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Abstract  All ecological communities experience change over time. One method to
quantify temporal variation in the patterns of relative abundance of communities is
time lag analysis (TLA). It uses a distance-based approach to study temporal com-
munity dynamics by regressing community dissimilarity over increasing time lags
(one-unit lags, two-unit lags, three-unit lags). Here, we suggest some modifications
to the method and revaluate its potential for detecting patterns of community change.
We apply Hellinger distance based TLA to artificial data simulating communities with
different levels of directional and stochastic dynamics and analyse their effects on the
slope and its statistical significance. We conclude that statistical significance of the
TLA slope (obtained by a Monte Carlo permutation procedure) is a valid criterion
to discriminate between (i) communities with directional change in species composi-
tion, regardless whether it is caused by directional abundance change of the species
or by stochastic change according to a Markov process, and (ii) communities that
are composed of species with population sizes oscillating around a constant mean
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or communities whose species abundances are governed by a white noise process.
TLA slopes range between 0.02 and 0.25, depending on the proportions of species
with different dynamics; higher proportions of species with constant means imply
shallower slopes; and higher proportions of species with stochastic dynamics or direc-
tional change imply steeper slopes. These values are broadly in line with TLA slopes
from real world data. Caution must be exercised when TLA is used for the comparison
of community time series with different lengths since the slope depends on time series
length and tends to decrease non-linearly with it.

Keywords Community change - Markov process - Species composition -
Stochasticity - Temporal dynamics

1 Introduction

All ecological communities are subject to changes over time (McArthur and Wilson
1967; Magurran and Henderson 2010; White et al. 2006). Long-term datasets of eco-
logical communities are the most important source of information on the temporal
dynamics of species composition and patterns of relative abundance (Magurran et al.
2010). “Long-term”, however, is relative (Rull and Vegas- Vilarrtibia 2011); while some
studies analyse data collected over an exceptionally long period of time—for exam-
ple, the Park Grass Experiment at Rothamsted, England (Silvertown et al. 2006)—the
majority of datasets that are regarded as “long-term” by ecologists are comparably
short and do not allow for the application of standard tools for time series analysis
(Cowpertwait and Metcalfe 2009).

Time lag analysis (TLA) was introduced by Collins et al. (2000) as a method to
quantify temporal variation in the patterns of relative abundance of communities. It
applies a distance-based approach and is used to study temporal community dynam-
ics by regressing community dissimilarity over increasing time lags (one-unit lags,
two-unit lags, three-unit lags,...). To prevent the smaller number of data points of
larger time lags from biasing the result, the time lags are square root transformed.
Collins et al. (2000) mention three instances that can be distinguished by TLA.
(1) The slope of the regression line of dissimilarity on lag is significant and posi-
tive. In this case the community is undergoing directional change. (2) The regres-
sion line is significant and negative. This indicates a convergent dynamics of the
community, i.e., the community returns to an earlier state in the time series such
as following perturbation or other cyclical behaviour. (3) The slope of the regres-
sion line is not significantly different from zero. This implies that there is stochastic
variation over time. Collins et al. (2000) further state that the slope of the regres-
sion and the coefficient of determination, RZ, can be used as a measure of signal
versus noise. For example, a small but significant positive slope with a small R?
would indicate slow directional change with high stochastic variation between sam-
ple intervals, whereas a steeper slope and a large R*> would indicate a strong sig-
nal of directional change and less stochastic variation. Since its publication, TLA
has gained popularity, and it has been applied to study the temporal dynamics
of a variety of communities, for example, desert rodents (Thibault et al. (2004)),
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soil microarthropods (Kampichler and Geissen 2005), and tide pool fishes (Pfister
2006).

The stochastic change as outlined above assumes that populations are governed
by a white noise process, which means that the abundance of a species at a given
time is completely independent of any previous state. Examples are communities in
which species abundances oscillate around time-invariant means according to a nor-
mal distribution, or communities in which the abundance of each species corresponds
to random values from a uniform distribution at every time step (which in fact also
leads to stationary population means when the upper and lower limits of the uniform
distribution are constant in time). In an analysis of 544 natural populations of 123
species, Inchausti and Halley (2002) showed, however, that in almost all cases popu-
lation variability increases with observed timespan, which is not consistent with the
assumption of a white noise population process. We therefore aimed to evaluate the
behaviour of TLA with data based on the most simple stochastic model next to a white
noise process which assumes that the abundance at any point in time is dependent only
on its previous value (Williams et al. 2002, p. 188). Processes whose future process
behaviour is influenced only by the present system state are known as Markov pro-
cesses, and they are widely used for the modelling of biological populations (Meyn
and Tweedie 1993, p. 5; Williams et al. 2002). We argue that it is highly improbable
that a first-order Markov process, i.e. a state at time ¢ + 1 depends only on the state at
time ¢, will move a community back to a position in variable space where it had been
some time before. Thus, any stochastic change concerning the abundance of the spe-
cies that constitute the community inevitably will veer it away from the original state
and thus increase any distance measure. The terms “directional”” and “stochastic” must
be used with caution since they suggest that directional community change implies
the action of an internal or external force that drives it from its original position in
variable space. According to our reasoning, stochastic variation that can be described
by a first-order Markov process also leads to “directional” change, for example, by
ecological drift (Hubbell 2001), which is analogous to genetic drift caused by random
mutation (Ricklefs 2003).

In this paper, we apply TLA to artificial data simulating communities with different
levels of directional and stochastic dynamics and analyse their effects on the slope and
its statistical significance. According to our hypothesis, we expect to detect signifi-
cant community change when first-order Markov processes are involved. Finally, we
draw conclusions on the potential of TLA for the study of real-world community time
series.

2 Materials and methods

2.1 Simulation of community time series

We simulated community change with communities having a species richness of
20 and a time-series length of 20 and 100 units. They were initialised accord-

ing to a log-normal model of abundance distribution with a mean of log(N) = 3
and a standard deviation of 2 and rounded to the closest integer. We assumed
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that all species within a community behaved independently from the others. We
used species with three types of dynamics: species that fluctuate around a con-
stant mean (‘“‘constant species®), species with stochastic dynamics (“stochastic spe-
cies™), and species with a monotonously increasing or decreasing trend (“directional
species®).

Abundance values of the constant species time series were drawn from a normal
distribution with the initial abundance N as the mean and the standard deviation s
calculated as N,_; * v where v is a scaling factor ranging from 0.001 to 0.5 thus
fixing the standard deviation in the range from 0.1 % (species with small fluctua-
tions) to 50 % (species with large fluctuations) of the mean of the preceding time step
(Fig. 1a). For the stochastic species, we used the general model N; = f(N;—1, &)
as a starting point where Nis the population density at time ¢, &; represents environ-
mental stochasticity, and f is a function that relates the density and environmental
stochasticity to a population size at time 7+ 1 (Lundberg et al. 2000). We drew the
abundance values N, from a normal distribution with mean N,_; and standard devia-
tion calculated as above as N;_1 * v with v ranging from 0.001 to 0.5 (Fig. 1b). Thus
the trajectories of the stochastic species through time form first-order Markov chains
since the transition probabilities from N;_; to N, depend only on N,_1, not on how
N;—1 was reached (e.g., by an increase or a decrease from N;_p to N;_1) like in a
correlated random walk (Meyn and Tweedie 1993; Williams et al. 2002). Stochas-
tic species were allowed to go extinct and to re-enter the community. We applied a
procedure similar to the random walk on a half-line (Meyn and Tweedie 1993) and
permitted the species trajectory to include negative abundances during data genera-
tion. Prior to TLA these data were set to zero, i.e. the species were “absent” from
the community at the corresponding points in time. Time series of the directional
species were constructed in the same manner as for stochastic species, but for each
species the changes were forced to be always either positive or negative (Fig. 1c).
Due to their directional character, species that went extinct in the time series could
not re-enter the community. The minimum change between time steps was set to one.
Finally, all of the time series values were rounded to the closest integer. For the sake
of clarity in this paper we replace the term stochasticity, which is introduced into
the time series by v, with femporal variability and thus avoid confusing it with the
terms referring to the three different types of dynamics (constant, stochastic, direc-
tional).

We constructed communities that were exclusively composed of constant species
(const100), stochastic species (stoch100) and directional species (dir100), as well as
communities that were composed of 25 and 75 %, 50 and 50 % and 75 and 25 % species
of two given types. For example, community const50stoch50 was composed of 50 %
constant and 50 % stochastic species. Among the directional species in a given com-
munity, one half was assigned an increasing trend, and the other half a decreasing one.
For all species in a given community s had the identical value. Thus, we constructed
communities with a range from very low to very high temporal variability. No attempt
was made to simulate communities with a converging dynamic, that is, communities
that return to a state of one of the early sample dates, which should yield a significant
negative slope according to Collins et al. (2000).
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Fig. 1 Sample time series of
constant (a), stochastic (b) and
directional (c¢) species with
varying temporal variability,
characterised by the scaling
factor v. For ease of comparison
all sample time series share the
same initial value No = 50.
The scaling factor v used for
constructing the time series
ranges from 0.001 to 0.5

(see text for details). Note the
different scaling of y-axes
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2.2 Data transformation

In using Euclidean distance based on the absolute abundances (EDyps) as a distance
measure, any changes in species abundances in the same direction that do not change
relative abundance patterns—e.g., all species increase their population size by 10 %—
will lead to increasing dissimilarity over time and yield significant TLA slopes. It is,
thus, difficult to disentangle the abundance component and the compositional compo-
nent. We assume that in most cases it is desirable to model changes in abundance and
changes in composition separately, and in these cases distance measures other than
ED,ps should be used. Furthermore, the comparison of temporal trends of communities
with different numbers of individuals is hampered since higher numerical abundance
leads to larger ED,ps between years and, thus, to steeper TLA slopes. Last but not least,
EDgps can cause the well-known species-abundance paradox: two sites having no spe-
cies in common may be more similar than two sites sharing species but with different
abundances (Legendre and Legendre 1998). Based on a preliminary evaluation of dif-
ferent data transformations to circumvent the undesired properties of EDgpg (Online
Resource 1) we applied the Hellinger transformation N/ = /(Nij/ > Nij) where
N;; is the population size of species i in year j, and X N;; is the sum of individuals
across all species in year j (Rao 1995). Legendre and Gallagher (2001) proposed itas a
useful transformation for the analysis of community data. TLA based on Hellinger dis-
tance (HD), i.e., Euclidean distance of Hellinger transformed data, has the properties
of (i) not being sensitive to changes in absolute abundance while patterns of relative
abundance stay constant, (ii) making assemblages directly comparable independent of
their species richness, and (iii) being sensitive also to rare species (Online Resource
1). TLA based on Hellinger distance has already been used for the analysis of real
world data, for example, of the dynamics of temporary pond zooplankton (Angeler et
al. 2009) and the dynamics of the Dutch breeding bird fauna (Kampichler et al. 2012).
Hellinger distance, however, is not mandatory for TLA; depending on the research
question other distance measures might be preferred for example when abundance
effects are to be included or when more emphasis is to be given to dominant species
(Online Resource 1).

2.3 Time lag analysis

Community change was replicated 1000 times for each combination of composi-
tion (const 100, stoch100, dir100, const25stoch75, const50stoch50, const75stoch25,
const25dir75, const50dir50, const75dir25, stoch75dir25, stoch50dir50, stoch75dir25),
temporal variability (v = 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1,
0.2, 0.3, 0.4, 0.5) and time series length (20 and 100), yielding a total of 12*13*2 =
312,000 simulation runs. For each simulated community we fitted the linear model
HD = a + b *sqrt(lag). For a time series of length n there are (% —n)2 possible dis-
tance values. The time series of length 20 and 100 thus produce 190 (19 values for lag
1, 18 values for lag 2, ..., 1 value for lag 19) and 4,950 distance values, respectively.
The inflated number of degrees of freedom and the lack of independence between the
data points are problematic for the determination of the statistical significance of the
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slope. Following Thibault et al. (2004) we applied a Monte Carlo permutation proce-
dure and (i) permuted the order of the year columns in the data matrix, (2) calculated
the slope b for each permutation, and (3) compared the resulting distribution of slopes
with the slope for the original data matrix by dividing the number of random slopes
greater than the original TLA slope by the number of permutations. Doing this for
all 312,000 simulated communities, however, would have increased the number of
calculations to an unfeasible amount. We therefore limited significance testing to a
100-fold randomisation of 100 simulated communities for each combination of com-
munity composition, temporal variability and time series length, which still added
up to 3,120,000 permutation runs. Slopes were regarded significant when the error
probability P was equal to or < 0.05. The highest level of significance attainable
with the applied Monte Carlo permutation procedure was P < 0.01, when all random
slopes were lower than the original TLA slope. All simulations were performed with
the R language and environment for statistical computing (R Development Core Team
2010).

3 Results

Community const100 did not show significant slopes (Figs. 2, 3) whereas the slopes of
stoch100 (Figs. 2, 4) and directional 100 (Figs. 3, 4) were highly significant (P < 0.01)
at any given level of temporal variability. Even if a small proportion of species in the
communities containing constant species was stochastic or directional, P decreased
rapidly and the slopes attained high significance (P < 0.01) in almost all cases (Figs.
2, 3). For the mixture of constant and stochastic species with a temporal variability of
v < 0.05 these slopes were very low (b < 0.02) but still highly significant (P < 0.01)
(Fig. 2a—d). The only exception was community constant75stoch25 (composed of
many constant species and few stochastic species) whose P varied between 0.25 and
0.45 (Fig. 2¢). All communities composed of stochastic and directional species had
highly significant (P < 0.01) slopes (Fig. 4).

Slopes became steeper with increasing temporal variability; at the highest levels of
variability, however, slopes tended to decrease. This pattern was more pronounced for
the longer (Figs. 2b, 3b, 4b) than for the shorter time series (Figs. 2a, 3a, 4a). Slopes
were clearly dependent on time series length and were generally higher in the shorter
time series, particularly in the communities with higher temporal variability (Figs. 2a,
b, 3a, b, 4a, b).

4 Discussion

The results confirm our hypothesis that stochastic change other than a white noise
process would lead to significant slopes when regressing community dissimilarity
over increasing time lags. Collins et al. (2000) also presented simulated stochastic
data and concluded that the resulting slope would be non-significant (Collins et al.
2000, Fig. 4). Their trajectories through time, however, were constructed in a different
way, randomly choosing the abundance for each species at each point in time. For
natural populations this rarely seems to be the case as has been shown by Inchausti
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Fig. 2 Time lag analysis of simulated communities composed of constant and stochastic species in time
series of a, ¢ length 20 and b, d length 100 with different temporal variability, determined by the scaling
factor v used in the generation of the species time series (see text for description). Reported are a, b the

slopes of the regression lines of Hellinger distance on square root of time lag and ¢, d the error probability,
P, as determined by a Monte Carlo permutation procedure

and Halley (2002). The Markov chains of abundance of ‘“‘stochastic species” used in
our study represent a more realistic realisation of the time series of animal popula-
tions that have neither a stable mean (“constant species”) nor tend to approach an
attractor of high or low abundance (“directional species”) but are governed only by
random fluctuations (Williams et al. 2002). Consequentially the significance level of
the slope does not allow the discrimination between communities with directional and
stochastic change. Both processes—directional change of constituent species and sto-
chastic change according to a Markov process—Iead to directional changes in species
composition and these are identified as such by TLA even when the changes between
sampling dates are very small. Applied to real community data, TLA will yield sig-
nificant slopes for communities characterised by directional and stochastic dynamics,
and will discriminate them from the communities that are almost entirely composed
of species with constant population sizes (Figs. 2, 3) and communities whose species
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Fig. 3 Time lag analysis of simulated communities composed of constant and directional species in time
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of the regression lines of Hellinger distance on the square root of time lag and ¢, d the error probability, P,
as determined by a Monte Carlo permutation procedure

abundances are governed by a white noise process, such as in the simulations of
stochastic dynamics by Collins et al. (2000).

Since significance will be achieved in almost any case, the slope itself remains as
the most important measure to judge the dynamic of a community undergoing changes
in species composition. When temporal variability is low, the slope rarely exceeds val-
ues of 0.05; in the communities composed of constant and stochastic species it even
remains below 0.02. The maximum values attained for higher temporal variability fall
between 0.15 and 0.25 (Fig. 2a, 3a, 4a); only community stoch75dir25 yielded a slope
even larger than 0.25 (Fig. 4a). The range of slopes observed in the simulations corre-
spond quite well to the empirical Hellinger-distance based TLA slopes of bird commu-
nities (Kampichler et al., in preparation). Bird communities from pristine ecosystems
have been described as being remarkably stable (primeval temperate forests: Enemar
et al. 2004; Wesotowski et al. 2010; Scandinavian alpine vegetation: Svensson 2006).
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Fig. 4 Time lag analysis of simulated communities composed of stochastic and directional species in time
series of a, ¢ length 20 and b, d length 100 with different temporal variability, determined by the scaling fac-
tor v used in the generation of the species time series (see text for description). Reported are a, b the slopes
of the regression lines of Hellinger distance on the square root of time lag and ¢, d the error probability, P,
as determined by a Monte Carlo permutation procedure

Their slopes range from 0.02 to 0.04 which would be consistent with the assumption
that these communities are mainly composed of a mixture of constant species and sto-
chastic or directional species with low temporal variability. Slopes from successional
forests (deciduous forest on abandoned fields: Kendeigh 1982; spruce regrowth after
clearcutting: Hall 1984) with a considerable number of directional bird species (early
species that later become locally extinct, species that enter the community later and
continually increase their abundance) show slopes steeper than 0.1. A closer interpre-
tation of the slopes seems to be hampered by the lack of a monotonous relationship
between temporal variability and slope, as shown by the undulating curves in Figs. 3b
and 4b. This is, however, due to the fact that in this simulation the directional species
continue to increase or decrease their abundance throughout the entire time series
which might be the case in short time series but cannot be assumed to be very realistic
for long real-world time series. At high levels of temporal variability the decreasing
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equal proportions of a, b constant and stochastic species, ¢, d directional and stochastic species, and e, f
constant and directional species. The scaling factor v used for determining temporal variability in the gen-
eration of the time series was set at 0.1 (see text for description). Panels on the left a, ¢, e are based on
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by segmented regression (Muggeo 2003) using the package segmented (Muggeo 2008) for the R language
and environment for statistical computing (R Development Core Team 2010). Regression lines in panels b,
d and f are not significant (P > 0.05), significant at P < 0.01 and significant at P < 0.001, respectively

directional species very rapidly become extinct while the remaining species continue
increasing; relative abundance patterns change only slightly for the rest of the time
series and thus lead to a lower TLA slope.
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A more serious complication is that longer time series yield lower slopes than shorter
ones, particularly when temporal variability is high (Figs. 2b, 3b, 4b), although the
generation process of the time series of the constituent species is identical. To explore
this hitherto unreported behaviour of TLA we simulated another 6,000 communities—
2,000 each for the compositions const50stoch50, const50dir50 and stoch50dir50—for
time series lengths (TSL) increasing from 10 to 200 in steps of 10 (ten replicates for
each TSL, temporal variability set at v = 0.1) and regressed their slopes on TSL. TLA
slopes vary considerably with the TSL; their relationship is quite complicated and can-
not be approximated by a linear model but only with a segmented regression approach
(Muggeo 2003), fitting separate line segments to different TSL intervals (Fig. 5a, c, e).
Standardising TSL and thus regressing Hellinger distance on sqrt(lag)/max(sqrt(lag))
eliminates much of the nonlinearity of the relationship between slope and TSL (no
segmented regression could be fitted). On the one hand, this would permit the direct
comparison of community data with different TSL; on the other hand, comparability
with conventional TLA studies becomes lost due to the changed slope (compare the
slopes on the y-axes of Fig. 5a, c, e with Fig. 5b, d, f). Consequentially, caution has to
be exercised when TLA is used for the comparison of communities where time series
length differs.

There are anumber of alternatives to distance-based time lag analysis, such as redun-
dancy analysis based on principal coordinates of neighbourhood matrices (Borcard et
al. 2004) or asymmetric eigenvector maps (Blanchet et al. 2011). These methods were
developed for the analysis of spatial patterns but can easily be adopted for time series
analysis (Angeler et al. 2009). These direct canonical ordination approaches conserve
the taxonomic identity of species during the calculation of distance metrics and allow
identification of the species’ contributions to the patterns of temporal change. Thus
it has been argued that they are superior to distance based methods (Angeler et al.
2009). We suspect that distance and ordination methods do not exclude each other
but mutually complement the other. The merits of TLA compared to these powerful
methods are its computational ease, its easy comprehensibility for an audience not
experienced in interpreting ordination results, and the possibility of characterising
and comparing the temporal dynamics of large numbers of communities with a single
measure (the slope along with its significance level) without being drowned in masses
of detailed information. We thus feel that further methodological improvements of
TLA are desirable and necessary.
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