λst }. Despite
not observing X jst , we can compute maximum likelihood estimates of the parameters
λ, γ through an EM algorithm using the complete data log-likelihood

lcomp(λ, γ ) = log fX,Y,Z (x, y, z|λ, γ )

=
S,T∑

s,t

⎡

⎣
Jt∑

j=1

log fX,Z (x jst , z jst |λ) +
It∑

i=1

log fY (yist |γ )

⎤

⎦ .

The mass function of Yist is exactly as in Sect. 2.1 and so we focus on deriving the
joint probability mass function of X jst and Z jst . With the distribution of Z jst given
above, we can compute fX,Z (x jst , z jst |λ) by noting that X jst = 0 with probability 1
if Z jst = 0, and that [X jst |Z jst = 0] has a truncated Poisson distribution with mass
function

fX |Y,Z ,λ,γ (x jst |z jst ) = exp {−λst }λx jst
st

(1 − exp {−λst })x jst !1(x jst > 0)

and expected value

EX |Y,Z X jst = λst exp {λst }
exp {λst } − 1

.

The joint probability mass function of X jst , Z jst is then

fX,Z |λ(x jst , z jst ) =

⎧
⎪⎨

⎪⎩

exp {−λst }, x jst = 0 and z jst = 0
exp {−λst }λx jstst

x jst ! , x jst > 0 and z jst = 1

0 otherwise

.

EMalgorithmsworkby iterating two steps, theE-step andM-step, until the optimum
is reached (Dempster et al. 1977; McLachlan and Krishnan 2007). Let k index the
iterations in this EM algorithm so that λ(k) and γ (k) denote the estimates computed on

123



Environ Ecol Stat (2016) 23:317–336 323

the kth M-step. The E-step consists of computing the expectation of lcomp with respect
to the conditional distribution of X given the current estimates of the parameters

Q(k)(λ, γ ) = EX |Y,Z ,λ(k)lcomp

in order to remove the unobserved data. The M-step then involves maximising
Q(k)(λ, γ ) with respect to the parameters in the model to obtain updated estimates of
the parameters,

(λ(k+1), γ (k+1)) = arg max
(λ,γ )

Q(k)(λ, γ ).

These steps are alternated until a convergence criterion monitoring subsequent differ-
ences in the parameter estimates/likelihood is met.

The calculation of Q(k)(λ, γ ) is not difficult and is given by:

Q(k)(λ, γ ) = E log fX,Z |λ(X, z) + log fY |γ ( y)

=
S∑

s=1

T∑

t=1

Jt∑

j=1

E log fX,Z |λ(X jst , z jst ) +
S∑

s=1

T∑

t=1

It∑

i=1

log fY |γ (yist )

∝
∑

s,t, j

(−λst + z jst log λstEX jst
) +

∑

s,t

(−Itγst + Y·st log Itγst )

∝
∑

s,t

(
−Jtλst + z·st log λstE

(
X jst |λ(k)

st , γ
(k)
st

))

+
∑

s,t

(−Itγst + Y·st log Itγst ) . (2)

No analytic solution to the M-step exists, however, so we again chose to maximise
Q with coordinate descent (Luo and Tseng 1992). In fact, as we only need to find
parameters that increase the value of Q on each iteration, we forgo fully iterating the
coordinate descent algorithm to find the maximum and instead perform just one step
uphill within each EM iteration (Givens and Hoeting 2012). Since Q(k) is concave
and smooth in the parameters λ, γ , we are able to use the convergence of parameter
estimates, ||(λ(k), γ (k)) − (λ(k+1), γ (k+1))||∞ < τ , for some τ > 0, as our stopping
criterion.

As we show in our simulation study, this generalised EM algorithm accurately
estimates the parameters when values of λst are relatively small, such that zeros are
prevalent in the data Z jst . In contrast, if the predator consistently eats a given prey
species, few to no zeros will show up in the observed data and EZ jst is estimated to
be nearly 1. The loss of information is best seen by attempting to solve for λst in the
equation 1 = EZ jst = 1− exp{−λst }. As the proportion of ones in the observed data
increases, we expect λst to grow exponentially large. When no zeros are present in the
data, so that only ones are observed, the likelihood can be made arbitrarily large by
sending the parameter off to infinity.
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2.3 Testing

The likelihood ratio test statistic is

Λ(X,Y ) := −2 log
supθ0

L(θ0|X,Y )

supθ1
L(θ1|X,Y )

,

where θ0, θ1 represent the parameters estimated under the null and alternative hypothe-
ses, respectively. It is well known that the asymptotic distribution of Λ is a χ2

ρ

distribution with ρ degrees of freedom (Wilks 1938). The degrees of freedom ρ equal
the number of free parameters available in the stated hypotheses under question. If
we put the null hypothesis to be H0 : λt = ctγt , for all t and contrast this against
H1 : λst = cstγst then there are ρ = 2(S · T ) − S · T − T = S · T − T degrees
of freedom. When the observations X jst are not observed, we use Lobs(λ, γ |Z ,Y ) as
the likelihood in the calculation of Λ

Lobs(λ, γ |Z ,Y ) =
S,T∏

s,t

⎧
⎨

⎩

Jt∏

j=1

fZ (z jst |λ)

It∏

i=1

fY (yist |γ )

⎫
⎬

⎭ .

The level of significance α is used to reject the null hypothesis in favour of the alter-
native hypothesis if P(χ2

ρ > Λ) < α.

2.4 Linear transformations of cst

After determiningwhichmodel best fits the data, more detail may be extracted through
specific hypothesis tests of the elements of cst , or in vector notation as c ∈ R

S·T . Let
the elements of ĉ be themaximum likelihood estimates, ĉst , as found via the framework
above. Since ĉ is asymptotically normally distributed, any linear combination of the
elements is also asymptotically normally distributed. For instance, let a be a vector
of the same dimension of ĉ. Then at ĉ is asymptotically distributed asN (atc, atΣa),
where Σ is the covariance matrix of the asymptotic distribution of ĉ. Tests of the
form H0 : atc = μ against any alternative of interest are then approximate Z -tests.
Confidence intervals of any size are similarly, readily obtained. Suppose, for example,
that the hypothesis cs is determined to best fit the data with s ranging s = 1, 2, 3.
We can test to see whether or not the first two species are equally preferred under the
null hypothesis c1 = c2. This hypothesis is alternatively written in vector notation as
atc = 0, where a = (1,−1, 0)t .

3 Simulation study

Our simulations assume two prey species and five time points, throughout. Of the hier-
archy of hypotheses, we generate data under three models: c, cs, ct . Sample sizes for
both prey species and predator gut count observations are randomly chosen from four
overlapping levels: “small” sample sizes are randomly sampled numbers in [20, 50],
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Fig. 2 The density plot of all
500 estimates of fitting the true
model to the data generated from
models cs with the small sample
size is shown. The ticks along
the x-axis show the true
parameter values associated with
each density. Figures that also
distinguish the densities by
colour are available online
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“medium” [30, 75], “large” [50, 150], and “larger” [100, 200]. This is repeated for
each level of sample size. We simulate 500 replicate data sets for each of the twelve
scenarios above for both types of data, fully observed count data, X jst , and for non-
count data, when we observe only a binary response, Z jst = 1(X jst > 0). Each
scenario is then fitted with the true model that generated the data. All simulations of
non-count data use τ = 10−5 as the convergence tolerance. A subset of the examples
are provided here; the interested reader is referred to the supplementary materials for
the complete simulation results.

For all simulated data, the true parameter values for the rate at which prey species
are encountered in the wild are fixed to be γst = π ≈ 3.14, ∀s, t . The values of λst
are set with respect to each data generating model. For model cst = c, where predator
preferences don’t vary by either time or species, we put λst = 2π,∀s, t . Under model
cs , the ratio of rates vary by species only, so we put λ1t = √

2 and λ2t = π . Hence,
c1 = √

2/π ≈ 0.45 and c2 = 1. For the last model, ct , the ratio of rates vary by time
t . Here, we put λst = t for t ∈ {1, . . . , 5}.

We consider results when the correct model is fit to the simulated data. Figure 2
shows the density plot of the estimates of cs when fitting the true model to the fully
observed count data generated under models cs , while Fig. 3 shows the same for the
estimates of c when data is generated under model c. The plots provide evaluations of
parameter estimates under each scenario. For model cs in Fig. 2, the parameters c1 ≈
0.45 and c2 = 1 are on average, across all 500 simulations, estimated as ĉ1 = 0.45 and
ĉ2 = 1.00, with sample standard deviations of SD(ĉ1) = 0.03 and SD(ĉ2) = 0.06.
Figure 3 provides results for model cst = c. Averaging across all 500 simulations, the
parameter c = 2 is estimated as ĉ = 2.00 with sample standard deviation SD(ĉ) =
0.06. This is further seen in Fig. 4, where box plots of the parameter estimates, centred
at true parameter values, of the correct model fit to data generated from both cs and
ct show empirically very little bias.

We next generated data with unobserved counts. As noted above under certain
circumstances our unobserved counts model accurately estimates the parameters of
interest, and at other times can infinitely over-estimate parameters. To investigate this
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Fig. 3 The density plot of all
500 estimates of fitting the true
model to the data generated from
model c with the medium
sample size is shown. A tick on
the x-axis shows the true
parameter value
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Fig. 4 Shown are all 500 estimates, centred at the true parameter values, from fitting the true model to the
data generated from models cs , ct with sample sizes small and medium, respectively

issue further, we consider the same scenarios mentioned above, but reduce all of the
count data down to binary observations. For each scenario, we fit the unobserved
counts model as if we knew the true underlying model that generated the observed
data.

Figures 5 and 6 contain density plots of the estimates of cs, ct for all 500 replica-
tions of the data generating models cs, ct with the small and the larger sample sizes,
respectively. When data are generated under the model cs and the true model is fit to
the non-count data, we find even for the small sample size that point estimates are
only very slightly biased. When parameter values are of sufficient size to make zeros
in the simulated data less common, the estimates from fitting the correct model to the
generated data are occasionally over-estimated. This effect is easily seen in Fig. 6 for
the two greatest values of ct despite the increased sample size, but is also seen, less
dramatically, in the density plot for the cs generated data. Figure 7 provides box plots
of the parameter estimates, centred at true parameter values.
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Fig. 5 The density plot of all
500 estimates of fitting the true
model to the data generated from
model cs , when counts are not
observed, is shown with the
small sample size. The ticks
along the x-axis show the true
parameter values associated with
each density. Figures that also
distinguish the densities by
colour are available online
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Fig. 6 The density plot of all
500 estimates of fitting the true
model to the data generated from
model ct , when counts are not
observed, is shown with the
larger sample size. The ticks
along the x-axis show the true
parameter values associated with
each density. Figures that also
distinguish the densities by
colour are available online
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The cluster of estimates for c5 between 3.5 and 4.0 in Fig. 6 comes from data
sets in which Z js5 = 1 for all j, s. For the data shown in Fig. 6, this happened 73
times out of the 500 replicated data sets. As mentioned above, the estimate of c5 is
infinite in this case. However, this EM algorithm will always provide a finite estimate
for all parameters when it terminates. In this case, we set τ = 10−5 and this caused
the algorithm to terminate with ĉ5 between 3.5 and 4.0. To confirm that this is due
to the arbitrary choice of τ , we repeated the algorithm with smaller values of τ for
several data sets. As expected, ĉ5 increased without bound as we refit the model with
increasingly small values of τ . Thus, conditional on a mixture of 0s and 1s in the data
the corresponding estimators appear to be unbiased, but when no 0s exist in the data
the theoretical bias is infinite. In practice however we imagine that no 0s in the data
seems an unlikely circumstance.
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Fig. 7 Shown are all 500 estimates, centred at the true parameter values, from fitting the true model to
the data generated from models cs , ct , when counts are not observed, with sample sizes small and larger,
respectively

4 Application

To illustrate these methods, we analysed a data set collected to investigate the feed-
ing preferences of two species of wolf spider, Schizocosa ocreata and Schizocosa
stridulans (Araneae: Lycosidae). Every 6–12days, 10–40 spiders were hand-collected
betweenOctober 2011 andApril 2013withinBereaCollege Forest inMadisonCounty,
Kentucky, USA. Spiders were removed from the leaf litter using an aspirator, placed
in separate 1.5mL microcentrifuge tubes filled with 95% EtOH, and preserved at
−20 ◦C until DNA extraction. In parallel, we also surveyed availability of forest floor
prey using pitfall traps (n = 32). For the analysis, both species of Schizocosa were
pooled and the number of spiders and prey were analysed by month. On average, 69
spiders, 111 Diptera, and 297 Collembola were caught in each time period. The range
of the sample sizes across all 18 months was 11–181 for caught spiders, 7–322 for
trapped Diptera, and 101–755 for trapped Collembola. Figure 8 plots the total number
of each order that was caught during each time period while Fig. 9 shows the prey
proportions in the sample spiders’ guts.

To determine whether spiders had consumed dipterans and/or collemblans, we
conducted a molecular analysis of their gut-contents. First, DNA from spiders was
extracted using Qiagen DNEasy� Tissue Extraction Kit (Qiagen Inc., Chatsworth,
California, USA) following the animal tissue protocol outlined by the manufacturer,
with minor modifications. Whole bodies of the spiders were first crushed to release
prey DNA from within their alimentary canal for extraction. The 200µL extractions
were stored at −20 ◦C until PCR. Second, order-specific primers from the literature
were used to detect the DNA of Collembola and Diptera within the guts of the spiders.
Primer pairs designed by Sint et al. (2012), targeting the 18S rDNA gene, were used
to detect Collembola predation Table 1. A PCR cycling protocol for 12.5µL reactions
containing 1× Takara buffer (Takara Bio Inc., Shiga, Japan), 0.2 mM dNTPs, 0.2µM
of each primer, 0.625UTakara Ex TaqTM and 1.5µL of template DNA, using BioRad

123



Environ Ecol Stat (2016) 23:317–336 329

Time (2011−2013)

M
ea

n 
P

re
y 

Tr
ap

pe
d

0

1

2

3

Oct Jan Apr Jul Oct Jan

Fig. 8 For both Collembola (dashed) and Diptera (solid), the plot shows the number of the prey trapped
in each time period. Figures that also distinguish the lines by colour are available online
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Fig. 9 For both Collembola (dashed) andDiptera (solid), the plot shows the prey proportions in the sampled
wolf spiders’ guts in each time period. Figures that also distinguish the lines by colour are available online
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Table 1 Targeted prey orders, primer names and sequences, size of amplicon, and source of design for the
detection of prey taxa within the guts of Schizocosa spiders

Target group Primer names and sequences 5′–3′ Size (bp) Source

Collembola Col3F: GGACGATYTTRTTRGTTCGT 228 Sint et al. (2012)

Col-gen-A246: TTTCACCTCTAACGTCGCAG

Diptera DIPS16: CACTTGCTTCTTAAATrGACAAATT 198 Eitzinger et al. (2014)

DIPA17: TTyATGTGAACAGTTTCAGTyCA

Both primer sets were used in singleplex PCR assays

PTC-200 and C1000 thermal cyclers (Bio-Rad Laboratories, Hercules, California,
USA), was optimised as follows: 95 ◦C for 1min, followed by 35 cycles of 94 ◦C for
30s, 61.2 ◦C for 90s, and 72 ◦C for 60s. Primer pairs designed by Eitzinger et al.
(2014), targeting the 18S rDNA gene, were used to detect Diptera predation Table 1.
PCR cycling protocol for 12.5µL reactions with Takara reagents (as above) and 2µL
of template DNA was optimised as follows: 95 ◦C for 1 min, followed by 40 cycles
of 94 for 45 s, 60 ◦C for 45s, and 72 ◦C for 45s. Both primer pairs were tested for
cross-reactivity against a range of prey and predator species from the field site and in
all cases, no amplification of DNA was observed, confirming suitable specificity of
the primers for this study. Lastly, electrophoresis of 10µL of each PCR product was
later conducted to determine success of DNA amplification using 2% Seakem agarose
(Lonza, Rockland,Maine,USA) stainedwith 1x GelRed™nucleic acid stain (Biotium,
Hayward, California, USA). This procedure allowed us to determine a presence or an
absence of Diptera and Collembola DNA within each spider.

These data provide an example of our hierarchy of hypotheses. From the bottom
of the graph in Fig. 1, we tested the most parameter rich model cst = λst/γst against
models cs, ct . In both cases, the more parameter rich model fits these data better than
is expected by chance; H0 : cs versus H1 : cst gives p value < 0.0001 and H0 : ct
versus H1 : cst gives p value < 0.0001. Model cst estimates 72 parameters in total;
since, in this case, there are two prey of interest and 18 time periods, it takes 36
parameters to estimate each cst and γst . Figures 10 and 11 plot the point estimates and
95% confidence intervals of cst , for both prey across all time periods.

With point estimates of cst under the model cst = λst/γst , we can test any number
of linear contrasts. For instance, the hypotheses c1t = c2t , for t ∈ {1, . . . , 18} state
that wolf spiders equally prefer the orders Diptera and Collembola at each of the
18 time points. Using a level of significance of 0.05, and after making a Bonferroni
multiple comparisons adjustment, the data can not say that the two prey are differently
preferred in October, November, and December of 2011 and for March and July
of 2012. In all other time periods, the data suggest that Diptera and Collembola are
unequally preferred bywolf spiders. Contrasts such as these allowmolecular ecologists
to identify in greater detail and formally test changes in prey preferences across time
points and multiple species.
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Fig. 10 Point estimates (solid) and 95% confidence intervals (dashed) as estimated from the model cst for
Collembola. Figures that also distinguish the lines by colour are available online
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Fig. 11 Point estimates (solid) and 95% confidence intervals (dashed) as estimated from the model cst for
Diptera. Figures that also distinguish the lines by colour are available online
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5 Discussion

The earliest estimators of predators’ dietary preferences, summarised by Lechowicz
(1982) andManly et al. (2002), produced one number summaries that rarely considered
more than one prey species, did not take into account changes across time, and had
minimal statistical justification. Instead, they were justified by arguing in favor of
each index’s unique, and claimed “optimal,” properties. Further, these indices could
not handle unobserved count data.

A more recent method for testing prey preferences was developed by Agustí et al.
(2003). This method attempts to test the hypothesis that individuals are eating prey at
randomusing a test based onMonte Carlo simulation (more specifically the bootstrap).
Unfortunately, the method described does not attempt to model the distribution of the
number of prey items eaten, as we have done, and therefore we provide a method-
ological advance on the approach described previously. The null hypothesis tested by
Agustí et al. (2003) is that the proportion of prey species j = 1, . . . , J in the meso-
cosm, denoted π j , is equal to the proportion of prey species j in the predator’s guts,
denoted by p j , at all of the sampling times. This is tested by repeatedly simulating
the gut contents of spiders in each sample under this hypothesis and then comparing
summary statistics computed from the observed data and the simulated data to gener-
ate a p value. The problem with this approach is that the relationship between π j and
p j depends on the number of prey items eaten by each predator. If each predator had
eaten exactly one prey item then the null hypothesis of Agustí et al. (2003) would be
equivalent to random sampling of prey. However, the relationship between π j and p j

is more complicated when predators can have more than one prey item in their gut.
Given that a predator has m prey items in its gut, randomly sampled from the meso-
cosm, the marginal probability that at least one item from prey species j is present
is 1 − (1 − π j )

m . The marginal probability that an individual has as least one item
from prey species j in its gut is then

∑∞
m=1(1− (1− π j )

m)P(m), where P(m) is the
probability that a predator has a total of m species in its gut. The presence of species
in a predator’s gut contents also cannot be simulated without modeling the number
of items in the gut for exactly the same reason. This demonstrates the importance
of knowing the distribution of prey items in the gut in testing the hypothesis of ran-
dom sampling. Monte Carlo simulation methods similar to this could be implemented
using the output from our model, but these would be computationally intensive in
comparison to the likelihood ratio tests which can be computed almost immediately.

Throughout this paper we assume the complete data were generated from under-
lying Poisson distributions. Though this assumption is not easily tested, and other
factors affecting our model may distort our methods (e.g. sampling issues, environ-
mental variables, differential decay rates), we do not believe a better assumption
is readily available to handle all the cases we considered. The Poisson distribution
provides reasonable biological interpretation to the available data, data obtained by
ecologists interested in prey electivity. Alternatively, one could hypothesize a more
complex distribution that similarly has good biological interpretation, say a distrib-
ution with more than one parameter. Such a distribution could theoretically perform
better than our model when full count data are observed and the sampled data were
not generated from a Poisson distribution—if the data were generated from a Poisson
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distribution then our likelihood ratio test ensures we are using the most powerful test
available. However, when only unobserved count data is available, any distribution
with more than one parameter is unidentifiable. The Poisson distribution on the other
hand allowed us to use a relatively simple EM algorithm to estimate parameters of
interest when only unobserved count data are available. Future development of our
methods might consider more complex distributions to handle variables not presently
considered in the case of fully observed count data.

Beyond the statistical assumptions, sampling of prey availability should be given
careful attention. To survey prey of interest, we relied on pitfall trapping, which is a
reasonable method to quantify potential prey encounters of sit-and-pursue predators,
such as wolf spiders (Uetz et al. 1999). In general, however, human-made traps are
liable to collect prey at rates unequal to that of the predator of interest. Confounded
with researchers’ abilities to make sufficiently efficient traps are a host of environ-
mental variables. Researchers should consider these potential sampling issues and
attempt to determine, a priori, how well their traps will characterize prey availability
according to the biology of their focal predator. If such issues are steady over time,
then mathematically the parameter cst = λst/γst is directly affected. When human-
made traps are relatively and consistently more efficient at catching prey than are the
predators, cst will be relatively smaller. Conversely, when the traps are relatively and
consistently less efficient, cst will be relatively larger. Unfortunately, these factors
can be difficult to control, practically, or otherwise, and are to some degree unavoid-
able. Mark-recapture methods might be implemented to adjust for trap efficiency and
estimate the true density of each prey species. However, recapture rates are likely to
be low and this type of data is beyond what is regularly collected in these types of
experiments.

If issues of trap efficiency or abundance are suspected to change across sampling
times, we offer an alternative parameterization, details of which are found in “Appen-
dix”. The ratio cst = λst/γst implicitly treats γst as an index proportional to true
abundance. This assumption is valid if the traps maintain efficiency across all occa-
sions, but otherwise is incorrect. Rewriting cst as kstdt , such that

∑S
s=1 kst = 1 for all

t , allows for trap efficiency to vary across time. The parameter dt captures changes in
the absolute relationship between λst and γst which may be due to actual changes in
abundance or to changes in trap efficiency. kst then appropriately measures the ratio
of consumption to encounter rates, taking into account changes in abundance or trap
efficiency.

The methods we presented offer ecologists a formal statistical framework to model
and test predator feeding preferences across an array of time points and prey species.
Building from intuitive assumptions, we have developed methodologies for analyzing
counts of prey items consumed and have extended these methods for analyzing simple
presence/absence data.We have provided computationally efficient methods for fitting
these models using the EM algorithm and developed powerful tests for a hierarchy
of hypotheses based on the likelihood ratio. We are not aware of previous methods
that have offered such abilities. These methods are available to researchers via the R
package spiders which is available at http://cran.r-project.org/web/packages/spiders/
index.html (Roualdes and Bonner 2014).
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Appendix: Varying trap efficiency

When there is concern about trap efficiency varying across time, we recommend the
following reparameterization of cst = λst/γst . Let

kstdt = λst

γst
,

such that
∑S

s=1 kst = 1, for all t . The parameter dt allows for changes in trap efficiency
or in actual abundance over time. If such changes are believed to be present, this
reparameterization allows for a more natural interpretation. The parameter kst models
relative consumption to encounter rates, as expected.

Since this reparameterization amounts to a linear transformation of the parameters,
the asymptotic distribution for d̂t can be evaluated directly. Because of the constraint∑S

s=1 kst = 1, we find that dt = ∑S
s=1 cst orwritten inmatrix notation d = 1′c, where

d ∈ R
T . The asymptotic distribution of d̂ follows immediately, d̂

·∼ N (1′d, 1′Σ1),
where Σ is the covariance matrix of the asymptotic distribution of ĉ.

More importantly, we can find the asymptotic distribution of k̂t = (k1t , . . . , kSt )′ ∈
R

S . We make use of the delta method (Serfling 2001). The asymptotic variance relies
on the derivatives, dkrt/dcst . Let c·t = ∑S

s=1 cst . Because kst = cst/c·t , we can find
the necessary derivatives in two cases

dkrt
dcst

=
⎧
⎨

⎩

−crt
c2·t

, r �= s
c·t−cst
c2·t

, r = s.

Thus, the asymptotic distribution of k̂t is N ( cstc·t , (
dkt
dct

)Σ( dktdct
)′).
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