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Abstract The scan statistic is widely used in spatial cluster detection applications of
inhomogeneous Poisson processes. However, real data may present substantial depar-
ture from the underlying Poisson process. One of the possible departures has to do
with zero excess. Some studies point out that when applied to data with excess zeros,
the spatial scan statistic may produce biased inferences. In this work, we develop a
closed-form scan statistic for cluster detection of spatial zero-inflated count data. We
apply our methodology to simulated and real data. Our simulations revealed that the
Scan-Poisson statistic steadily deteriorates as the number of zeros increases, produc-
ing biased inferences. On the other hand, our proposed Scan-ZIP and Scan-ZIP+EM
statistics are, most of the time, either superior or comparable to the Scan-Poisson
statistic.
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1 Introduction

The spatial scan statistic proposed by Kulldorff (1997) has been widely used in spatial
disease or crime surveillance and other spatial cluster detection applications. One of
the versions of the scan statistic was developed for inhomogeneous Poisson processes.
However, in practice, data may present substantial departure from the assumed under-
lying Poisson process.

The Poisson distribution is often used for analysis of count data. However, this
distribution presents some limitations. One of the most well known is the fact that the
variance of the distribution is equal to the mean.

Count data, like contingency tables, often contain cells having zero counts. How-
ever, a zero count is called a sampling zero when a zero is drawn from a distribution
with positive mass at zero. According to Agresti (1990), a zero for a cell in which
it is theoretically impossible to have observations is called a structural zero. Agresti
(1990) also remarks “a sampling zero is an observation having value 0, and we regard
it as one of the observed counts. A structural zero is not an observation, however.”

Özmen and Famoye (2007) worked with regression models for count data related
to zoological data. In their application, the number of C. caretta hatchlings dying from
exposure to the sun was also modeled. The data included both structural zeros and
sampling zeros. If no C. caretta hatchlings emerge from the nests, the number of C.
caretta hatchlings dying from exposure to the sun was automatically zero. If C. caretta
hatchlings emerged from the nests, the number of C. caretta hatchlings dying from
exposure to the sun could be zero or greater than zero. In the application, since there
are two kinds of zero counts, the data is considered to be zero-inflated and the Poisson
model is no longer good enough to correctly predict the occurrence of zero counts.

Lambert (1992) introduced the zero-inflated Poisson (ZIP) regression model to
account for excess zeros in counts of manufacturing defects. The model has been
applied to inumerous situations. Böhning et al. (1999) used a zero-inflated Poisson
model in dental epidemiology data.

Several studies have dealt with spatial count data with excess zeros. Agarwal et al.
(2002) formulated a Bayesian zero-inflated regression model for spatial count data.
The authors applied their methods to counts of nest burrows in a given area where
more than 82 % of the counts are 0. Rathbun and Fei (2006) remark that, in ecological
surveys, count data often include excess zeros. It can occur either due to the inclusion
of a habitat unsuitable to the species, or due to the limited ability of the species to
disperse into all parts of the study region. The authors used a spatial zero-inflated
Poisson regression model to determine an oak species range. In the context of the
study of rare diseases, Gómez-Rubio and López-Quílez (2010) argue that, among
other methods for the detection of disease clusters, the scan statistic by Kulldorff
(1997) may not be suitable for problems involving very rare diseases. According to
the authors, for diseases with very low prevalence, the number of cases may be very
low and excess zeros may cause bias in the inferences. However, the authors argue
that “a likelihood ratio test similar to that of the spatial scan statistic may be difficult
to develop in closed form.”

In this work, we build upon the developments in Kulldorff (1997) and propose
two new scan statistics, denoted as Scan-ZIP and Scan-ZIP+EM, allowing for the
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occurrence of zero-inflated spatial data. Based on simulated data, we found that the
Scan-Poisson statistic (Kulldorff 1997) steadily deteriorates as the number of struc-
tural zeros increases, producing biased inferences. Moreover, when the data include
structural zeros, the Scan-Poisson statistic is more likely to detect spurious significant
clusters than the Scan-ZIP and Scan-ZIP+EM.

This article is organized as follows. In Sect. 2, we review the Kulldorff scan statistic.
The Scan-ZIP statistic is described in Sect. 3. Some theoretical properties are discussed
in Sect. 4, and applications to simulated and real data are presented in Sect. 5.

2 Kulldorff scan statistic

Consider an inhomogeneous Poisson point process over k regions or locations in
a study area. Let xi be the number of cases in region i with corresponding at-risk
population ni under unit-specific relative risk θi such that xi ∼ Poisson(niθi ). Further,
let Z be a subset of the indexes {1, 2, . . . , k}, describing a given zone, which represent
a putative cluster. Define Z as a collection of zones in the study area.

Kulldorff (1997) formulated a scan statistic that compares the total number of
case-counts in zone Z , xZ = ∑

i∈Z xi , with the total number of counts outside Z ,
xZ =

∑
i∈Z xi , given the corresponding population counts, that is, nZ = ∑

i∈Z ni

and nZ =
∑

i∈Z ni . Let n = nZ + nZ and x = xZ + xZ , and assume that θi = θZ for
every region i ∈ Z and that θi = θ0 for every region i /∈ Z . The hypotheses of interest
are given by

H0 : θZ = θ0 v.s. Ha : θZ > θ0, Z ∈ Z,

where H0 implies that there is a constant risk, while Ha implies that there is at least
one cluster defined by a zone Z ∈ Z such that θZ > θ0.

Since the putative cluster Z is actually unknown, it is considered a parameter, and
the likelihood function L(Z) = L(Z , θ0, θZ ) is given by

L(Z) = L(Z , θ0, θZ ) =
[

∏

i∈Z

e−ni θZ (niθZ )xi

xi !

] ⎡

⎣
∏

j /∈Z

e−n j θ0(n jθ0)
x j

x j !

⎤

⎦ . (1)

The maximum likelihood estimators of θ0 and θZ are, respectively, θ̂0 = xZ/nZ

and θ̂Z = xZ/nZ , and the most likely cluster is the solution of Ẑ = {Z : L(Z) ≥
L(Z ′) ∀ Z ′ ∈ Z} where Ẑ is the maximum likelihood estimator of parameter Z .

Besides showing how to find the most likely cluster, Kulldorff (1997) also developed
a likelihood ratio test that allows us to decide whether or not the most likely cluster
is statistically significant, that is, if the area included in the most likely cluster really
incorporates an abnormally high number of cases.

For a given zone Z , we have

λZ =
sup θZ >θ0

L(Z , θ0, θZ )

sup θZ= θ0
L(Z , θ0, θZ )

=
(

xZ/nZ

x/n

)xZ
(

xZ/nZ

x/n

)xZ× I
(
xZ/nZ > xZ/nZ

)
.

(2)
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Kulldorff’s scan statistic is described by

λ = sup
Z

λZ =
sup Z∈Z, θZ >θ0

L(Z , θ0, θZ )

sup Z∈Z, θZ=θ0
L(Z , θ0, θZ )

. (3)

3 The Scan-ZIP statistic

Now, in order to describe our scan statistic, consider the same notation as in Sect. 2,
but now assume that the case-counts in the regions follow independent ZIP random
variables with the same probability p of a structural zero, that is, Xi ∼ ZIP(p, niθi )

where Xi s are independent. Thus, P(Xi = xi | p, niθi ) = P(Xi ) is given by

P(Xi = 0 | p, niθi ) = p + (1− p)e−ni θi ;
P(Xi = xi | p, niθi ) = (1− p)

e−ni θi (niθi )
xi

xi ! , xi > 0. (4)

The ZIP model allows for additional flexibility when compared to the Poisson model.
If Xi ∼ ZIP(p, niθi ), then E(Xi |p, niθi ) = (1 − p)niθi and V (Xi |p, niθi ) = (1 −
p)niθi (1+ pniθi ).

It can be verified that E(Xi |p, niθi ) < niθi when p > 0. Therefore, when structural
zeros occur, the ZIP model correctly accounts, on average, for a reduction in the
case-counts. Further, since V (Xi |p, niθi ) > E(Xi |p, niθi ) when p > 0, the ZIP
model allows for overdispersion or extra-Poisson variation. The Poisson model often
underestimates the observed dispersion.

Regarding the likelihood ratio test formulation for the ZIP model, assume, as usual
for the Kulldorff scan statistic, that θi = θZ for every region i ∈ Z and that θ j = θ0
for every region j /∈ Z . The hypotheses of interest are given by

H0 : θZ = θ0 v.s. Ha : θZ > θ0, Z ∈ Z.

In the consequent sections, we describe our Scan-ZIP statistic in two settings: (a) when
we know when a zero count is a structural one, and (b) when we do not know, for sure,
whether or not a zero count is a structural one.

3.1 Incomplete-data likelihood

Assume that data include both, sampling and structural zeros, and that we are not able
to tell the nature of each kind of zero. Then, the likelihood conditioned on zone Z and
the observed data X is given by

L(p, θ0, θZ ) = L(p, θ0, θZ | Z , X) =
[

∏

i∈Z

P(Xi )

] [
∏

i /∈Z

P(Xi )

]

,
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where X = (X1, . . . , Xk). Thus, the log-likelihood is given by

�(p, θ0, θZ ) =
∑

i ∈ Z
xi = 0

log(P(Xi ))+
∑

i ∈ Z
xi > 0

log(P(Xi ))

+
∑

j /∈ Z
x j = 0

log(P(X j ))+
∑

j /∈ Z
x j > 0

log(P(X j ))

=
∑

i ∈ Z
xi = 0

log[p + (1− p)e−ni θZ ]

+
∑

i ∈ Z
xi > 0

[log(1− p)− niθZ + xi log(niθZ )]

+
∑

j /∈ Z
x j = 0

log[p + (1− p)e−n j θ0 ]

+
∑

j /∈ Z
x j > 0

[log(1− p)− n jθ0 + x j log(n jθ0)]. (5)

Using this likelihood, it is not possible to find closed form MLE estimators for
the parameters. However, following the approach developed by Lambert (1992), we
describe a new likelihood under the assumption that we know in advance the nature
of each zero, whether structural or sampling.

3.2 Complete-data likelihood

Let δ = (δ1, . . . , δk) where δi is a binary variable that assumes δi = 1 for a structural
zero count in region i . Thus, δi ∼ Bernoulli(p). Consider that δ = (δ1, . . . , δk) is
observed, so that now we work with bivariate data, that is, (Xi , δi ), i = 1, . . . , k.
The likelihood function for zone Z ∈ Z is given by

L(p, θ0, θZ ) = L(p, θ0, θZ | Z , X, δ) =
[

∏

i∈Z

P(Xi , δi )

] [
∏

i /∈Z

P(Xi , δi )

]

=
[

∏

i∈Z

P(Xi = xi |δi =di )P(δi =di )

][
∏

i /∈Z

P(Xi = xi |δi = di )P(δi = di )

]
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=
[

∏

i∈Z

pdi

[

(1− p)
e−ni θZ (niθZ )xi

xi !
](1−di )

]

×
[

∏

i /∈Z

pdi

[

(1− p)
e−ni θ0(niθ0)

xi

xi !
](1−di )

]

, (6)

since P(Xi = 0, δi = 1) = p and P(Xi = xi , δi = 0) = (1 − p)
e−ni θi (ni θi )

xi

xi ! ,
xi ≥ 0. Notice that P(Xi > 0, δi = 1) = 0.

Under Ha , the likelihood is given by

La(p, θ0, θZ ) = p
∑k

i=1 di (1− p)k−∑k
i=1 di e−θZ

∑
i∈Z ni (1−di ) θ

∑
i∈Z xi (1−di )

Z

× e−θ0
∑

i /∈Z ni (1−di ) θ

∑
i /∈Z xi (1−di )

0 ,

and, under H0, it is as follows:

L0(p, θ0) = p
∑k

i=1 di (1− p)k−∑k
i=1 di × e−θ0

∑k
i=1 ni (1−di ) θ

∑k
i=1 xi (1−di )

0 .

Under H0, the maximum likelihood estimators (MLEs) are

θ̂0 =
∑k

i=1 xi (1− di )
∑k

i=1 ni (1− di )
and p̂ =

∑k
i=1 di

k
, (7)

while, under Ha , the MLEs are

θ̂z =
∑

i∈Z xi (1− di )
∑

i∈Z ni (1− di )
, θ̂0 =

∑
j /∈Z x j (1− d j )

∑
j /∈Z n j (1− d j )

, and p̂ =
∑k

i=1 di

k
. (8)

Notice that, by the Factorization Theorem (see Casella and Berger 1990, pp. 250),∑k
i=1 xi (1 − di ),

∑k
i=1 ni (1 − di ), and

∑k
i=1 di are jointly sufficient for (θ0, p),

while
∑

i∈Z xi (1 − di ),
∑

i∈Z ni (1 − di ),
∑

j /∈Z x j (1 − d j ),
∑

j /∈Z n j (1 − d j ), and
∑k

i=1 di are jointly sufficient for (θz, θ0, p).

3.3 Likelihood ratio test when δ is known

Let L S
a (p, θ0, θZ | Z , X, δ) = La( p̂, θ̂0, θ̂Z | Z , X, δ) and L S

0 (p, θ0 | X, δ) =
L0( p̂, θ̂0 | X, δ) be the likelihoods, under Ha and under H0, respectively, evaluated
at their respective MLEs. Then,
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λ = supZ∈Z, θZ >θ0
L(p, θ0, θZ | Z , X, δ)

supZ∈Z, θZ=θ0
L(p, θ0, θZ | Z , X, δ)

= supZ∈Z L S
a (p, θ0, θZ | Z , X, δ)

L S
0 (p, θ0 | X, δ)

= supZ∈Z

[ ∑
i∈Z xi (1−di )∑
i∈Z ni (1−di )

]∑
i∈Z xi (1−di )

[ ∑
j /∈Z x j (1−d j )∑
j /∈Z n j (1−d j )

]∑
j /∈Z x j (1−d j )

[ ∑k
i=1 xi (1−di )

∑k
i=1 ni (1−di )

]∑k
i=1 xi (1−di )

× I

(∑
i∈Z xi (1− di )

∑
i∈Z ni (1− di )

>

∑
j /∈Z x j (1− d j )

∑
j /∈Z n j (1− d j )

)

, (9)

if there is at least one zone Z such that
∑

i∈Z xi (1−di )∑
i∈Z ni (1−di )

>

∑
j /∈Z x j (1−d j )∑
j /∈Z n j (1−d j )

, and λ = 1

otherwise.
As in the likelihood ratio test developed by Kulldorff (1997), it is not possible to

find the exact distribution associated with λ. However, in the present case, in which
the locations of excess zeros are known, we can just remove the sites with structural
zeros from the data set and use the likelihood ratio test developed by Kulldorff.

Using the EM algorithm, in the following sections, we describe a closed-form
Scan-ZIP statistic for the case in which δi s are not known.

3.4 Likelihood ratio test when δ is unknown

When δ is unknown, the likelihood ratio test for the Scan-ZIP statistic via the EM
algorithm is given by

E-step: We estimate δi by the conditional expectation of δi given Xi . Since (δi |
Xi ) ∼ Bernoulli(ζi ), then

ζi = E(δi | Xi ) = P(δi = 1 | Xi )

= P(Xi = xi | δi = 1)P(δi = 1)

P(Xi = xi | δi = 1)P(δi = 1)+ P(Xi = xi | δi = 0)P(δi = 0)
I (xi = 0)

= p

p + (1− p)e−ni θi
I (xi = 0)

=
{ p

p+(1−p)e−ni θi
, xi = 0

0, xi = 1, 2, . . .
. (10)

Therefore, at the mth iteration of the EM algorithm,

δ̂
(m)
i = p̂(m)

p̂(m) + (1− p̂(m))e−ni θ̂
(m)
i

I (xi = 0), i = 1, . . . , k. (11)
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M-step: Conditional on vector δ̂(m) = (δ̂
(m)
1 , . . . , δ̂

(m)
k ), at the (m + 1)th iteration, the

MLEs of θ0, θZ , and p are obtained according to the expressions given in (7) (under
H0) and (8) (under Ha), but with di replaced by δ̂

(m)
i . Thus, considering Ha we have

δ̂
(m+1)
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p̂(m+1)

p̂(m+1)+(1− p̂(m+1))e−ni θ̂
(m+1)
Z

, xi = 0 and i ∈ Z

p̂(m+1)

p̂(m+1)+(1− p̂(m+1))e−ni θ̂
(m+1)
0

, xi = 0 and i /∈ Z

0, xi = 1, 2, . . .

. (12)

The E-step and M-step are performed until convergence for each candidate cluster Z .
In our experiments and examples, the EM procedure was initialized with δ̂

(0)
i = 0.5 if

xi = 0, and δ̂i = 0 otherwise. Convergence was assumed when |δ(m+1)
i −δ

(m)
i | < 0.01,

i = 1, . . . , k.
The likelihood ratio test for the case of unknown δ is also given by (9), but with

di replaced by δ̂
(s)
i , where s is the iteration in which convergence is achieved. Thus,

given any proposed set Z of candidate clusters, Algorithm 1 should be run in order to
determine the most likely cluster.

Algorithm 1: Finding the most likely cluster

for each Z ∈ Z do
if δ is known then

Compute the likelihood ratio L R(Z) = La( p̂,θ̂0,θ̂Z |Z ,X,δ)

L0( p̂,θ̂0|X,δ)
, as in lines 2 and

3 of Equation 9.
else

Iterate steps E and M, given by Equations 10 to 12, until convergence and
compute L R(Z), with di replaced by δ̂

(s)
i .

end
end
The most likely cluster is Ẑ = arg supZ∈Z L R(Z) and λ = supZ∈Z L R(Z),
according to Equation 9.

Again, the distribution of λ cannot be exactly determined and a Monte Carlo
simulation is conducted to obtain critical value λ∗. As we do not know the exact
number of structural zeros, nor their locations, the Monte Carlo replicas are con-
structed using a parametric bootstrap-like framework. Thus, given p̂, the estimate of
p for the observed data, each region of the map is randomly assigned as a structural
zero location with probability p̂. This procedure is repeated B times and will gen-
erate B maps with as many structural zeros, on average, as it was estimated for the
observed data. The estimated expected number of cases in each region, under H0, will
be Ê0(Xi ) = (1− p̂)ni θ̂0, where p̂ and θ̂0 are obtained as defined in (7). Now, given
the structural zeros in each of the B bootstrap samples, we perform a Monte Carlo
simulation. This procedure is summarized by Algorithm 2.
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Algorithm 2: Finding the critical region of the test
For the original data, calculate the observed value of λ, that is, λobs , using any
spatial cluster detection method.

for j = 1 to B do
Using p̂ obtained for the original data, randomly assign the structural zero
regions;

Obtain a replication of the original data set under H0 by generating a
multinomial random variable with total count given by

∑k
i=1 ni and

probabilities proportional to niθ0 if the i-th region was not assigned as a
structural zero, and 0 otherwise, i = 1, . . . , k;

Calculate λ j for the generated data, that is, find the most likely cluster
through the same detection method used to calculate λobs , and compute its
corresponding likelihood ratio value;

end
For a level of significance α, calculate the 100(1− α)% percentile of the λs and
call it λ∗.

The rejection region is described by R = {w : w > λ∗}. We reject H0 if λobs ∈
R.

4 Properties of the Scan-ZIP test statistic

4.1 Detection versus inference

Kulldorff (1997) remarks that his formulation of the spatial scan statistic enables not
only the location of the most likely cluster but also inferences related to it, in the
sense that when the null hypothesis is rejected it is possible to locate the region that
causes the rejection. According to the author, most of the statistical methods for cluster
analysis of spatial point processes do not possess both of these features.

In his Theorem 1, Kulldorff (1997) shows that when the null hypothesis is rejected
for a given data set, say A, whose most likely cluster is Ẑ A, then any other data set
that shares all the cases in Ẑ A also implies that H0 will also be rejected regardless
of the locations of the remaining cases in the alternative data set Ā, provided that the
total number of points in the map is preserved. Next, we present a new version of this
theorem that has been generalized to the case of the Scan-ZIP statistic.

Theorem 1 Consider an inhomogeneous Poisson point process observed over k
regions or locations in a study area. Let D be a data set composed by triplets
{(xi , ni , di )} for which Ẑ , a subset of � = {1, 2, . . . , k}, is the most likely cluster. Sim-
ilarly, let D′ be an alternative data set such that

∑k
i=1 x ′i (1− d ′i ) =

∑k
i=1 xi (1− di ),

∑k
i=1 ni (1 − di ) = ∑k

j=1 n′j (1 − d ′j ), and n′i = ni , for all i . If the null hypothesis
is rejected under D then it is also rejected under D′ whenever

∑
i∈Ẑ x ′i (1 − d ′i ) ≥∑

i∈Ẑ xi (1− di ).
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In other words, Theorem 1 states that, if population ni is kept unchanged for all
regions in the map and the adjusted number of cases

∑
i∈Ẑ xi (1− di ) inside Ẑ is not

decreased, then λ(Ẑ) cannot decrease. The proof for Theorem 1 can be found in the
Appendix and consists of showing that the test statistic is an increasing function on∑

i∈Ẑ xi (1− di ), the adjusted number of cases inside the zone Ẑ .

4.2 Power

For the spatial scan statistic, Kulldorff (1997) defined the so-called individually most
powerful test (IMP) as a proxy for dealing with the limitations in the technique that
prevents finding an uniformly most powerful (UMP) test. As noted by Kulldorff, we
cannot expect to find a UMP test except for the special case when there is only one
cluster under the alternative hypothesis. The IMP tests are constructed as follows:

(a) Partition the subset of the parameter space related to the composite alternative
hypothesis, that is, W = {(Z , θZ , θ0) : θZ > θ0, Z ∈ Z}, into a countable
number of sets {A j } to form a partition of W , that is, Ai ∩ A j = ∅ for all i 
= j
and W = ∪ j A j . Let 	 = W ∪W represent the whole parameter space.

(b) Define a partition {R j } of the critical region R (see Sect. 3.3 for the Scan-ZIP
statistic).

(c) Take an alternative critical region R′ = ∪ j R′j in which {R′j } represents a partition
of R′.

Let π(θ) = P(w ∈ R | θ), with θ ∈ 	, be the power function of a hypothesis
test with rejection region R (similarly, π ′ for the rejection region R′). The following
definition, restated from Kulldorff (1997), completes the description of the IMP test.

Definition 1 For a particular significance level α, a test is IMP with respect to a
partition {A j } of W and a partition {R j } of the critical region R, if for each Ai there
are no sets R′ and {R′j } such that

1. R j = R′j for all j 
= i ;

2. P(w ∈ R′ | H0) = π ′(θ) = α, if θ ∈ W ;
3. P(w ∈ R′i | (Z , θ0, θZ )) > P(w ∈ Ri | (Z , θ0, θZ )) for any (Z , θ0, θZ ) ∈ Ai .

Definition 1 implies that no other test of size α exists, such that the three conditions
above can be simultaneously true.

Now, let AZ = {(Z , θZ , θ0) : θZ > θ0} and A0 = {(Z , θZ , θ0) : θZ = θ0}. Let RZ ,
a subset in a partition of R described by the intersection of the critical region R and a
subset of the sample space in which Z is the most likely cluster. However, let R′Z be
any subset in a partition of R′. We now enunciate Kulldorff’s Theorem 2 for the case
of the Scan-ZIP statistic.

Theorem 2 The test based on λ forms an IMP test with respect to partitions {AZ }
and {RZ }.
The proof for Theorem 2 can be found in the Appendix.
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5 Simulation study

In order to test our methodology, we constructed different artificial clusters—which
we will call true clusters—using a map consisting of 203 hexagonal cells arranged
in a regular grid, each cell with population 1,000. Thus, the total population in the
whole map is 203,000. We will assume that the distance between two cells is the
Euclidean distance measured between their centroids. The centroid of each hexagonal
cell is initially defined as its center. In this framework the distances from any cell to its
neighbors are always the same. So, to avoid any tie when measuring distances between
any two cells, we introduced a random disturbance in the x and y coordinates of the
cells’ centroids.

For each cluster, the cases (e.g., a given disease, crime, etc.) are randomly dis-
tributed over the map according to a multinomial distribution whose probabilities are
proportional to the relative risks assigned to each region. These risks are computed
following the procedure described by Kulldorff et al. (2003), assigning high risks to
the regions inside the cluster and lower risks to the remaining regions. The risks of
regions inside the cluster are set high enough so that conditioned on the total number
of cases, the null hypothesis would be rejected with probability 0.999 when using a
binomial test.

A structural zero inside the cluster can be interpreted as a high risk area whose
case count is unavailable. In this sense, if there are any regions inside the cluster with
structural zeros, then the attributed risk is also high, but the total number of cases is
distributed only among the non-structural zero regions of the map. If it happens that a
case is assigned to a structural zero region, than that case is rejected and another one is
generated. Thus, the case counts of the structural zero regions are always set to zero.

The referred random distribution of cases is repeated thousands of times (say N
times), generating thousands of simulated data sets which are used to compute power,
sensitivity, and positive predicted value (PPV).

Let us denote the cluster detection algorithms as Scan-Poisson (Kulldorff’s stan-
dard version of the Poisson-scan algorithm), Scan-ZIP (when the structural zeros are
known), and Scan-ZIP+EM (when the structural zeros are unknown). All the three
algorithms were used along with circular windows to build the set Z of candidate
clusters, as described by Algorithm 3.

For each of the N random distributions of cases over the map, test statistic λi ,
i = 1, . . . , N , is computed by running the circular cluster detection algorithm. Then,
the obtained λi s are compared to critical value λ∗, obtained by the Monte Carlo
simulation under H0. The power is then given by

Power =
∑N

i=1 I (λi > λ∗)
N

,

where I (λi > λ∗) = 1 if λi > λ∗ and 0 otherwise. Sensitivity and PPV are defined in
terms of the population of the true and detected clusters (Kulldorff et al. 2009) as

Sensitivity = Pop(Detected Cluster ∩ True Cluster)

Pop(True Cluster)
,
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PPV = Pop(Detected Cluster ∩ True Cluster)

Pop(Detected Cluster)
.

where Pop() denotes the population. The reported values of sensitivity and PPV are
the average values of these proportions along the N Monte Carlo simulations.

Algorithm 3: Building the set of candidate clusters Z
Z ← ∅.
for i = 1 to k do

Let ( j) be the j-th nearest region to region i , including region i itself, and
Z ( j)

i be the set of the j nearest regions to region i . That is, Z (1)
i = {i},

Z (2)
i = {i, (2)}, and so on;

j ← 1;

while population inside Z ( j)
i is not bigger than half the total population of the

map and j < k do
Z ← Z ∪ {Z ( j)

i };
j ← j + 1;

end
end

5.1 Simulation design

The three algorithms were used to detect the artificial clusters A, B, C , and D, which
are described below and illustrated in Fig. 1.

– Scenario A is a circular cluster crossed by a set of contiguous regions with structural
zeros disconnecting the cluster;

– Scenario B is a circular cluster with “random” structural zeros;
– Scenario C is a small circular cluster with a single structural zero region in the

middle; and
– Scenario D is an irregular L-shaped cluster with a structural zero in the middle of

the upper part and with two structural zeros disconnecting the lower left part.

Notice, from Fig. 1, that in the four scenarios described above, the structural zero
regions are the same, and thus the scenarios differ only by the locations of the high-
risk regions. These scenarios were designed in order to simulate realistic situations: a
cluster disconnected by a systematic pattern (A), random lack of information (B), a
cluster with a hole (C), and a problematic irregular cluster (D).

In order to illustrate the deteriorating performance of the Scan-Poisson algorithm
as we progressively add structural zeros to the true cluster, we designed four extra
progressive scenarios, A1–A4 (see Fig. 2). These scenarios are modified versions of
scenario A, in the sense that high-risk regions are the same, and thus that these scenarios
differ only by the locations of the structural zero regions. Starting from scenario A1,
structural zeros are gradually moved from outside to inside the true cluster, thereby
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A B

C D

Fig. 1 Artificial scenarios A (top-left), B (top-right), C (bottom-left), and D (bottom-right). Regions in
gray represent the cluster and the ×s indicate structural zeros

preserving the total number of structural zeros in the map. Further, we have included
scenario A0, also designed from scenario A, but with no structural zeros.

All scenarios have 15 structural zero regions (except for A0) with the total number
of cases M fixed at 0.25 % of the total population: 507 cases. For each scenario we run
10,000 Monte Carlo replications under the null hypothesis for each method to compute
the critical value, and another 10,000 replications under the alternative hypothesis to
compute power, sensitivity, and PPV. The random distributions of cases are always
the same for the three methods.

5.2 Analysis for the simulated data

The results obtained using the simulated data are presented in Table 1, in terms of
power, sensitivity, and PPV, for the three different methods applied to the nine designed
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A1 A2

A3 A4

Fig. 2 Artificial progressive scenarios A1 (top-left), A2 (top-right), A3 (bottom-left), and A4 (bottom-
right). Regions in gray represent the cluster and the ×s indicate structural zeros

Table 1 Power, sensitivity and positive predictive value obtained by the three methods for artificial clusters
A0, A, B, C and D and progressive A1–A4

Scen. Scan-Poisson Scan-ZIP Scan-ZIP+EM

Power Sens. PPV Power Sens. PPV Power Sens. PPV

A0 0.9502 0.8533 0.8737 0.9502 0.8533 0.8737 0.9554 0.8599 0.8466

A 0.6758 0.6496 0.7475 0.9479 0.8664 0.8718 0.9152 0.8400 0.8417

B 0.6361 0.4828 0.6915 0.9500 0.8671 0.8796 0.9149 0.8426 0.8578

C 0.8672 0.8999 0.7593 0.9521 0.9339 0.8935 0.9369 0.9265 0.8660

D 0.6769 0.5337 0.6304 0.8756 0.6938 0.6534 0.8376 0.6880 0.6421

A1 0.9533 0.8070 0.8154 0.9533 0.8533 0.8575 0.9453 0.8483 0.8232

A2 0.9031 0.7359 0.8011 0.9475 0.8587 0.8642 0.9311 0.8455 0.8313

A3 0.8176 0.7107 0.7545 0.9518 0.8690 0.8702 0.9297 0.8532 0.8451

A4 0.6909 0.6228 0.7033 0.9508 0.8785 0.8762 0.9152 0.8545 0.8537
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scenarios. As we can observe, regarding the estimates of power, sensitivity, and PPV,
both Scan-ZIP and Scan-ZIP+EM algorithms are systematically superior to the Scan-
Poisson algorithm, the last one being comparable only when the true cluster presents
none or few structural zeros. Besides, the performance of Scan-ZIP+EM is very close
to that of Scan-ZIP.

Regarding the progressive scenarios, the Scan-Poisson algorithm steadily deteri-
orates as the number of structural zeros increases. The Scan-ZIP algorithm is able
to maintain its good properties irrespective of the number of structural zeros, while
the Scan-ZIP+EM algorithm deteriorates much slower than the Scan-Poisson algo-
rithm, remaining close to the Scan-ZIP algorithm. This suggests that the structural
zero estimates obtained by the EM procedure are quite reasonable and that the
Scan-ZIP+EM algorithm is clearly capable of capturing the presence of structural
zeros.

The results obtained for scenario A0 show that the lack of structural zeros does not
compromise the performance of the Scan-ZIP+EM method, as its performance is very
close to that of the Scan-Poisson algorithm. This indicates that the proposed statistic
can be possibly used as a more general model than the standard Poisson approach. For
this scenario, the results for the Scan-ZIP method are obviously identical to those of
the Scan-Poisson algorithm.

5.3 Discussing the Scan-Poisson type I error

It is important to study the performance of the discussed methods for maps that
include structural zero regions but with nonexistent clusters. To that purpose, we
conducted another experiment in which we considered 15 structural zero regions, and
according to the ZIP model, we randomly distributed 507 cases over the map under
the null hypothesis. This experiment was repeated 10,000 times. In this setting, the
expected number of cases was the same for all regions, except for the regions pre-
senting a structural zero. We then applied the three scan methods to each one of the
10,000 generated samples in order to compute the probability of type I error for each
approach.

For L R tests with α = 0.05, the Scan-ZIP and Scan-ZIP+EM methods presented
type I error rates of 0.0548 and 0.0561, respectively. Thus, both methods produced
error rates close to the nominal significance level. However, the Scan-Poisson type I
error proportion was 0.1006.

The Scan-Poisson performance was poorer because the simulated process under H0
was not a homogeneous one, an assumption required for building the Scan-Poisson
L R empirical distribution. This violation in the homogeneity assumption caused a
substantial bias in the L R estimated distribution. As a consequence, the Scan-Poisson
method was more likely to detect spurious significant clusters than it would be expected
in normal conditions. This problem obviously did not affect the Scan-ZIP method
that proved to be more robust than the Scan-Poisson method to the occurrences of
type I error. The Scan-ZIP+EM method is apparently able to adequately estimate the
model.
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6 Application

In many practical situations, we do not actually know whether or not the data include
structural zeros. However, the ZIP model can be used to account for excess zeros when
the practitioner suspects that there are more zeros than that expected for count data
under the assumption of a Poisson distribution. For example, in small towns, due to the
lack of a health center designed to diagnose a given disease, the number of reported
cases may be set as zero. Further, limited health insurance over community members
may prevent access to health center facilities, thereby causing a downward bias in the
notification statistics provided by this health center.

Another source of negative bias in the notification statistics is due to under-
reporting. This may occur despite state and local laws requiring medical providers
to report notifiable cases to public health authorities and can be attributed to incom-
plete reporting by the health staff. We would like to stress the fact that in Eq. (4), the
probability of zero cases includes two possible sources: the zero that occurs due to a
random or stochastic situation and the zero that is due to the structural (and almost
deterministic) nature of the event.

6.1 Breast cancer deaths in northern Brazil

In order to illustrate some of these points, consider the northern area of Brazil, divided
into municipalities. For each municipality the number of breast cancer deaths from
2008 to 2011 are recorded. Areas with non-zero counts are then displayed in a map.
We observe that most of these areas in the map (see Fig. 3) present zero cases. This has

Fig. 3 Northern region of Brazil. Gray regions indicate municipalities with at least one death due to breast
cancer
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Table 2 Number of breast
cancer death notifications in the
northern area of Brazil from
2008 to 2011

Municipality Year Total

2008 2009 2010 2011

Porto Velho 1 – 7 13 21

Rio Branco 1 6 2 5 14

Manaus 11 12 12 22 57

Boa Vista – 2 9 3 14

Belém 21 54 55 51 181

Santarém – 2 2 5 9

Macapá – 6 8 8 22

Araguaína 15 9 12 6 42

Palmas 1 5 5 5 16

Augustinópolis – – – 1 1

Redenção – – 1 – 1

Itaituba 1 – – – 1

Abaetetuba – – – 1 1

Ouro Preto do Oeste – – 1 – 1

Jaru – 1 – – 1

Ji-Paraná 1 1 – – 2

Other municipalities – – – – –

Total 52 98 114 120 384

nothing to do with possible immunity to this disease. Actually, that is just an artifact
caused by the absence of mammographers in these areas.

For example, according to the Brazilian National Cancer Institute (INCA), in 2011,
only 86 mammographers were available for the entire northern region that includes a
total of 450 municipalities. Furthermore, the northern region of Brazil is an enormous
territory (approximately 40 % of the US area), with a very low population density
and encompassing most of the Amazon forest, thus making mobility very difficult.
Further, given an imperfect system of notification of cases (e.g., not pointing out the
municipality of residence), and we will certainly observe “false” zeros, caused by
a series of external factors. As we can observe from Table 2, only 16 of the 450
municipalities reported some notification records concerning deaths caused by breast
cancer.

We applied our methods to the Tocantins state (highlighted in Fig. 3). Tocantins
comprises 139 municipalities and for each one we considered the administrative center
as the centroid. According to the recorded data, Tocantins presented 14 deaths by breast
cancer during 2008, for a population at risk of 690,104 women. We considered that
municipalities with no available mammographers present structural zeros. In fact,
we observed that all municipalities without functional mammographers presented no
records of deaths by breast cancer during 2008.

The most likely clusters detected by the Scan-Poisson, Scan-ZIP, and Scan-ZIP+EM
methods are shown in Fig. 4. The cluster detected by the Scan-Poisson method, includ-
ing only one municipality (Araguaína), is significant (p value = 0.0021), while the
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Fig. 4 Most likely clusters of breast cancer deaths found by the Scan-Poisson (left), Scan-ZIP (center),
and Scan-ZIP+EM (right) method in the state of Tocantins, Brazil

most likely clusters detected by the other methods are not: p value = 0.7712 for
the Scan-ZIP and 0.1750 for the Scan-ZIP+EM method. The non-significant cluster
detected by the Scan-ZIP method includes the municipality of Araguaína and some of
its neighbours.

The disagreement between the Scan-Poisson method and the other methods can be
justified by the results of our last simulations: as we mentioned at the end of Sect. 5, the
Scan-Poisson method presents some bias towards the detection of spurious significant
clusters when structural zeros are present in the data. These findings reinforce the
importance of our proposed methodology as a useful tool in preventing incorrect
identification of clusters when zero-inflation is present in the data.

6.2 Oral cancer cases in Georgia, United States

We now present an application to oral cancer cases data in Georgia, United States.
According to the International Classification of Diseases, oral cancer is a malignant
neoplasm of lip, oral cavity, or pharynx, and can be described as an abnormal, malig-
nant tissue growth in the mouth. The data set used in our application was obtained at
http://oasis.state.ga.us and consists of 430 deaths by oral cancer between 1994 and
1995, for all races, ethnicities, and life stages. The resulting map is divided into 159
counties, each of which had the centroid set to the county seat. The population at risk is
7,157,165. Figure 5 shows the population distribution over the map of Georgia and the
disease incidence rates. Our guess is that the data may be affected by under-reporting
and possible presence of structural zeros. This can be, for example, due to the lack of
health insurance coverage among some citizens in Georgia, thereby preventing them
from obtaining any kind of help, which leads to there being no diagnosed cause of
death. Another possibility is under-reporting, for example, due to failures in filling
medical protocols by the medical staff.
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Fig. 5 Population distribution (left) and oral cancer death rates (right) in Georgia, United States, between
1994 and 1995

Fig. 6 Clusters found by the Scan-Poisson (left) and Scan-ZIP+EM (right) algorithms. Black dots indicate
zero case counts

We then run the cluster detection algorithms using the Poisson and ZIP models.
Since we have no information about the location of possible structural zeros, we used
the Scan-ZIP+EM version for the ZIP case. The most likely clusters found by each
method are shown in Fig. 6. The black dots indicate regions with zero case counts. The
cluster produced by the Scan-Poisson algorithm is not significant at α = 0.05 (p value
= 0.056) while the cluster detected by the Scan-ZIP+EM algorithm is highly significant
(p value = 0.002). Besides, the cluster produced by the Scan-Poisson algorithm differs
substantially from the one that was produced by the Scan-ZIP+EM algorithm, and the
former seems to misrepresent a high-incidence oral cancer area.

We notice from Fig. 6 that the presence of some regions with zero case counts
prevents the Scan-Poisson method from finding a solution (or cluster) that includes
the high-incidence areas in the lower-middle part of the map. This happens because the
inclusion of these regions lowers the test statistic (λ). However, the solution provided
by the Scan-ZIP+EM algorithm is very robust in the sense that it does include several
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zero case-count areas, since their impact in reducing λ is easily compensated by the
inclusion of the high incidence-regions.

7 Discussion

In this article, we focus on extensions of the scan statistic proposed by Kulldorff
(1997) for cluster detection of spatial count data. The new scan statistics, denoted as
Scan-ZIP and Scan-ZIP+EM, allow for the occurrence of zero-inflated spatial data.
Our simulations revealed that the Scan-Poisson statistic proposed by Kulldorff (1997)
steadily deteriorates as the number of structural zeros increases, producing biased
inferences. This can be evaluated in terms of power, sensitivity, and PPV measures.
Our simulations also revealed that the Scan-ZIP and Scan-ZIP+EM statistics are,
most of the time, either superior or comparable to the Scan-Poisson statistic for all
scenarios. When the structural zeros are known, Scan-ZIP is far superior to the other
algorithms. The real data application reinforces these conclusions: for high-incidence
areas, which nonetheless present zero case counts, the Scan-Poisson method fails to
provide a reasonable solution or cluster.

Another important finding shown in our simulations is that when the data include
structural zeros, the Scan-Poisson method is more likely to detect spurious significant
clusters than the Scan-ZIP and Scan-ZIP+EM methods.

Like Kulldorff’s scan statistic, the ZIP scan statistic can be linked to more sophis-
ticated cluster detection techniques, allowing for the detection of irregularly shaped
clusters. Moreover, it seems quite straightforward to make extensions to space-time
and prospective space-time versions. However, it should be borne in mind that the
computational effort required by the EM algorithm increases as the number of can-
didate clusters increases, since we must estimate structural zeros for each candidate
cluster. For instance, for the map used in our simulations with 203 regions and using a
C++ implementation optimized for a Core i7 PC with 4GB RAM, running 10,000 sim-
ulations under H0 takes about 8 seconds for the Scan-Poisson or the Scan-ZIP. In our
experiments, the Scan-ZIP+EM was about eight times slower than the Scan-Poisson
and Scan-ZIP. A copy of our codes can be made available upon request.

In this work, we used area-aggregated data for simulation and applications. With
the formulation presented in this paper, the proposed method is restricted to this type of
data. For instance, our methodology is not suitable for point pattern data. In the future,
a more general approach could be developed to account for point pattern data sets.

In Sect. 3, we assume that the case counts in the regions follow independent ZIP
random variables with the same probability p of a structural zero. However, following
Lambert (1992), a more flexible model can be devised by considering the case where
probability pi of a structural zero in region i is modelled as a function of covariates
using a logistic regression.
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8 Appendix

Proof of Theorem 1 Let λ(D) and λ(D′) denote the values for the test statistic for the
two different data sets. Further, consider

I (Z) =
[ ∑

i∈Z xi (1− di )
∑

i∈Z ni (1− di )

]

and O(Z) =
[ ∑

i /∈Z xi (1− di )
∑

i /∈Z ni (1− di )

]

.

Similarly, let

I ′(Z) =
[ ∑

i∈Z x ′i (1− d ′i )∑
i∈Z n′i (1− d ′i )

]

and O ′(Z) =
[ ∑

i /∈Z x ′i (1− d ′i )∑
i /∈Z n′i (1− d ′i )

]

,

and let

C =
k∑

i=1

xi (1− di ) =
k∑

j=1

x ′j (1− d ′j ),

R =
k∑

i=1

ni (1− di ) =
k∑

j=1

n′j (1− d ′j ),

c(Z) =
∑

i∈Z

xi (1− di ),

r(Z) =
∑

i∈Z

ni (1− di ),

c′(Z) =
∑

i∈Z

x ′i (1− d ′i ),

r ′(Z) =
∑

i∈Z

n′i (1− d ′i ),

K =
[ ∑k

i=1 xi (1− di )
∑k

i=1 ni (1− di )

]∑k
i=1 xi (1−di )

.

As stated previously, these quantities are related to the sufficient statistics of the
MLEs.

Under the null hypothesis, λ(D) = 1, and this implies that

K = supZ∈Z [I (Z)]c(Z) [O(Z)]C−c(Z) =
[

I (Ẑ)
]c(Ẑ) [

O(Ẑ)
]C−c(Ẑ)

= supZ∈Z
[
I ′(Z)

]c′(Z) [
O ′(Z)

]C−c′(Z) =
[

I ′(Z̃ ′)
]c′(Z̃ ′) [

O ′(Z̃ ′)
]C−c′(Z̃ ′)

.

Thus, c(Ẑ) = C = c′(Z̃ ′), and the distributions of λ(D) and λ(D′) are the same.
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Under the alternative hypothesis λ(D) > 1, and we need to show that λ(D′) ≥
λ(D). Notice that under the conditions of the theorem, c′(Z̃ ′) ≥ c(Ẑ), since

∑

i∈Z̃ ′
x ′i (1− d ′i ) =

∑

i∈Ẑ

x ′i (1− d ′i )+
∑

i∈Ẑ∩Z̃ ′

x ′i (1− d ′i ) ≥
∑

j∈Ẑ

x j (1− d j ),

as Ẑ ∩ Z̃ ′ might be different from the empty set. When λ(D) > 1, we have from
Eq. (9) that

λ(D) = supZ∈Z
1

K
[I (Z)]c(Z) [O(Z)]C−c(Z)

= 1

K

[
I (Ẑ)

]c(Ẑ) [
O(Ẑ)

]C−c(Ẑ)

= 1

K

[
c(Ẑ)

r(Ẑ)

]c(Ẑ) [
C − c(Ẑ)

R − r(Ẑ)

]C−c(Ẑ)

≤ 1

K

[
c′(Ẑ)

r ′(Ẑ)

]c′(Ẑ) [
C − c′(Ẑ)

R − r ′(Ẑ)

]C−c′(Ẑ)

≤ supZ∈Z
1

K

[
I ′(Z)

]c′(Z) [
O ′(Z)

]C−c′(Z)

= 1

K

[
I ′(Z̃ ′)

]c′(Z̃ ′) [
O ′(Z̃ ′)

]C−c′(Z̃ ′) = λ(D′).

The first inequality holds since for any constants α, β, and N , (αn)n(β(N − n))N−n

is an increasing function of n when αn > β(N − n). This is true since λ(D) > 1

implies that I (Ẑ) > O(Ẑ), that is, c(Ẑ)

r(Ẑ)
> C

R . This also means that I ′(Ẑ) > O ′(Ẑ). In

order to verify this, using a proof by contradiction, let us suppose that I ′(Ẑ) ≤ O ′(Ẑ).

Then, c′(Ẑ)

r ′(Ẑ)
≤ C

R . Since c′(Ẑ) ≥ c(Ẑ), this implies that c(Ẑ)

r(Ẑ)
≤ c′(Ẑ)

r(Ẑ)
≤ C

R whenever

r(Ẑ) = r ′(Ẑ), which is absurd. ��

Proof of Theorem 2 According to Definition 1, in order to prove that λ is an IMP test,
it is necessary to show that if statements (1) and (2) are true, then (3) cannot hold.
This is equivalent to showing that for any (Z , θ0, θZ ) ∈ AZ ,

P(w ∈ R′Z | (Z , θ0, θZ ))− P(w ∈ RZ | (Z , θ0, θZ )) ≤ 0. (13)

For an arbitrary Z , let D− = {w : w ∈ RZ , w /∈ R′Z } and D+ = {w : w ∈ R′Z , w /∈
RZ }. Define

M = sup w∈D+
L(Z , θZ , θ0 | w)

L(θ0 | w)
.
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By the definition of D+ and D−, since RZ is described in terms of Z , which is the
most likely cluster in a subset of the sample space, we have that each w in D− has a
higher likelihood ratio than any w in D+; that is,

M = sup w∈D+
L(Z , θZ , θ0 | w)

L(θ0 | w)
≤ inf w∈D−

L(Z , θZ , θ0 | w)

L(θ0 | w)
,

M = sup w∈D+

[∑
i∈Zw

xi (1−di )∑
i∈Zw

ni (1−di )

]∑
i∈Zw

xi (1−di ) [∑
j /∈Zw

x j (1−d j )∑
j /∈Zw

n j (1−d j )

]∑
j /∈Zw

x j (1−d j )

[∑k
i=1 xi (1−di )

∑k
i=1 ni (1−di )

]∑k
i=1 xi (1−di )

≤ inf w∈D−

[∑
i∈Zw

xi (1−di )∑
i∈Zw

ni (1−di )

]∑
i∈Zw

xi (1−di ) [∑
j /∈Zw

x j (1−d j )∑
j /∈Zw

n j (1−d j )

]∑
j /∈Zw

x j (1−d j )

[∑k
i=1 xi (1−di )

∑k
i=1 ni (1−di )

]∑k
i=1 xi (1−di )

= inf w∈D−
L(Z , θZ , θ0 | w)

L(θ0 | w)
.

The proof of inequality (13) for any (Z , θZ , θ0) ∈ AZ follows largely from Kulldorff
(1997), where it is verified that

P(w ∈ R′Z | (Z , θ0, θZ ))− P(w ∈ RZ | (Z , θ0, θZ ))

≤ M(P(w ∈ R′ | H0)− P(w ∈ R | H0)) = 0.

The last equality holds since R j = R′j for all j 
= Z , according to statement 2 in
Definition 1. ��
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