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Abstract The structure of ecological communities is often thought to be strongly
influenced by population interactions. The interactions are often labeled as bottom-up
and top-down control. Previous approaches to identify these processes often assume
each population in the community is itself regulated. Therefore, each time series
follows a stationary process. However, complex community structure and a lack of
regulation in an individual population can result in inappropriate inferences based on
traditional statistical approaches. Here, we introduce a statistical framework to analyze
potentially non-stationary time series that are collectively regulated. We demonstrate
the method with catch-per-unit-effort time series data of selected populations in the
Gulf of Mexico. In the Gulf, we found that most of the time series data, which span
26years, were non-stationary, thus individually unregulated. Species interaction pat-
terns were location-dependent, but where brown shrimp interacted significantly with
other species, we identified significant bottom-up forcing. On the other hand, we find
almost no evidence of top-down forcing throughout the study areas.
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1 Introduction

The identification of forces that regulate the dynamics of ecological communities has
important implications for both theory (Hairston et al. 1960; Paine 1980;Oksanen et al.
1981; Hunter and Price 1992; Strong 1992; Mutshinda et al. 2009) and management
(Rabalais et al. 2002; Smith et al. 2010). These forces include environmental sto-
chasticity, demographic stochasticity and density-dependent regulation (Lande et al.
2003; Wilson and Lundberg 2006). In this paper, we restrict our attention to density-
dependent regulation among “seemingly” unregulated populations. We use the word
“seemingly” because although populations may be regulated in the long run, they do
not appear to be regulated statistically when time series are short. From such data, we
try to identify two types of population interactions, top-down and bottom-up controls.
A top-down control is herein defined as onewhere the consumer population abundance
regulates the abundance of its resource population, and a bottom-up control is defined
as one where the abundance of the resource population regulates that of its consumer.
The interaction between two populations may include both trophic and non-trophic
effects.

Empirical approaches to identify bottom-up and top-down processes in multi-
species communities commonly involve correlation analyses of time series data on
abundance indices, e.g., biomass, or catch-per-unit-effort (CPUE; Shiomoto et al.
1997; Worm and Myers 2003; Frank et al. 2005; Laundré et al. 2014). This method
associates top-down forcing with a negative correlation between time series of con-
sumer and resource populations, and bottom-up forcing with a positive correlation
between the two. However, both the non-stationarity in the time series of community
dynamics and the inability to observe all the interacting species pose serious problems
in making appropriate inferences regarding community dynamics as described below.

The prevalence of non-stationarity in ecological and fisheries data is one problem
inherent in the analysis of population time series (Steele 1985; Pimm and Redfearn
1988; Inchausti and Halley 2001; Stergiou 2002; Halley and Stergiou 2005; Wilberg
and Bence 2006; Niwa 2007; Rouyer et al. 2008; Knape and De Valpine 2012).
Non-stationarity often violates model assumptions and produces spurious results. The
correlations among non-stationary time series are spurious in the sense that the esti-
mated coefficients are statistically significant when there are no real relationships
among variables (inflated type I error rate). For example, in the analysis of fisheries
time series data, spurious results are often produced by correlating cumulative-sum
(CUSUM)-transformed variables because the CUSUM transformation generates non-
stationary time series from stationary time series (Cloern et al. 2012).

One approach for dealing with non-stationary time series is to model them as unit-
root processes (Enders 2008). A time series is considered to have a unit-root when
it can be made stationary by taking a first difference. The most common unit-root
processes in the ecology and fisheries literature are random walks. The time series
produced by first differencing a random walking time series is white noise, which is

123



Environ Ecol Stat (2016) 23:181–204 183

stationary (note that the first difference of a unit-root time series is not necessarily
a white noise sequence). The lag-0 autocovariance for a random walk process is not
stationary and it increases over time. Random walk process has a power spectrum that
approaches infinity with decreasing frequency (spectral reddening). These features are
commonly observed in fisheries and other population time series (Steele 1985; Pimm
and Redfearn 1988; Inchausti and Halley 2001; Stergiou 2002; Halley and Stergiou
2005; Niwa 2007). This suggests the appropriateness to model each univariate non-
stationary population time series as a unit-root process.

Persistent natural populations should show evidence of regulation in the long term
historic trends of population abundances, whether they are regulated towards an equi-
librium point or an equilibrium zone (Strong 1986; Krebs et al. 1994; Murdoch 1994).
Their population time series are expected to be stationary in the long run. However,
regulationmay not be evident in short time series, especially if we only deal with single
time series. For example, the existence of an equilibrium point or equilibrium zonewas
questioned by Strong (1986) in the dynamics of some populations, and the phenom-
enon of a lack of density dependence in persistent populations was coined “vague”
density dependence. However, it is generally acknowledged that density dependence
is necessary for population regulation (Murdoch 1994). Many factors have been con-
sidered as potential causes of the density “vagueness” phenomenon, which include
the mismatch of the spatial scale between the analysis and the ecological process (Ray
and Hastings 1996), the lack of statistical power of statistical tests (Knape and de
Valpine 2012), and the short length of time series data. Here, we explore the situa-
tion when there exists an equilibrium zone within which the population abundance
is weakly regulated. A relatively short observation of the dynamics would reveal no
or insufficient information on population regulation to conclude density dependence.
Therefore, when we have non-stationary time series, instead of assuming each popula-
tion is individually regulated, we test for stationarity with two or more non-stationary
time series together. When such a relation is identified, it is included in the further
analysis to investigate population interactions.

The other problem in identifying bottom-up and top-down forcing is that, invari-
ably, analyses are performed on a subset of the trophic web and inferences must be
made based on our knowledge of a partially-observed system (Stenseth et al. 1997).
Furthermore, trophic “cross-links” (Paine 1980) can act as indirect pathways to pro-
duce unexpected indirect effects in ecological communities (Wootton 1994). Problems
resulting from the inability to observe potentially important species interactions can
be illustrated conceptually by a hypothetical ecological community with two con-
sumers and one common resource denoted by P1, P2 and V (Fig. 1). In this example,
consumer and resource abundances in a bottom-up forced community could be either
positively correlated, negatively correlated or uncorrelated. P1 and P2 compete, with
P1 being competitively superior to P2, and both P1 and P2 are affected by changes
in V (bottom-up). If P2 can be observed, but not P1, and the positive impact of the
bottom-up forcing is weaker than the negative impact from competition with P1, then
fluctuations in V and P2 will be correlated negatively, leading to the spurious inference
of top-down forcing. An example of 3-species indirect facilitation, in which there was
a positive indirect relation between a keystone predator and a consumer population,
has been reported in a freshwater benthic community by Holomuzki et al. (2010).
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Fig. 1 Diagram showing an example of three-species interactions. This bottom-up driven community has
two trophic levels. Each circle represents a population, and arrows represent population interactions and the
direction of that interaction, e.g., the arrow running from population V to population P1 denotes a positive
numerical response from the resource to the consumer population, and this interaction is unilateral. The two
consumer populations at the higher trophic level are competitors for available resources. The sign at the left
hand side of each circle represents one scenario where a spurious inference could arise from the correlation
method. The gray area denotes the population not observed, or excluded from the model formulation, and
the white area denotes available data. See the main text for details

Thus, the identification of bottom-up versus top-down forcing of a food web based on
the sign of correlation coefficient is difficult, if not impossible. However, the direction
of the effect of species interaction does not change under indirect species interactions,
e.g., in the above example, a change in the resource population drives a change in
the consumer population, whether positive or negative. This example illustrates the
importance of using a Granger causality based method (Granger 1969; Detto et al.
2012), rather than using the sign of the correlation coefficient. Granger causality is a
statistical concept based on prediction. If variable x helps the prediction of variable y,
then x causes y in the sense of Granger causality. In this example, although the corre-
lation between populations V and P2 is negative, V still causes P2 because knowing
the time series of population V improves the prediction of the time series of population
P2 through the species interaction. Here, we define the link between statistical model
and top-down and bottom-up hypotheses as following. If the resource population time
series improves the prediction of its consumer population time series, we say there
is a bottom-up effect; similarly, if the consumer population time series improves the
prediction of its resource population time series, we say there is a top-down effect. This
interpretation is the same as the one used in the literature (Ives et al. 2003). However,
we here introduce the co-integration term, which allows us to model non-stationarity.

In the sections that follow, we describe a new practical approach to identify
bottom-up and top-down control, which overcomes the statistical difficulties asso-
ciated with the non-stationarity of ecological time series data and also reduces the
difficulties resulting from the inability to observe potentially important ecological
interactions. We first provide an overview of our approach to the analysis of mul-
tivariate time series of CPUE data, which are potentially non-stationary. We then
describe a quantitative framework for a linear multi-species community model. Then,
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we demonstrate an application of our approach by analyzing CPUE time series data
from the shrimp/ground fish fishery in the Gulf of Mexico. Finally, we discuss some
implications of our results.

2 Materials and methods

2.1 Overview of the proposed method

An overview of the steps involved in our approach to identifying bottom-up and top-
down control by analyzing multivariate time series data is presented in Fig. 2. First,
non-stationarity in the time series is checked visually based on time series plots. Then,
to confirm the observation, univariate unit-root tests, e.g., the KPSS test (Kwiatkowski
et al. 1992) and the Dickey–Fuller tests (Dickey and Fuller 1979; Said and Dickey
1984), are applied. Unit-root tests indicate whether the time series is stationary or a
unit-root exists. We note that there are other processes generating non-stationarity in

Fig. 2 Steps in analyzing multivariate time series data. a After plotting each individual time series, we
first check visually for non-stationary behavior. Then, various stationarity and unit-root tests, e.g., KPSS
test and Dickey–Fuller test, can be conducted to confirm the stationarity or the existence of a unit-root in
the time series. A time series having a unit-root in its characteristic equation is not stationary. There are
other types of non-stationarity as mentioned in the introduction, but we do not discuss them here. b Next,
linear models are built. When some (≥2) of the time series are integrated, we use multivariate unit-root
tests to determine the long-run relationship among time series. cGiven the long-run relationship, ecological
hypotheses can be tested. If test results indicated that only one time series {xt } is non-stationary, other
time series should be linearly independent of {xt } in the long term relation because a non-trivial linear
combination of a non-stationary time series and stationary time series cannot be stationary. When all the
individual time series are stationary, vector autoregressive models can be used, and all the hypothesis tests
outlined above can be conducted in a similar fashion
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the data (Stenseth et al. 2004; Engle 1982), but they are beyond the scope of this paper.
If the time series is produced by a unit-root process, it is not stationary, but its first
difference is stationary. For this reason, a unit-root process is also considered integrated
of order one, denoted as I (1); the first difference of a unit-root process is considered
integrated of order zero, denoted by I (0), because the difference is stationary without
further differencing.

Next, linear models are built. If every time series is stationary, vector autoregres-
sive (VAR) or multivariate autoregressive (MAR) models (Ives et al. 2003; Hampton
et al. 2013) can be applied directly. If some or all of the time series are integrated of
order one, multivariate unit-root tests (Johansen 1991) are used to test if a non-trivial
linear combination of I (1) processes is integrated of order zero. If such a linear rela-
tionship exists, the linear combination is considered to be the co-integration relation.
Because non-stationarity is common among population time series, our approach will
expand the applicability of the analysis by incorporating non-stationarity into a VAR
or MAR model. Given the presence or the lack of co-integration relation(s) among
non-stationary time series,VARmodels that incorporate various ecological hypotheses
related to community structures are built. This is described in the next section.

2.2 A multi-species linear population model

Vector autoregressive (VAR)models are routinely used tomodel population time series
data (Hampton et al. 2013). Due to the presence of non-stationary time series, here,
the VARmodel is written in a vector error correction model (VECM) form (Engle and
Granger 1987). A pth order VAR model for s populations is

N(t) =
p∑

i=1

Φ iN(t − i) + C + W(t)

where N(t) is an s × 1 vector of log-transformed population abundances at time t ,
Φ i (i = 1, 2, . . . , p) are s × s coefficient matrices, vector C is an intercept term, and
vector W(t) is a stochastic term. It has a VECM representation

ΔN(t) = BN(t − 1) +
p−1∑

i=1

ΘiΔN(t − i) + C + W(t) (1)

where

B =
p∑

i=1

Φ i − I,

Θ j = −
p∑

i= j+1

Φ i
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where j = 1, 2, . . . , p−1,ΔN(t) = N(t)−N(t−1), B andΘi (i = 1, 2, . . . , p−1)
are s × s coefficient matrices. Matrix B (s × s with rank r ) can be written as a matrix
product αβT with α and β each with dimension s × r , and T denotes the transpose of
a vector. Each column of β contains coefficients for the co-integration relation, and
each column of α contains what are called adjustment coefficients, and it determines
how much each population is responding to the co-integration relationship. βN is
called disequilibrium error and it plays an important role in determining the long term
community dynamics as described later in this section. On the left hand side of Eq. 1
is the change of the s-dimensional state vector at time t . This change is decomposed
into four components on the right hand side of the equation. From left to right, we
interprete these terms as the long-run relationship, short-run relationship, intercept
term and stochastic term, respectively. Each individual time series in vector N(t) can
be either integrated of order one or zero.

In the main text, we focus on inferences on the long-run component of the model,
and defer the results on the short-run component to the “Appendix”. Inferences on the
short-run component of the model are well known and covered elsewhere (Lütkepohl
2007; Hampton et al. 2013). We expect that when regulation is not strong at the
individual population level, i.e., the non-stationarity of some univariate population
time series cannot be rejected, the long-run component of the model plays the major
role in community dynamics.

The number of linear equilibrium relationships among potentially non-stationary
time series, i.e., the rank of matrix B, can be estimated by Johansen’s test of co-
integration, which has been verified with simulated data sets and extensively used in
econometrics (Johansen and Juselius 1990; Johansen 1991, 1995). First, VARmodels
were fitted to the data, and order p was chosen based on BIC (Tsay 1984). Then,
likelihood ratio tests were used to determine the rank of matrix B. The test statistic
(trace statistics) was calculated successively to determine the rank ofmatrix B, starting
from the null hypothesis of no equilibrium relationship (r = 0) against at least one
equilibrium relationship (r ≥ 1) and adding the number of equilibrium relationships
at each step. With the rank of matrix B set to r , different hypotheses based on α and
β were formed and tested using likelihood ratio tests (Johansen 1995).

The contribution of the long-run component of the model to community dynamics
is determined by the rank of B. The equilibrium states are in the null space of matrix
B, which is the set of solutions to Bx = 0, and their dimension depends on the
number of I (1) time series and the linear dependency of the time series. We consider
the following three cases (1) when all the time series in N are stationary, (2) when
some of the time series are I (1) and subsets of them form co-integration relationships,
(3) when all the time series are I (1) and they do not co-integrate. When matrix B
is of full rank (i.e., r = s), the equilibrium state is a point in the s-dimensional
space. When this equilibrium point is stable, it attracts community trajectories in the
long run. On the other hand, when some of the components of vector N are not
stationary, matrix B is of reduced rank, and the long-run component plays a major
role in community dynamics. When some of these time series co-integrate (Engle
and Granger 1987), i.e., there is a non-trivial linear combination of I (1) time series
that produces a stationary time series, the community dynamics are regulated. When
all the time series are integrated of order one and do not co-integrate, the rank is

123



188 Environ Ecol Stat (2016) 23:181–204

zero (Johansen 1995) and the community dynamics are not regulated. In addition,
we consider an equilibrium relationship exists among all the species considered if
the disequilibrium errors, i.e., each component of βN , follow a stationary process
(Banerjee et al. 1993). The disequilibrium errors are calculated as β̂TN , where β̂ is
estimated through Johansen’s procedure. The equilibrium states of the system defined
byEq. 1 can be found by setting stochastic terms to zero, substituting N(t) and N(t−1)
by N∗, and solving for N∗.

When every component of matrix N is stationary, a VAR model can be applied
directly to the population data. The test of bottom-up forcing becomes a test of the sig-
nificanceof the coefficients of the resource population terms in the consumer equations,
and the test of top-down forcing becomes a test of the significance of the coefficients
of the consumer population terms in the resource equations. Likelihood ratio tests can
then be constructed to test the significance of each hypothesis (Lütkepohl 2007).

When not all the components of vector N are stationary, and some of those non-
stationary components co-integrate, matrix B becomes singular. The coefficients that
make the linear combinations of components of N stationary are in the rows of β.
These linear combinations become factors, into which the equilibrium relationship for
each component population is partitioned. The factor scores are found in the columns
of α. Matrix B is factored into αβT, α is s-by-r , and β is s-by-r . Here, s is the number
of time series, and r is the rank ofmatrix B. Then the term BN can bewritten asαβTN .
Vector N is the vector of original time series. The coefficients of each column of β are
the coefficients that make linear combinations of the time series N stationary. There
would be r such linear combinations. These r linear combinations (i.e., βTN) are
similar to factors, because they are unobserved and the number of them is less than the
number of original time series. Thus, β is similar to factor score coefficients, and α is
similar to factor loadings. By testing constraints (restrictions) on β, we can determine
which species have an equilibrium relationship. Similarly, by testing restrictions on
α, we can determine the direction of species interactions.

Finally, when all the time series are non-stationary and linearly independent, the
rank ofmatrix B is zero. In this case, there is no simple equilibrium relationship among
these time series, and bottom-up and top-down hypotheses cannot be tested.

N may also have a drifting trend. This trend is incorporated into C, and its signifi-
cance can then be tested (Johansen 1991). When the population dynamics do not have
a drift term, the intercept term (C) in Eq. 1 can be moved inside the matrix product
BN , and it will be stacked at the first row of β with N augmented by a constant. Such
a model is called a restricted intercept model.

2.3 Significance of a focal population in the long-run component of the
assemblage dynamics

Sometimes it is necessary to test the significance of a focal population in the equi-
librium relationship(s). Suppose we have time series data of one resource population
and multiple consumer populations. When an equilibrium (co-integration) relation is
identified in the data set, either of the following scenarios is possible: (1) the equi-
librium relation is among those consumer populations; (2) the equilibrium relation
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is between the resource and consumer populations. Testing the significance of the
resource population in the equilibrium relation rules out the first scenario where the
interaction is competitive.

When the community assemblage has one or more equilibrium relationships iden-
tified through testing the rank of B, the significance of a focal population in the
equilibrium relationship(s) can be tested. The testing procedure is as follows. The null
hypothesis assumes that the focal population does not have any equilibrium relation-
ship with the rest. This hypothesis can be constructed by restricting the coefficient(s)
corresponding to focal population(s) in each equilibrium relationship to zero (coeffi-
cients in the columns of β for the co-integration relation). The likelihood ratio test is
used to test the significance of the focal population in the equilibrium relationship.

2.4 Significance of bottom-up forcing and top-down forcing in the long-run
component

If the resource population is found to contribute significantly to the dynamics, we then
test the significance of bottom-up forcing and top-down forcing. These hypotheses are
formed by restricting elements of α.

Before testing the restrictions on α, we already tested the significance of the cointe-
gration relation and the significance of the focal population in that relation. Non-zero
entries of α thus indicate the corresponding variable is responding to changes in
the long term cointegration relation (or the dis-equilibrium errors), which is a linear
combination of both resource and consumer variables. A row of zeros indicates the
corresponding variable is not responding to the changes in the long term relation.
Therefore, finding non-zero entries in α determines which population is responding to
the changes in the long term relation. When we find non-zero entries in the row of α

for the resource equation, we say there is top-down effect in the long term dynamics;
similarly, when we find non-zero entries in the row of α for the predator equation, we
say there is bottom-up effect in the long term dynamics.

Top-down hypothesis assumes that only the resource population is responding to
deviations from the equilibrium relationship(s), and other populations are not. This
hypothesis can be constructed by restricting the adjustment coefficients for the con-
sumer populations to zero, while allowing the coefficient for the resource population
to vary freely. When we have only one resource population, the restriction on α forces
r ≤ 1. When there is more than one equilibrium relationship, this identified equi-
librium relationship is a linear combination of all the equilibrium relationships. The
likelihood ratio test can be constructed, and the test statistic has an asymptotic χ2

distribution. Deviations from the null hypothesis indicates bottom-up forcing.
Meanwhile, bottom-up hypothesis assumes that only the consumer group was

responding to deviations from the equilibrium relationship(s). Similar to the top-down
hypothesis, in the null hypothesis the adjustment coefficients for the resource group
are set to zero, and those of the consumer populations are allowed to vary freely.
Deviations from the null hypothesis indicates top-down forcing.

For the density dependence in the short-term component of the model, see the
“Appendix”. In addition, it is also possible for a community to have both significant
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bottom-up forcing and top-down forcing. For such a community, the dynamics are
interactive: both the resource and the consumer populations are affecting the dynamics
of each other. Moreover, in the “Appendix”, a nonlinear predator-prey model was used
to explore small sample properties of the co-integrationmethod andbottom-up and top-
down tests, and these tests showed reasonable performance evenwith short time series.

2.5 Data

The analysis testing ecological hypotheses is illustrated using survey data collected
for fisheries management. The data were collected by the United States National
Marine Fisheries Service (NMFS) Southeast Area Monitoring and Assessment Pro-
gram (SEAMAP; Stuntz et al. 1985).Our analysis used the semi-annual shrimp/ground
fish surveys conducted from 1986 to 2011 in the northern Gulf of Mexico between
Mobile Bay, Alabama and Brownsville, Texas. Each year, approximately 300–400
bottom trawl samples were collected. Although the SEAMAP shrimp/ground fish pro-
gram started in 1982, the data from 1982 to 1985 were omitted from the analysis due
to inconsistent coverage and changes in sampling methods. Surveys were conducted
once during the summer (May–July) and once during the fall (October–November).
The northern part of the Gulf of Mexico is divided into 21 statistical zones for fish-
eries surveys. Our analysis used data from 10 statistical zones in the west, zones 11
through 21, excluding zone 12. The location of bottom trawl stations was randomly
selected at each sampling occasion within each zone. At each sampling station, time
and environment variables, e.g., water temperature, salinity and depth, were recorded
at the time of sampling.
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Fig. 3 Standardized CPUE time series of brown shrimp (a), Atlantic croaker (b), silver seatrout (c) and
sand seatrout (d) from statistical zone 15 in the Gulf of Mexico from 1986 to 2011
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Penaeid shrimps found in the northern Gulf of Mexico include brown shrimp,
Farfantepenaeus Aztecs, white shrimp, Litopenaeus setiferus, and pink shrimp, Far-
fantepenaeus duorarum (Perez-Farfante and Kensley 1997). The commercial shrimp
fishery targeted all of these species. In 2009, landings were estimated at 118 million
kg and valued at 340 million US dollars (National Marine Fisheries Service 2010).
Brown shrimp was the most abundant among the three species.

Three finfish species, Atlantic croaker, Micropogonias undulatus, silver seatrout,
Cynoscion nothus and sand seatrout, Cynoscion arenarius were included in the analy-
sis. Their distribution patterns, ecological roles, and status in bottom fisheries, with
an emphasis on their relation with penaeid shrimps, are outlined in the “Appendix”.
These fish species were chosen because they ranked high in catches in the surveys as
well as bycatch in the shrimp fishery (Diamond 2004). Both the junevile and adult
individuals are well represented in the data (Monk et al. 2015). The fact that these
fish species coexisted in large numbers with brown shrimp suggests the potential for
ecological interactions between each of these fish species and brown shrimp.

2.6 CPUE standardization of shrimp and fish populations in the Gulf of Mexico
from SEAMAP shrimp/ground fish program

Data were standardized using a delta generalized linear model (Fletcher et al. 2005) to
each species in each statistical zone to extract annual abundance indices. This method
is commonly used in this region (see the “Appendix” for details). We modelled season
as a categorical variable (summer is modelled as no effect), and removed the effect of
fall sampling from the data. All the following analyses were conducted on the natural
logarithms of the standardized CPUE time series.

The existence of a unit root was tested using the augmented Dickey–Fuller (ADF)
test (Said and Dickey 1984). The null hypothesis was that the tested time series was a
unit root process. We used Bayesian Information Criterion (BIC) for model selection
from a set of models (Schwert 2002), which had different time lags. All the statistical
analyses were performed using R statistical software (R Core Team 2014), and the
scripts used in this paper can be found in the supplementary material.

3 Results

The CPUE time series of brown shrimp and three fish species in zone 15 from 1986 to
2011 are shown in Fig. 3. Time series of other zones can be found in the supplementary
material. The zone-specific results that follow are for zone 15 unless specifically noted
otherwise. Brown shrimp showed an intermediate level of fluctuations among all the
species considered over the 26-year period, with CPUE peaking in 1993 and 2010.
Atlantic croaker was the most abundant among all the species, and its CPUE abruptly
increased from 2006 to 2007. Silver seatrout and sand seatrout showed patterns similar
to brown shrimp, with peaks around 1995 and 2009, but their time series appeared to
exhibit a higher frequency of fluctuations.

ADF tests showed that the existence of a unit-root could not be rejected, and the
tests on first differenced data all rejected the existence of a unit-root at the 1% level
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Table 1 Results for augmented Dickey–Fuller tests on variables from statistical zone 15

Variables P.A. M.U. C.N. C.A. ΔP.A. ΔM.U. ΔC.N. ΔC.A.

Test statistics −0.43 0.52 −1.51 −1.34 −4.67** −4.33** −5.73** −4.90**

Lags 1 1 1 1 1 1 1 1

Δ is a difference operator, for example ΔNt = Nt − Nt−1. The critical values for a Dickey–Fuller
distributionwithout drift with sample size 25 at 1, 5 and 10% levels are−2.66,−1.60 and−1.95 respectively
(Banerjee et al. 1993).
P.A.: brown shrimp, M.U.: Atlantic croaker, C.N: Silver seatrout, C.A.: sand seatrout
* Significant at the 5% level
** Significant at the 1% level

Table 2 Johansen cointegration test of the rank of matrix B from the intercept restricted model from
statistical zone 15 with critical values at the 5 and the 1% level

H0 Ha Test statistics 5% 1%

r = 0 r ≥ 1 53.58* 53.42 60.42

r ≤ 1 r ≥ 2 26.08 34.80 40.84

r ≤ 2 r ≥ 3 9.18 19.99 24.74

r ≤ 3 r ≥ 4 2.00 9.13 12.73

Critical values are from Table 15.2 in Johansen (1995)
H0: null hypothesis and Ha : alternative hypothesis.
* Significant at the 5% level
** Significant at the 1% level

(Table 1). This suggested that the original log-transformed time series were non-
stationary, and were integrated of order one. Unit-root tests on the data from other
zones also showed the prevalence of unit-root non-stationarity in the CPUE time
series (see supplementary material).

The likelihood ratio test statistic of a restricted intercept model against the unre-
stricted model was 0.68 (p = 0.88). This test supports the assumption that there is
no drift term, C = 0. The tests from other zones all supported the model with no
drift term. The Johansen rank test showed that, under the restricted model, the null
hypothesis of no equilibrium relationships was rejected at the 5% level, and the null
of less than or equal to one equilibrium relationship could not be rejected (Table 2).
For this case, we accept that there was one equilibrium relationship in the community
assemblage dynamics. Estimates of α and β from the intercept-restricted model with
r = 1 were then obtained (Table 3). The co-integration relation, or dis-equilibrium
errors, was plotted in Fig. 4. The disequilibrium errors appear stationary and it suggests
community density dependence while single populations lacked density dependence.

The hypotheses testing showed that the species interaction pattern was location-
dependent in the Gulf of Mexico. Community assemblages in zones 14 and 19 did
not show any equilibrium relationship, those in zones 16 and 17 showed two equilib-
rium relationships, and the rest of the locations showed one significant relationship
(Table 4). The test of significance of the brown shrimp population in the equilibrium
relationship(s) showed positive results in zones 16, 17 and 18 (Table 4), indicating
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Table 3 Maximum likelihood estimates of α and β in Model H∗
1 (2) of statistical zone 15

Variable Intercept P.A. M.U. C.N. C.A.

β 6.97 −1.76 −1.12 4.48 −2.55

α −0.015 0.16 −0.41 −0.021

P.A.: brown shrimp, M.U.: Atlantic croaker, C.N: Silver seatrout, C.A.: sand seatrout

Fig. 4 Cointegration relation
from statistical zone 15 between
1986 and 2011 in the Gulf of
Mexico. Stationary fluctuation
suggests community density
dependence among populations
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Table 4 Number of equilibrium
relationships (ERs) and p-values
of the test of the significance of
brown shrimp in community
assemblage dynamics

Zone No. of E.R.s Significance of P.A.

11 1 0.78

13 1 0.53

14 0 –

15 1 0.35

16 2 <0.001

17 2 <0.001

18 1 0.0059

19 0 –

20 1 0.097

21 1 0.087

a significant contribution of brown shrimp. The tests of bottom-up and top-down
forcing then were conducted on these three zones. The contribution of the brown
shrimp population to the equilibrium relationship was not significant in zones 11,
13, 15, 20 and 21, where the recognized equilibrium relationship was among the fish
species.

Significant bottom-up forcing was identified in two out of those three assemblages,
where the brown shrimp population had significant contributions to the long-run com-
ponent in the community dynamics (Table 5). Top-down forcing was not significant in
those three assemblages. In zone 17, neither the bottom-up forcing nor the top-down
forcing was identified.
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Table 5 Tests of bottom-up
forcing and top-down forcing in
zones 16–18

Zone Bottom-up forcing Top-down forcing

16

Test statistics 11.2 4.17

p-value 0.011 0.12

17

Test statistics 2.18 4.03

p-value 0.54 0.13

18

Test statistics 18.8 1.87

p-value <0.001 0.17

4 Discussion

In this paper, we demonstrated a new practical approach to testing bottom-up and
top-down processes in a multi-species community with short time series that appear
to be unregulated. This approach explicitly tests for and incorporates non-stationary
dynamics in multivariate time series, which are common in ecological and fisheries
data. Compared with the traditional correlation approach, results of this method are
robust against complex and/or partially observable community structure. The method
demonstrated here is a type of restricted VARmodel, and this restriction allow explicit
incorporation of non-stationary dynamics into the model formulation and estimation.
For systems exhibiting high-frequency fluctuation due to strong nonlinearity, e.g.,
chaotic dynamics, a method based on nonlinear state space reconstruction can be used
(Takens 1981; Sugihara et al. 2012).

The method presented in this paper is related to the MAR models in fisheries
(Hampton et al. 2013). Our method here adds to the traditional MAR modeling by
utilizing the non-stationarity feature of the data to highlight long term relationships
within the community. It is a data-orientated modeling approach. The utility of the
method presented in this paper is not only the addition of non-stationarity into the
statistical model, but also the ecological questions we can ask based on this modeling
framework. Our approach could be applied to a large number of existing data sets to
test hypotheses of species interaction patterns in community dynamics. In addition,
as a type of vector autoregressive model, the model presented in this paper also have
the advantage of being able to model age/stage structured populations dynamics via
delay-embedding (Nisbet and Gurney 1982).

The analysis of reduced rank VECM as presented in this paper is also closely
related to dynamic factor analysis (DFA;Zuur et al. 2003) in the fisheries literature. The
motivations for both methods are similar in analyzing non-stationary dynamics in time
series, but the difference lies in their representations of the process. DFA characterizes
time series in terms of a linear combination of unobserved random walks or common
trends, and the co-integration method constructs time series using the disequilibrium
error from equilibrium relationships. It is well known in econometrics that these two
approaches are equivalent (Johansen 1995; Engle andGranger 1987; Stock andWatson
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1988; Escribano andPeña 1994). The dynamic factor analysis focuses on the extraction
of common trends, which do not attach any immediate ecological meaning other than
the fact that these common trends are shared across multiple time series. The method
presented here finds linear combinations of the original time series that cancel out
the shared common trends in order to extract a more stable time series. Finally, our
method is built upon a multi-species model and various ecological hypotheses can be
readily constructed, e.g., top-down and bottom-up controls.

Can unit-root processes represent the non-stationary dynamics exhibited by natural
populations? For example, a randomwalkmodel (Lewontin and Cohen 1969) has been
used to model a population under a stochastic environment (Niwa 2007; Cohen 2013).
As in the random walk model, unit-root processes are statistical approximations to
the dynamics; therefore, they should not be taken as representing the true underlying
mechanism. For example, according to this model, individual population abundances
can grow arbitrarily large given enough time, but for natural populations, there is
always some upper bound imposed on population growth, e.g., by food shortage or
lack of suitable habitat. On a longer time scale, this behavior of natural populations
contradicts the model. However, when the observation period is relatively short for
ecological studies, e.g., 26years in this study and 31–60years in Niwa (2007), unit-
root models can provide reasonable approximations to the underlying processes and
can be used to gain insights into the population and community dynamics.

When top-down processes exist, they are often referred to as trophic cascades,
which implies that top-down forces mainly occur in communities with chain-like
trophic structures, or trophic ladders (Strong 1992). However, we suggest that trophic
ladders are rather a special case of top-down processes in communities with simple
structures. The simplistic view of top-down process was the assumption behind the
correlation analysis. Top-down processes, as defined in the introduction of this paper,
on the other hand, can incorporate species interactions more generally.

In marine ecosystems, bottom-up processes are considered more prevalent (Cush-
ing 1975; Aebischer et al. 1990; Verity and Smetacek 1996; Chavez et al. 2003) and
sometimes are treated as the “normal state” (Strong 1992; Frank et al. 2006), whereas
top-down processes are considered to be limited to near-shore and inter-tidal commu-
nities with simple trophic structures (Chapin et al. 1997; Pinnegar et al. 2000). In the
Gulf of Mexico marine communities, our results showed a diversity of species interac-
tion patterns in the community dynamics. Brown shrimp did not have an equilibrium
relationship with the three fish species investigated in either the west or north sides of
the study area. In the central zones of the study area, brown shrimp contributed sig-
nificantly to the community assemblage dynamics. Significant bottom-up forcing was
identified in two of those three central zones. In this study, fish species were selected
based on their high population density, and this might have caused the inability to
detect top-down forcing. Additionally, spatial heterogeneity of the ecological process
may also have affected the detection of species interactions in the example as pointed
out by one of the reviewers. It would be very interesting to further explore the effect
of spatial autocorrelation on the detection of species interactions. Further research
should also look at how environmental covariates, including anthropological factors,
would impact observed community dynamics.
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Appendix

Bottom-up and top-down tests for the Gulf of Mexico example

Here, we describe how the hypotheses of bottom-up control and top-down control
were tested for the Gulf of Mexico example. Four populations were divided into two
groups according to trophic level, the brown shrimp population and the fish group. For
the top-down scenario, only the shrimp population was responding to the deviations
from the equilibrium relationship, while the fish group was not. The null hypothesis
was constructed by forming restrictions on α(4×1). The dimension of the object is
provided in the subscript between parentheses. The indirect parameterization of the
restrictions was

BT
t α = 03,1

where Bt (4×3) = [03,1 I3]T, 03,1 is a 3-by-1 zero vector, and I3 is a 3-by-3 identity
matrix. Note that from the second to the fourth components of α were restricted to
zero, and thus, there were overall 3 restrictions. In addition, the direct parameterization
was

α = Atϕt

where At (4×1) = [1 01,3]T was a vector of length 4, ϕt was a scalar, and 01,3 is a
1-by-3 zero vector. The form of the top-down restriction on α implied r ≤ 1, because
matrix At had a rank of 1. When there was more than one equilibrium relationship,
this identified equilibrium relationship was a linear combination of all the equilibrium
relationships. The indirect parameterization picked out parameters that needed to be
restricted, while direct parameterization directly specified free-varying parameters to
be estimated and fixed restricted parameters to zero.

For the bottom-up scenario, only the fish group was responding to changes in the
equilibrium relationship. This hypothesiswas constructed by restricting the adjustment
coefficient for the brown shrimp to zero, and those coefficients for the fish group were
allowed to vary freely. The indirect parameterization of the restriction was

BT
bα = 0r,1

where each row of BT
b(4×r) was [1 01,3], and the direct parameterization was

α = Abϕb
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where Ab(4×3) = [03,1 I3]T, and ϕb(3×r) was a matrix of coefficients. The form
of bottom-up restrictions implied r ≤ 3, because matrix Ab had a rank of 3. The
parameter estimation procedure of both tests follows Johansen (1995).

Small-sample properties of the method with simulated data

To explore the statistical properties of themethod presented in themain text, amodified
discrete-time predator–prey model with ratio-dependent predation (Zhou et al. 2013)
was used. The data-generating process is a bottom-up controlled community. The prey
population, V , follows an independent random walk, and the predator population, P ,
depends on the prey population through a numerical response,

Vt = Vt−1 + εt , (2a)

Pt = cαVt−1Pt−1/(βPt−1 + Vt−1) + υt , (2b)

where, εt and υt are independent normal random variables, α and β are the coefficients
in the numerical response, and c is the conversion rate of consumed prey by the
predator. Parameters used are a = 3.5, b = 0.25, c = 0.6, α = 6, β = 7, σ(ε) = 0.1,
σ(υ) = 0.01 and the initial population densities are V0 = 2, P0 = 0.5.

First, predator–prey time series data of a short (25-year), medium (50-year) and
long (100-year) length were simulated. Second, the co-integration test was applied to
the simulated dataset to identify the number of species interactions. As a sequential
testing procedure, the first step of the co-integration test tests the null hypothesis of
less than or equal to one co-integration relation in the data, and the second step tests the
null hypothesis of no co-integration relation. Then, assuming there was an interaction
between this population pair, the tests of bottom-up forcing and top-down forcing
were conducted. Both of these test statistics follow an asymptotic χ2 distribution with
1 degree of freedom. We repeated this process 1000 times for each time series length
(short, medium and long) to calculate the error rates of the tests for the 3 different
lengths.

The result is as follows (Table 6): The power of the first step of the co-integration
test was low for the short time series, but it improved monotonically with increasing
length. The type I error rate of the second step of the co-integration test corresponded
reasonably to its asymptotic level across all lengths. The type I error rate of the bottom-
up test exceeded its asymptotic level for all lengths, and there was a gradual drop with
increasing length. The power of the top-down test was good even for the short time
series.

A couple of things can be learned from this simulation exercise. First, the small
sample properties of the tests also depend on the form of density dependence between
two populations, i.e., if a different numerical response was used to generate data,
results would be different (we tried different sets of parameters for the numerical
response). Second, it should be noted that for the data generation we used an arbitrary
nonlinear numerical response, and for testing we used a linear approximation, which
sacrifices performance, but those tests still performed reasonably well on the medium
and long-length time series. In addition, the lack of power in the co-integration test
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Table 6 Small-sample
properties of the tests based on
simulations of a predator–prey
model

Tests Length Type I
error rate

Type II
error rate

Cointegration: step 1
(asymptotic 1%)

25 – 0.762

50 – 0.290

100 – 0.0028

Cointegration: step 2
(asymptotic 1%)

25 0.008 –

50 0.009 –

100 0.005 –

Cointegration: step 1
(asymptotic 5%)

25 – 0.487

50 – 0.139

100 – 0.003

Cointegration: step 2
(asymptotic 5%)

25 0.058 –

50 0.052 –

100 0.052 –

Bottom-up and top-down
tests (asymptotic 5%)

25 0.141 0.153

50 0.071 0.024

100 0.059 0

for short time series suggests that some species interactions may not be adequately
picked up for the Gulf of Mexico example shown in the text, which has a time series
length of 26 and potentially more complicated forms of species interactions.

Trophic interactions in the stationary component of the model

After the non-stationary component of the model has been determined (matrix β), the
remaining coefficients of the VECM can be estimated through ordinary least squares
regression. The bottom-up and top-down tests presented in the text examined the sig-
nificance of trophic interactions in the long-run component. The significance of trophic
interactions in the short-run component can be examined through the significance of
the elements of matrix Θ i in Eq. 1 of the main text. We ran multiple linear models on
data from all the zones, and found in the short-run component 1) significant bottom
up forcing from zones 13 (p = 0.02), 16 (p = 0.03), 18 (p = 0.02), 20 (p < 0.01)
and 21 (p = 0.01), and 2) significant top-down forcing from zone 18 (p = 0.03) and
21 (p < 0.01).

Biological characteristics for Atlantic croaker, silver seatrout and sand seatrout

Atlantic croaker, M. undulatus, was found to be the most common finfish species
caught by shrimp trawls both by weight and by number (Bryan et al. 1982). During
the development of M. undulatus, dietary shifts occur during three active feeding
stages (Darnell 1961). The diet of individuals 125–325mm in total length consists
of macroinvertebrates, including commercially important penaeid shrimps (Darnell
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1961). A study in Chesapeake Bay found benthic organisms comprised 4.3% of the
diet of M. undulatus (Nye 2008).

Silver seatrout,Cynoscion nothus, are abundant in the nearshorewaters of the north-
ern Gulf of Mexico (Hildebrand and Schroeder 1928; Moore et al. 1970), and they are
among the most common species caught in industrial bottom fisheries and as bycatch
in shrimp fisheries (Roithmayr 1965;Warren 1981). In sampling, larger silver seatrout
appear more susceptible to trawling during the day (DeVries and Chittenden 1982).
Adult silver seatrout show seasonal distribution patterns in nearshore and offshore
waters in the Gulf of Mexico (DeVries and Chittenden 1982; Gunter 1938; Miller
1965). Fish and shrimp are found to be the primary foods for silver seatrout in the
northern Gulf (Rogers 1977; Overstreet and Heard 1982; Sheridan et al. 1984). Also,
there is a shift in the diet composition of silver seatrout with body length (Rogers
1977).

Sand seatrout, Cynoscion arenarius, are sometimes difficult to distinguish from
silver seatrout. The sand seatrout is one of the most abundant fish in the estuarine
and nearshore waters of the Gulf (Gunter 1945; Christmas and Waller 1973), and
it is also a major component of the bottom fisheires and as bycatch in the shrimp
fisheries (Roithmayr 1965; Sheridan et al. 1984). In sampling, sand seatrout are more
susceptible at night than in daytime duringMay and June inMississippi Sound (Warren
1981). Silver seatrout were found to be more common in shallower waters, while sand
seatrout were more abundant farther offshore (Ginsburg 1931), and Miller (1965)
suggested that the distribution of sand seatrout and silver seatrout overlapped at water
depths of 5 to 16m. In the dietary analysis of sand seatrout from theGulf ofMexico, fish
components predominate (Reid 1954, 1955; Reid et al. 1956; Springer andWoodburn
1960; Sheridan and Livington 1979; Sheridan 1979). Crustaceans are also regularly
eaten by sand seatrout (Moffett et al. 1979; Overstreet and Heard 1982; Sheridan et al.
1984).

Delta generalized linear models

We adopted delta generalized linear modelling (GLM) to extract annual abundance
indices from the rawCPUE data. This method is commonly used in the Gulf ofMexico
region. Here, the sampling procedure wasmodeled as a two-step process: first, positive
catches follow a binomial distribution (later referred to as the occurrencemodel); then,
given the catch rate is positive, the log-transformed CPUE has a normal distribution
(later referred to as the abundance model). The occurrence model with a logit link
function was

logi tπi = xTi β

where πi was the probability that the i th sampling location fell within the distribution
range, xi was a vector of covariates, and β was a vector of parameters to estimate. The
abundance model was a mixture of two distributions: given sampling within range,
the CPUE was modeled as

ln(CPUE |wi thin range) = zTi γ
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where, for i th sampling station, zi was a vector of covariates, and γ was a vector of
parameters to estimate.

The raw CPUE data were organized as follows: each row represented an individ-
ual survey sample, and in the columns were species-specific log-transformed CPUE
(number of individuals caught/min) and covariates, including sampling year, statis-
tical zone, season (summer and fall), depth, time of the day (day and night), water
temperature, dissolved oxygen, salinity, number of minutes fished and the designation
of the survey ship (NMFS, TX and AL). Two data sets were generated from the raw
CPUE dataset, one showing the presence or the absence of those four species at all
the sampling stations (data for the occurrence model), and the other one showing the
log-transformed CPUEs from stations with positive catches (data for the abundance
model). We then modeled the occurrence data and the abundance data separately. For
both models, covariates for selection included year, season (summer and fall), depth,
time of the day (day and night), water temperature, dissolved oxygen, salinity and
the designation of the survey ship (NMFS, TX and AL). In addition, the number of
minutes fished was also included for selection in occurrence models. A stepwise back-
ward selection procedure was used for model selection. The selected models for both
occurrence and abundance data were used to estimate yearly abundance indices for
each statistical zone for each of the 26years.
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