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Abstract In ranked-set sampling (RSS), the ranker must give a complete ranking
of the units in each set. In this paper, we consider a modification of RSS that allows
the ranker to declare ties. Our sampling method is simply to break the ties at random
so that we obtain a standard ranked-set sample, but also to record the tie structure
for use in estimation. We propose several different nonparametric mean estimators
that incorporate the tie information, and we show that the best of these estimators is
substantially more efficient than estimators that ignore the ties. As part of our compar-
ison of estimators, we develop new results about models for ties in rankings. We also
show that there are settings where, to achieve more efficient estimation, ties should
be declared not just when the ranker is actually unsure about how units rank, but also
when the ranker is sure about the ranking, but believes that the units are close.

Keywords Imperfect rankings · Isotonic estimation · Judgment post-stratification ·
Ranked-set sampling · Ties in rankings

1 Introduction

Ranked-set sampling (RSS), proposed by McIntyre (1952, 2005), is a sampling scheme
that typically outperforms simple random sampling in settings where precise measure-
ments are costly, but small sets of units can easily be ranked or approximately ranked
at negligible cost. McIntyre’s work was motivated by applications in agriculture, but
RSS has since been applied in many other areas, including environmental monitoring
(Kvam 2003), forestry (Halls and Dell 1966), and medicine (Chen et al. 2005). Patil
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(1995) described a variety of applications of RSS in environmental monitoring and
assessment.

RSS may be either balanced or unbalanced. To implement balanced RSS, one first
decides on a set size m and a number of cycles n. One then draws nm independent
simple random samples (sets) of size m and ranks the units in each set from smallest
to largest. This ranking is done without making any precise measurements, and it need
not be perfectly accurate. After putting the nm ranked sets in random order, one selects
one unit from each set for precise measurement. From each of the first n sets, the unit
ranked smallest in the set is selected for measurement. From each of the next n sets,
the unit ranked second-smallest is selected for measurement, and so on. This yields a
sample of nm independent values, with n values coming from each of the m possible
in-set ranks. To implement unbalanced RSS, one drops the requirement that the sample
include the same number of units from each in-set rank. Instead, one simply decides
on a set size m and a vector (n1, . . . , nm) such that ni gives the number of units with
in-set rank i that are to be selected for precise measurement. For unbalanced RSS, the
number of sets required is

∑m
i=1 ni .

When ranking the units in a set, there will often be cases where the ranker is unsure
about how two or more units should rank. However, implementing RSS requires a full
ranking in each set. As a result, ties are not allowed, and if they occur, they must be
broken at random. Ozturk (2011) described this difficulty, and he also proposed some
variations on RSS in which rankers are permitted to declare ties. Under his first pro-
posal, which is the most general, ties of any kind may be declared. Thus, the ranking
process consists of dividing the units in each set into subsets S1, . . . , Sk (with k ≤ m)
such that units in the same subset are tied, but each unit in set Si is considered smaller
than each unit in S j if i < j . After this judgment subsetting process, a grouping
of sets is carried out, and units are selected for precise measurement in such a way
that exactly one unit is selected from each set. However, Ozturk (2011) provides few
details about the grouping step, and since the grouping is done by the researcher, it
appears that there is potential for bias to be introduced. An additional problem is that
the theoretical results of Ozturk (2011) rely on the claim that having a particular subset
of units be tied for ranks i to j tells us nothing about the average value for a unit drawn
from that subset. We show in this paper that this claim does not always hold. In the
remaining two proposals made by Ozturk (2011), there are restrictions on what ties
may be declared, and in the method that Ozturk (2011) recommends for use, ties are
actually forced. For example, one recommended scheme for set size m = 6 requires
that the ranker split each set into three subsets: the smallest two, the middle two, and
the largest two.

In this paper, we propose a sampling scheme and associated estimators that may
be used no matter what ties are declared. The sampling scheme consists of breaking
ties at random when deciding which units to select for precise measurement, but then
also recording the tie structure. Thus, sampling with set size m and sample size vec-
tor (n1, . . . , nm), the full data would include not just the values Y[i] j , i = 1, . . . , m,
j = 1, . . . , ni , where Y[i] j is the precise measured value for the j th unit with rank i ,
but also indicator variables I[i] jk (i = 1, . . . , m, j = 1, . . . , ni , k = 1, . . . , m), where
I[i] jk is 1 if the j th unit with rank i was tied for rank k and zero otherwise. Note that∑m

k=1 I[i] jk ≥ 1 is the number of ranks for which the j th unit with rank i was tied.
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In Sect. 2, we describe mean estimators that use data of this form. In Sect. 3, we
discuss models that allow both for ties and for imperfect rankings, and we develop
some new results about properties of these models. In Sect. 4, we use the models to
compare the performance of the mean estimators discussed in Sect. 2, and in Sect. 5,
we show that it is sometimes a good idea to declare a tie even when the ranker is sure
about the correct ordering of two units. We show in Sect. 6 that the claim needed for
implementing the most general method of Ozturk (2011) does not hold in general, and
we conclude in Sect. 7 with a discussion.

2 Nonparametric mean estimators

Since data collected in the manner described in Sect. 1 constitutes a ranked-set sam-
ple, the standard RSS unbiased nonparametric mean estimator may still be used. This
estimator ignores the tie information provided by the indicator variables I[i] jk , and it
is given by

μ̂1 = 1

m

m∑

i=1

Ȳ[i],

where Ȳ[i] = 1
ni

∑ni
j=1 Y[i] j is the sample mean for the i th (rank i) stratum.

One way to incorporate the tie information is to split each tied unit among the strata
corresponding to the ranks for which the unit was tied. Specifically, if a measured unit
is tied for r different ranks, then we assign it to each of those r strata, but with weight
1/r instead of 1. This strategy, which is a special case of a more general strategy
proposed by MacEachern et al. (2004) in the context of judgment post-stratification
(JPS), leads to the estimator

μ̂2 = 1

m

m∑

i=1

Ȳ ′[i],

where

Ȳ ′[i] =
∑m

l=1
∑nl

j=1 Y[l] j · I[l] j i∑m
k=1 I[l] jk

∑m
l=1

∑nl
j=1

I[l] j i∑m
k=1 I[l] jk

is the weighted sample mean for the i th stratum.
It may happen that the sample means Ȳ[1], . . . , Ȳ[m] or Ȳ ′[1], . . . , Ȳ ′[m] don’t come in

the increasing order that the true stratum means must follow if the judgment strata are
stochastically ordered. In this case, one might isotonize the estimates Ȳ[1], . . . , Ȳ[m]
or Ȳ ′[1], . . . , Ȳ ′[m], using the sample sizes n1, . . . , nm or the weighted sample sizes

n′
i ≡ ∑m

l=1
∑nl

j=1
I[l] j i∑m

k=1 I[l] jk
, i = 1, . . . , m, as the weights. By equation (4) in

Wang et al. (2008), the isotonized versions of Ȳ[1], . . . , Ȳ[m] are given by
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Ȳ[i],iso = max
1≤r≤i

min
i≤s≤m

∑s
l=r nl Ȳ[l]

∑s
l=r nl

for i = 1, . . . , m, and the isotonized versions of Ȳ ′[1], . . . , Ȳ ′[m] are given by

Ȳ ′[i],iso = max
1≤r≤i

min
i≤s≤m

∑s
l=r n′

l Ȳ
′[l]∑s

l=r n′
l

for i = 1, . . . , m. These isotonized in-stratum means may also be obtained by using
the pool adjacent violators algorithm (PAVA), which is described in Chapter 1 of
Robertson et al. (1988). The overall mean estimate is then the average of the isoton-
ized in-stratum means. This isotonization strategy, proposed by Ozturk (2007) for the
case of unbalanced RSS and by Wang et al. (2008) for JPS, leads to nonparametric
mean estimators

μ̂3 = 1

m

m∑

i=1

Ȳ[i],iso

and

μ̂4 = 1

m

m∑

i=1

Ȳ ′[i],iso.

Here μ̂3 is the isotonized version of μ̂1, and μ̂4 is the isotonized version of μ̂2.
Another way to incorporate the tie information is to consider the different ways that

the ties might have been broken at random. This leads to Rao-Blackwellized versions
of μ̂1 and μ̂3 that are thus guaranteed to be at least as good as μ̂1 and μ̂3, respectively,
when assessed by mean squared error (MSE). These estimators are obtained by (i) con-
sidering all possible ways that the ties might have been broken at random and all possi-
ble ways that the choice of which rank to sample from each set might have been made,
(ii) restricting attention to the cases where the units chosen for precise measurement
would have been exactly those that were actually chosen for precise measurement,
and then (iii) averaging together the resulting mean estimates. Since the units actu-
ally chosen for measurement could not be the units chosen for precise measurement
unless their ranks matched the desired sample size vector (n1, . . . , nm), it is sufficient
to average over all ways in which the ranks assigned to the units that were actually
measured yield the desired sample size vector (n1, . . . , nm). We write μ̂5 for the
Rao-Blackwellized version of μ̂1, and we write μ̂6 for the Rao-Blackwellized version
of μ̂3. Rao-Blackwellizing μ̂2 and μ̂4 in this way does not lead to new estimators
since μ̂2 and μ̂4 do not depend on how the ties were broken at random.

To illustrate how the estimators are computed, we consider an example. Suppose
that we wish to estimate the average population for the 108 largest US cities. Using set
size m = 4 and in-stratum sample sizes (n1, n2, n3, n4) = (3, 3, 2, 2), we carried out
the judgment subsetting process. The necessary 10 sets of size 4 were drawn by the
author, and the judgment ranking with ties was done by a colleague. The sets were then
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put in random order, and the ties in judgment rankings were broken at random. From
each of the first three sets, the unit with rank 1 was selected for precise measurement.
From the each of the next three sets, the unit with rank 2 was selected, and so on. This
process yielded the data shown in Table 1.

Each row of Table 1 corresponds to one set, and the cities in each set are listed
according to their ranks after ties were broken at random. Cities that were declared
tied are connected with ampersands, and the city that was selected for precise mea-
surement is given in bold, together with its rank (after ties were broken at random)
and, if applicable, the set of ranks that the city was tied for. We see from the table that
just two of the cities selected for precise measurement were involved in ties. In set 6,
Tulsa was tied for ranks 2 to 4, and in set 7, Minneapolis was tied for ranks 2 and 3.

Using the rank 2 for Tulsa and the rank 3 for Minneapolis, we find that Ȳ[1] =
253, 838, Ȳ[2] = 359, 147, Ȳ[3] = 531, 009, and Ȳ[4] = 825, 911. Thus, μ̂1 =
492, 476. If we split the tied units among the strata for the ranks for which they
were tied, we obtain weighted sample sizes (n′

1, . . . , n′
4) = (3, 2.83̄, 1.83̄, 2.3̄). Com-

puting the weighted sample means then gives Ȳ ′[1] = 253, 838, Ȳ ′[2] = 356, 605, Ȳ ′[3] =
545, 020, and Ȳ ′[4] = 763, 584. Thus, μ̂2 = 479, 762. Since Ȳ[1] < Ȳ[2] < Ȳ[3] < Ȳ[4]
and Ȳ ′[1] < Ȳ ′[2] < Ȳ ′[3] < Ȳ ′[4], the isotonized estimators μ̂3 and μ̂4 satisfy μ̂3 = μ̂1
and μ̂4 = μ̂2 in this case. However, the Rao-Blackwellized estimators μ̂5 and μ̂6
differ from μ̂1.

To compute the Rao-Blackwellized estimators, we must consider all the different
ways that the ties might have been broken. Table 2 lists these possibilities. Among the
six possibilities, there are only two for which the ranks assigned to the units chosen
for precise measurement exactly match the desired sample size vector (n1, . . . , n4) =
(3, 3, 2, 2). One of these ways gives the estimate 492, 476 (the value for μ̂1 that
we actually obtained), and the other gives the estimate 492, 653. Averaging these
two estimates gives the Rao-Blackwellized estimate μ̂5 = 492, 565. Since neither of

Table 1 Judgment-ranked sets, tied values, and precise measured values for the Sect. 2 example

Set Ranked units Precise value

1 Hialeah (1), Austin & Saint Paul, Chicago 218, 896

2 Henderson (1), Tucson, Atlanta, Philadelphia 256, 445

3 Anchorage (1), Long Beach, Portland, San Francisco 286, 174

4 Greensboro, Fremont (2), Pittsburgh, Denver 205, 517

5 Irving, Kansas City (2), Baltimore, San Jose 482, 299

6 Chula Vista, Tulsa (2-2,3,4) & Winston-Salem & Irvine 389, 625

7 Boise, Charlotte & Minneapolis (3-2,3), Yonkers 385, 378

8 Milwaukee & Scottsdale, Memphis (3), Riverside 676, 640

9 Colorado Springs & Modesto, Fort Wayne, Newark (4) 278, 154

10 Laredo, Albuquerque & Reno, San Antonio(4) 1, 373, 668

The cities are listed according to the post-tie-break full ranking, with cities that were declared tied connected
by ampersands. Cities selected for measurement and the ranks for which they were tied are given in bold.
True populations appear in the right-most column
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Table 2 Different ways that the relevant ties might have been broken in the Sect. 2 example

Tulsa rank Minneapolis rank (n1, . . . , n4) Estimate

2 2 (3, 4, 1, 2) N.A.

2 3 (3, 3, 2, 2) 492,476

3 2 (3, 3, 2, 2) 492,653

3 3 (3, 2, 3, 2) N.A.

4 2 (3, 3, 1, 3) N.A.

4 3 (3, 2, 2, 3) N.A.

Only two of these possibilities could have lead to having the same set of units chosen for measurement that
was actually chosen for measurement

the two ways leads to estimated in-stratum means that violate the increasing order-
ing that we would expect if the true stratum means are ordered, we also find that
μ̂6 = μ̂5 = 492, 565.

3 Models for rankings with ties

In this section, we describe two classes of models for ties in rankings. The first class
was proposed by Fligner and MacEachern (2006), and the second class is similar, but
different in some important ways. Both of these classes use the idea of perceived sizes
that motivated the work of Dell and Clutter (1972) on imperfect rankings in RSS.
Some alternate models for imperfect rankings in RSS were described by Bohn and
Wolfe (1994) and by Frey (2007).

Consider a single set in which the i th unit has precise value Yi . We assume that
for each unit, there is also a perceived size (Xi for the i th unit), and that the pairs
(X1, Y1), . . . , (Xm, Ym) are independent draws from some bivariate distribution. In
the Dell and Clutter (1972) model, the random variables X1, . . . , Xm and Y1, . . . , Ym

satisfy Xi = Yi + εi , where Y1, . . . , Ym are independent draws from some distri-
bution and ε1, . . . , εm are independent normal errors with mean 0 and variance σ 2.
The rankings are done according to the perceived sizes X1, . . . , Xm , and the precise
measured values are the corresponding Y values. Thus, setting σ 2 = 0 gives perfect
rankings, and letting σ 2 go to infinity gives rankings done at random. Fligner and
MacEachern (2006) generalized the Dell and Clutter (1972) model by considering
different bivariate distributions and nonadditive error structures. They also described
a class of models for ties in rankings.

This class, which we call the discrete perceived size (DPS) class, involves discret-
izing the perceived size X . This can be done through an operation such as rounding
X/c to the nearest integer or computing �X/c�, where �·� is the greatest integer func-
tion and c > 0 is a user-chosen model parameter. Such operations yield a discrete
perceived size X�. Continuous perceived sizes are all distinct with probability 1, but
discrete perceived sizes may be tied exactly. The DPS model for ties in rankings con-
sists of declaring the i th and j th units tied whenever their discrete perceived sizes X�

i
and X�

j satisfy X�
i = X�

j .
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Another way to obtain ties is to declare the i th and j th units to be tied whenever
|Xi − X j | < c, where c > 0 is a user-chosen model parameter. Transitivity of ties is
also required. Thus, the i th and j th units may be tied even if |Xi − X j | ≥ c, so long
as there are other perceived sizes that bridge the gap. We refer to this class of models
as tied-if-close (TIC) models. If c is small and the distribution of X is continuous,
then very few ties will be declared, but as c goes to infinity, the chance of declaring an
m-way tie involving all units in the set goes to 1. For a fixed c and a fixed distribution
for X , there are more ties under a TIC model than under a DPS model.

Models in both the DPS and TIC classes have full support on the space of all
possible tie structures in the sense that for any choice of a continuous distribution
for X , any choice of a tie structure, and any sufficiently small value of c, that tie
structure has a positive probability of occurring in a given set. However, models
in each class can exhibit certain undesirable behavior when the parameters c and
m are modified. For TIC models, adding an additional unit to the set can increase
the number of ties among the units already in the set. This happens when the new
unit fills a gap between two units already in the set. For example, with m = 2 and
c = 1, units with X1 = 0.1 and X2 = 1.6 would not be declared tied. However,
if we add a third unit with X3 = 0.9, then a three-way tie will be declared since
|X1 − X3| < 1.0 and |X2 − X3| < 1.0. For DPS models, the undesirable behav-
ior comes when the value of c is increased. One would expect increasing c to lead
to more ties, but this is not necessarily the case. To illustrate this behavior of DPS
models, we first obtain a result about the probabilities of obtaining certain types of
ties.

In this result, which is given below as Theorem 1, the values {pl : l ∈ Z} are the
break points that determine how the perceived size X is discretized. For example, if
the discretization is done by setting X� = round(X), then {pl : l ∈ Z} is the set
{. . . ,−1.5,−0.5, 0.5, 1.5, . . .}.

Theorem 1 Consider a DPS model in which X has continuous cumulative distribu-
tion function F. Suppose that two units are declared tied whenever both units fall into
the same subinterval of the partition determined by the sequence of values {pl : l ∈ Z}.
If 1 ≤ i ≤ j ≤ m, then the probability of a tie involving only ranks i to j is

Ti j ≡ m!
(i − 1)!( j − i + 1)!(m − j)!

×
∞∑

l=−∞
F(pl)

i−1 (F(pl+1) − F(pl))
j−i+1 (1 − F(pl+1))

m− j , (1)

and the probability of a tie involving ranks i and j (possibly together with other ranks)
is

T �
i j ≡

i∑

l=1

m∑

r= j

Tlr . (2)
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Proof In order to have a tie involving only ranks i to j , the set of m units must include
j − i + 1 units with perceived sizes in some interval (pl , pl+1), i − 1 units with
perceived sizes less than pl , and m − j units with perceived sizes greater than pl+1.
By a standard multinomial probability calculation, this probability is

m!
(i − 1)!( j − i + 1)!(m − j)! F(pl)

i−1 (F(pl+1) − F(pl))
j−i+1 (1 − F(pl+1))

m− j

when l is given. Summing over all possible values for l leads to Eq. (1).
There is a tie involving ranks i and j (possibly together with other ranks) when

there is a tie for a set of ranks that includes the ranks i to j . Such a tie occurs when
there is a tie involving only ranks l to r for values l and r satisfying l ≤ i and j ≤ r .
Thus, Eq. (2) follows. 
�

To illustrate the behavior of DPS and TIC models when c changes, we took m = 4,
and we supposed that the perceived sizes X follow gamma distributions with variance
1. We chose gamma distributions so that we could obtain distributions with fixed var-
iance 1, but different shapes. Since the variance for the Gamma(α, β) distribution is
αβ2, we obtain variance 1 by setting β = 1/

√
α. We considered α = 1/4, 1, 4, and

16. Figure 1 shows the probability density functions for the four gamma distributions
that we considered, and Figs. 2 and 3 show the probability of a tie for ranks 1 and 2
(T �

12), ranks 2 and 3 (T �
23), and ranks 3 and 4 (T �

34) for various choices of c > 0 under
DPS and TIC models.

The values in Fig. 2 were obtained using Eq. (2), and the values in Fig. 3
were obtained through a simulation study in which 10,000 sets were generated
for each choice of α and c. In the DPS model, the discrete perceived sizes were
computed as X� = Round(X/c + 1/2). In Fig. 2, which used the DPS model,
we see that for the cases with α = 1/4 and α = 1, T �

12 > T �
23 > T �

34 for
each choice of c. This ordering is expected since the perceived size X has a

Fig. 1 The four gamma
densities used as the perceived
sizes in Figs. 2 and 3. The
curves are for α = 0.25 (solid),
α = 1 (dashed), α = 4 (dotted),
and α = 16 (dotdash)
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Fig. 2 Probabilities of different types of ties as a function of the constant c when ties are assigned according
to a DPS model with X ∼ Gamma(α, 1/

√
α). In each case, the discrete perceived sizes were obtained as

Round(X/c + 1/2). The curves are for ties involving ranks 1 and 2 (solid), ties involving ranks 2 and 3
(dashed), and ties involving ranks 3 and 4 (dotted) when m = 4

right-skewed distribution. However, for α = 4 and α = 16, this ordering does not
always hold. Indeed, we see that for α = 4 and α = 16, increasing c can reduce the
probability of a particular type of tie. This behavior occurs because values X1 and X2
that satisfy Round(X1/c + 1/2) = Round(X2/c + 1/2) for one value of c may not
satisfy the same equality if c is increased. We see from Fig. 3 that under a TIC model,
increasing c always increases the chance of a tie involving any two ranks. We also
see, by comparing Figs. 2 and 3, that for fixed c and α, each type of tie is more likely
under the TIC model than under the DPS model.

As α increases, the Gamma(α, 1/
√

α) distribution becomes increasingly sym-
metric, and this increased symmetry is reflected in how the curves are ordered in
the different plots of Fig. 3. When α is small so that the distribution is highly
right-skewed, ties involving ranks 1 and 2 are most likely and ties involving ranks
3 and 4 are least likely. However, once α increases to 16, ties involving ranks 2 and 3
are more likely than ties involving ranks 1 and 2. In the limit as α goes to infinity and
the distribution becomes symmetric, ties involving ranks 2 and 3 will be most likely,
and ties involving ranks 1 and 2 will be exactly as likely as ties involving ranks 3 and 4.
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Fig. 3 Simulated probabilities of different types of ties as a function of the constant c when ties are assigned
according to a TIC model with X ∼ Gamma(α, 1/

√
α). The curves are for ties involving ranks 1 and 2

(solid), ties involving ranks 2 and 3 (dashed), and ties involving ranks 3 and 4 (dotted) when m = 4

4 Comparison of estimators

To compare the estimators from Sect. 2, we did a simulation study. We took the
perceived size X and the precise measured value Y to have a joint bivariate normal
distribution with correlation ρ, and we took X ∼ N (0, 1). Thus, we used a Dell and
Clutter (1972) type model to relate the perceived size and the true precise value. We
then generated the tie structure by using a DPS model in which the discrete perceived
size was X� = Round(X/c), where c > 0 is a model parameter. For a particular
choice of ρ, c, the set size m, and the sample size vector (n1, . . . , nm), we compared
the estimators in terms of mean squared error (MSE). Specifically, we compared the
performance of each estimator to that of μ̂1 by computing a simulated relative effi-
ciency. For example, the efficiency of μ̂2 relative to μ̂1 was computed as

Relative Efficiency = M̂ SE(μ̂1)

M̂ SE(μ̂2)
,
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where M̂ SE(μ̂1) and M̂ SE(μ̂2) are the simulated mean squared errors for the two
estimators. With the relative efficiency defined in this way, values above 1 indicate an
advantage for μ̂2, and values below 1 indicate an advantage for μ̂1.

We considered different choices for m, ρ, and c, and we also considered different
choices of the sample size vector (n1, . . . , nm). In particular, we looked both at bal-
anced cases where ni is the same value n for all i and at unbalanced cases where the
sample size varies from one rank to another. In balanced cases, only μ̂1, μ̂2, and μ̂4 are
distinct since the other three estimators are the same as μ̂1. However, in the unbalanced
case, all six estimators are different. Some representative relative efficiency results are
given in Figs. 4 and 5 and Tables 3 and 4. Each value given in one of the figures or
tables was based on 10,000 simulated samples.

Figures 4 and 5 show relative efficiencies for μ̂2 and μ̂4 in balanced cases. Figure 4
gives results for the case where m = 4, n = 2, ρ ∈ [−1, 1], and c ∈ {1/2, 1, 2, 4},
and Fig. 5 gives results for the case where m = 4, n = 4, ρ ∈ [−1, 1], and c ∈
{1/2, 1, 2, 4}. In the two figures, solid dots give simulated relative efficiencies for μ̂2,
and open dots give simulated relative efficiencies for μ̂4. We see from the figures that
μ̂2 tends to be significantly more efficient than μ̂1 when ρ is near 1 or −1, but slightly
less efficient than μ̂1 when ρ is near 0. The pattern is somewhat different for μ̂4, which
is significantly more efficient than μ̂1 when ρ is close to 1, slightly less efficient than
μ̂1 when ρ is close to 0, and comparable in efficiency to μ̂1 when ρ is close to −1. The
performance of μ̂4 is not symmetric in ρ since μ̂4 involves isotonizing the weighted
sample means Ȳ ′[1], . . . , Ȳ ′[m] that were defined in Sect. 2.

The efficiency of μ̂2 and μ̂4 relative to μ̂1 in the balanced case is affected not just
by ρ, but also by c, which determines how likely it is that ties are declared. Both when

Table 3 Simulated efficiencies of μ̂4 relative to μ̂1 for different choices of m, n, ρ, and c

m n ρ = 0.7 ρ = 1.0

c = 1/2 c = 1 c = 2 c = 4 c = 1/2 c = 1 c = 2 c = 4

2 2 1.02 1.03 1.06 1.04 1.05 1.10 1.15 1.08

6 1.02 1.04 1.07 1.02 1.06 1.13 1.16 1.04

10 1.02 1.05 1.07 1.02 1.07 1.13 1.18 1.03

3 2 1.02 1.04 1.08 1.04 1.09 1.17 1.23 1.09

6 1.03 1.06 1.09 1.03 1.09 1.20 1.27 1.05

10 1.03 1.06 1.09 1.02 1.10 1.22 1.27 1.05

4 2 1.02 1.06 1.09 1.05 1.10 1.23 1.28 1.10

6 1.03 1.06 1.10 1.03 1.12 1.27 1.33 1.06

10 1.03 1.08 1.12 1.03 1.13 1.27 1.33 1.06

5 2 1.01 1.07 1.09 1.04 1.12 1.27 1.31 1.11

6 1.02 1.07 1.11 1.03 1.13 1.30 1.36 1.06

10 1.03 1.07 1.11 1.03 1.14 1.31 1.39 1.06

The rankings were done using a DPS model where (X, Y ) is bivariate normal with correlation ρ, X ∼
N (0, 1), and the perceived size is X� = Round(X/c). Each simulated efficiency is based on 10,000
samples
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Fig. 4 Simulated efficiencies for μ̂2 and μ̂4 relative to μ̂1 when m = 4 and n = 2. The rankings were done
using a DPS model where (X, Y ) is bivariate normal with correlation ρ, X ∼ N (0, 1), and the perceived
size is X� = Round(X/c). We drew 10,000 samples for each value of ρ and c. Here solid dots are for μ̂2
and open dots for μ̂4

c is small (1/2) and when c is large (4), the advantage of μ̂2 or μ̂4 over μ̂1 is relatively
small (no more than 10%), but when c is of moderate size (1 or 2), the advantage of
μ̂2 and μ̂4 over μ̂1 is large (as high as 20 or 30%). Comparing Figs. 4 and 5, which
differ only in the total sample size used, we also see that there is a tendency (that holds
more generally) for the best-case relative efficiencies of μ̂2 and μ̂4 to increase with
increasing sample sizes.

In comparing the relative efficiencies for μ̂2 and μ̂4, we see that there is a slight
advantage for μ̂4 over μ̂2 in those cases (ρ > 0) where the true in-stratum population
means are ordered from smallest to largest. There is a substantial advantage for μ̂2
over μ̂4 when rankings are backwards or nearly backwards so that ρ is close to −1.
However, since it seems unlikely that one would obtain highly accurate backwards
rankings without becoming aware that the rankings were reversed, μ̂4 is probably the
better of the two choices.

Table 3 extends the results in Figs. 4 and 5 by expanding the list of choices for
m and the common sample size n. We see from Table 3, which shows efficiencies
only for μ̂4, that the good performance of μ̂4 holds not just for particular set sizes
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Fig. 5 Simulated efficiencies for μ̂2 and μ̂4 relative to μ̂1 when m = 4 and n = 4. The rankings were done
using a DPS model where (X, Y ) is bivariate normal with correlation ρ, X ∼ N (0, 1), and the perceived
size is X� = Round(X/c). We drew 10,000 samples for each value of ρ and c. Here solid dots are for μ̂2
and open dots for μ̂4

and sample sizes, but across a range of set sizes and in-stratum sample sizes n. The
relative efficiencies for μ̂4 tend to increase as m, n, and ρ increase, and they tend to be
higher for moderate values of c like 1 and 2 than for very low or very high values of
c like 1/2 and 4. Thus, the relative efficiency of μ̂4 is highest when ties are common,
but not extremely common. In all cases shown in Table 3, μ̂4 outperformed μ̂1.

Table 4 gives some results for a case with unbalanced sample sizes. Here m = 4 and
(n1, . . . , n4) = (4, 2, 2, 4). In this case, all six estimators are different, and the table
shows efficiencies for μ̂2 through μ̂6 relative to μ̂1. In implementing the Rao-Blackw-
ellized estimators μ̂5 and μ̂6, we did not systematically consider all ways in which
the ties could have been broken. Instead, we repeatedly broke the ties at random until
we obtained 10 different cases in which the ranks assigned to the precise measured
values matched the desired sample sizes (4, 2, 2, 4). We then averaged the estimates
obtained in those 10 cases. This procedure yielded approximate versions of μ̂5 and μ̂6
that require less computation, but are only slightly less efficient than the estimators we
would obtain by considering all possible ways that the ties might have been broken.

We see from Table 4 that, as is known theoretically, μ̂5 is always at least as efficient
as μ̂1, and μ̂6 is always at least as efficient as μ̂3. However, the gains in efficiency
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Table 4 Simulated efficiencies relative to μ̂1 when m = 4 and (n1, . . . , n4) = (4, 2, 2, 4)

ρ c μ̂2 μ̂3 μ̂4 μ̂5 μ̂6

0 1/2 1.02 1.11 1.11 1.01 1.11

1 1.05 1.10 1.10 1.03 1.10

2 1.11 1.12 1.13 1.09 1.14

4 1.13 1.11 1.13 1.11 1.13

0.6 1/2 1.06 1.06 1.10 1.01 1.06

1 1.11 1.06 1.14 1.03 1.08

2 1.15 1.05 1.16 1.06 1.08

4 1.11 1.07 1.11 1.09 1.08

0.8 1/2 1.07 1.03 1.09 1.01 1.04

1 1.17 1.03 1.19 1.03 1.06

2 1.23 1.04 1.23 1.07 1.07

4 1.11 1.05 1.11 1.09 1.06

1 1/2 1.16 1.01 1.17 1.01 1.02

1 1.34 1.01 1.35 1.03 1.03

2 1.39 1.02 1.39 1.07 1.06

4 1.10 1.02 1.10 1.08 1.04

The rankings were done using a DPS model where (X, Y ) is bivariate normal with correlation ρ, X ∼
N (0, 1), and the perceived size is X� = Round(X/c). We drew 10,000 samples for each value of ρ and c

from using these Rao-Blackwellized estimators are small in comparison to the gains
in efficiency offered by μ̂2 and μ̂4. This, combined with the fact that the Rao-Blackw-
ellized estimators require more computation than the other estimators, suggests that
μ̂5 and μ̂6 are not good choices. When we compare μ̂2, μ̂3, and μ̂4, we see that for
all of the cases shown in Table 4, μ̂4 was at least as efficient as μ̂2 and μ̂3, with the
relative advantage for μ̂4 over μ̂3 going as high as 20% or 30%. Thus, it appears that
μ̂4 is the best choice for an estimator. Comparing the relative efficiencies in Table 4 to
those shown in Table 3 and Figs. 4 and 5, it appears that the gains in efficiency from
using μ̂4 rather than μ̂1 with unbalanced samples are comparable in magnitude to the
gains in the case of balanced sampling.

5 Is it sometimes better to declare a tie?

In Sect. 4, we compared the estimators from Sect. 2 in the case where each estima-
tor used the same ranking information. In this section, we consider the position of a
ranker who is deciding whether to declare a tie or not. We present simulation results
that suggest that when the rankings are very good, it can be advantageous to declare
ties not just when the ranker is actually unsure about how the units rank, but also when
the ranker is sure about the ranking, but believes that the units are close.

As in Sect. 4, we assumed that (X, Y ) is bivariate normal with correlation ρ, and
we obtained discrete perceived sizes using X ∼ N (0, 1) and X� = Round(X/c).
We compared the performance of μ̂4 under two strategies: obtaining a full ranking
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Table 5 Simulated efficiencies for μ̂4 with ties relative to μ̂4 without ties for different choice of ρ and c
when m = 4 and (n1, . . . , n4) = (3, 3, 3, 3)

ρ c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1.0 c = 1.2 c = 1.4

0.8 1.00 1.01 1.02 1.01 1.00 0.99 0.98

0.9 1.01 1.02 1.03 1.03 1.02 1.00 0.97

1.0 1.03 1.05 1.06 1.05 1.04 1.00 0.96

The without-ties method uses rankings based on X , while the with-ties method uses ties assigned according
to a DPS model with (X, Y ) bivariate normal, X ∼ N (0, 1), Corr(X, Y ) = ρ, and X� = Round(X/c)

Table 6 Tie probabilities for the DPS model used in creating Table 5

Parameter c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1.0 c = 1.2 c = 1.4

T �
12 0.0991 0.1903 0.2732 0.3478 0.4137 0.4690 0.5126

T �
23 0.1253 0.2358 0.3322 0.4153 0.4871 0.5523 0.6154

T �
13 0.0071 0.0270 0.0577 0.0966 0.1413 0.1904 0.2440

T �
14 0.0003 0.0020 0.0066 0.0150 0.0284 0.0481 0.0760

T �
i j is the probability of a tie involving ranks i and j , possibly together with other ranks. By symmetry,

T �
34 = T �

12 and T �
24 = T �

13. These tie probabilities were computed using Theorem 1

using X and obtaining a ranking with ties using X�. As in Sect. 4, we compared
the two strategies by computing simulated relative efficiencies. Here we computed
the relative efficiencies in such a way that values above 1 indicate an advantage for
the ranking-with-ties strategy. Table 5 shows simulated relative efficiency results for
ρ = 0.8, 0.9, 1.0 and c between 0.2 and 1.4. Table 6 shows the probabilities of various
types of ties for different values of c. We see from Table 6 that as c increases, ties
become more common.

We see from Table 5 that when c is either close to 0 or larger than 1.0, there is little
advantage in declaring ties when the full ranking according to X is available. However,
for intermediate values of c, an efficiency advantage of as much as 6% can be obtained
by declaring some ties even when the full ranking according to X is available. Thus, in
cases where the rankings are believed to be very good, a ranker may gain an advantage
by declaring ties between units that are believed to be close, though not actually tied.
Specifically, Table 5 suggests that in scenarios similar to those considered in this sec-
tion, declaring a tie when values are within about half a population standard deviation
of each other will maximize efficiency. The source of the advantage seen in Table 5
is presumably that when two or more units are very close, the average of the ranks
reflects each unit’s position in the set better than does the actual rank.

6 Clarifying an earlier result

The theoretical results obtained by Ozturk (2011) rely on the claim, stated as his
Lemma 1, that having a particular subset of units be tied tells us nothing about the
average value of units in that subset. We show here that this claim does not hold in
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general. Thus, there is a need for alternate sampling methods like the one proposed in
this paper.

Suppose that, for fixed set size m, μ[i] is the expected value of the i th judgment order
statistic when ties are broken at random. For integers i and j satisfying 1 ≤ i ≤ j ≤ m,
define μ[i : j] to be the expected value of a unit chosen at random from a subset of units
that are tied for ranks i to j (and no others). That is, μ[i : j] is conditional on there being
a tie for ranks i to j and no others. Lemma 1 of Ozturk (2011) then states that μ[i : j]
is simply the average of μ[i], . . . , μ[ j].

To show that Lemma 1 of Ozturk (2011) does not hold in general, we did a simu-
lation study in which we used m = 5 and a DPS model for ties. We took the precise
measured values Y to be equal to the perceived sizes X ∼ N (0, 1), and we took the
discrete perceived sizes to be given by Round(X). For each choice of i and j with
1 ≤ i ≤ j ≤ 5, we estimated two quantities: the average 1

j−i+1

∑ j
k=i μ[k] when

ties are broken at random and the value μ[i : j] defined earlier. In estimating the first
quantity, every single simulated set is relevant, but in estimating μ[i : j], only sets in
which there is a tie for ranks i to j (and no others) are relevant. Thus, in what follows,
we refer to one expectation as the unconditional expected value and the second (μ[i : j])
as the conditional expected value. Table 7 gives the results, which were obtained by
simulating 1,000,000 sets of size 5. In the course of the 1,000,000 runs, each type of
tie occurred at least 10,000 times.

If Lemma 1 of Ozturk (2011) were true in full generality, then the upper and lower
halves of Table 7 would coincide up to simulation error. However, the two halves of
the table are quite different. For example, the entry −0.77 in the unconditional part
indicates that the average of μ[1] and μ[2] is −0.77, but the entry −0.88 in the condi-
tional part indicates that μ[1:2] = −0.88. Thus, having a tie for ranks 1 and 2 tells us
something about the corresponding precise measured values.

Table 7 Simulated unconditional and conditional expected values for a unit selected at random from those
with ranks (after breaking ties at random) i to j when m = 5

Type i j

1 2 3 4 5

Unconditional 1 −1.07 −0.77 −0.51 −0.27 0.00

2 −0.46 −0.23 0.00 0.27

3 0.00 0.23 0.51

4 0.45 0.76

5 1.07

Conditional 1 −1.38 −0.88 −0.53 −0.22 0.00

2 −0.59 −0.25 0.00 0.22

3 0.00 0.25 0.53

4 0.59 0.88

5 1.38

The conditional expected values are conditional on there being a tie for ranks i to j (and no others). We
used a DPS model with X ∼ N (0, 1) and X� = Round(X). The simulation study used 1,000,000 simulated
sets
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The differences between the upper and lower halves of Table 7 are actually not sur-
prising. For example, consider the case with i = j = 1. The unconditional expected
value is μ[1] = −1.07, and the conditional expected value is μ[1:1] = −1.38. Thus,
the average value for a first judgment order statistic is −1.07, but the average value for
a first judgment order statistic that is not tied for any other ranks is −1.38. This makes
perfect sense since a unit that is judged to be smallest in its set will surely tend to be
smaller than a unit that is judged to be only tied for smallest in its set. Other differences
between the top and bottom halves of Table 7 can be explained with similar logic.

7 Discussion

We have considered a modification of RSS in which the ranker is allowed to declare
ties. Unlike the recommended scheme of Ozturk (2011), this modification does not
involve forced ties. Instead, the ranker may declare as many or as few ties as desired.
We have developed nonparametric mean estimators that are appropriate for use with
data obtained from this sampling scheme, and we have compared the estimators using
models that allow both for ties and for imperfect rankings. Our comparisons suggest
that the isotonized estimator μ̂4, defined in Sect. 2, is the best estimator both for
balanced sampling and for unbalanced sampling.

Two of the estimators that we have compared are the standard unbiased RSS mean
estimator μ̂1, which ignores the tie structure, and μ̂5, a Rao-Blackwellized version of
μ̂1 that coincides with μ̂1 under balanced sampling, but outperforms μ̂1 under unbal-
anced sampling. The existence of μ̂5 shows that μ̂1 is inadmissible under squared error
loss when tie information is available. Thus, we have shown here that in unbalanced
RSS, ignoring tie information leads to inadmissible mean estimators. Frey (2011)
obtained a result with a similar flavor by showing that μ̂1 is inadmissible in unbal-
anced RSS when the rankings are done using a covariate.
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