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Abstract In this paper, we consider design-based estimation using ranked set
sampling (RSS) in finite populations. We first derive the first and second-order inclu-
sion probabilities for an RSS design and present two Horvitz–Thompson type estima-
tors using these inclusion probabilities. We also develop an alternate Hansen–Hurwitz
type estimator and investigate its properties. In particular, we show that this alter-
nate estimator always outperforms the usual Hansen–Hurwitz type estimator in the
simple random sampling with replacement design with comparable sample size. We
also develop formulae for ratio estimator for all three developed estimators. The the-
oretical results are augmented by numerical and simulation studies as well as a case
study using a well known data set. These show that RSS design can yield a substantial
improvement in efficiency over the usual simple random sampling design in finite
populations.

Keywords Finite population · Hansen–Hurwitz estimator · Horvitz–Thompson
estimator · Inclusion probability · Ratio estimator · Ranked set sampling

1 Introduction

In most sample surveys, a reasonable number of the sampling units (eg. households,
businesses, etc.) can be ordered fairly accurately with respect to a variable of interest
without actual measurement, and at little cost. However, exact measurement of these
units may be very tedious and/or expensive. Ranked set sampling (RSS), as proposed
by McIntyre (1952), provides an alternative to simple random sampling (SRS) in these
situations. The feature of RSS is that it combines SRS with other sources of information
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such as professional knowledge, judgment, auxiliary information, etc., to yield more
representative measurements from the population. In its original form, RSS involves
randomly drawing k units (called a set of size k) from the underlying population for
which an estimate of the population mean (or total) is required. The units of this set
are ranked by means of an auxiliary variable or some other ranking process such as
judgmental ranking. For this ranked set, the unit ranked lowest is chosen for actual
measurement of the variable of interest. A second set of size k is drawn and ranking
is accomplished. The unit in the second lowest position is chosen and the variable of
interest for this unit is quantified. Sampling is continued until, from the kth set, the
kth ranked unit is measured. This entire process may be repeated m times (or cycles)
to obtain a ranked set sample of size n = mk from the underlying population.

As an alternative to the SRS design, RSS has achieved remarkable popularity in
applied statistics. Several variations of the RSS design have been proposed and they
have been used in many areas of application (see Kaur et al. 1995; Chen et al. 2004).
A majority of the research on RSS has been concerned with estimating unknown
parameters for infinite populations. However, in practice, we often have finite popu-
lations. Surprisingly, there has been little work related to the use of RSS techniques
in finite populations, and most of that work has used model-based or model-assisted
approaches to obtain a suitable estimator of the population mean. The problem of using
RSS for finite populations was first studied by Takahasi and Futatsuya (1988). They
showed that the RSS estimator of the population mean is unbiased and they derived
an explicit formula for its variance when the set size is k = 2 and the underlying pop-
ulation has a discrete uniform distribution. Patil et al. (1995) extended this result to
more general finite populations and to larger set sizes. Takahasi and Futatsuya (1998)
showed that, when samples are drawn without replacement, the relative precision of
the RSS estimator of the population mean relative to the SRS estimator with the same
number of units quantified, is bounded above by 1. Bouza (2001) studied model-
assisted ranked survey sampling design and proposed the use of a ratio and a simple
linear regression super-population model in estimating the population mean. Bouza
(2002a,b) studied an application of the RSS technique, with replacement, to estimate
the population mean in the presence of non-responses. Further studies related to the
theory and application of RSS designs in finite populations are provided in Barabesi
and Marcheselli (2004), Ozturk et al. (2005), Deshpande et al. (2006), and Bouza
(2009). Al-Saleh and Samawi (2007) studied the inclusion probabilities in RSS and
some of its variation when the set size is k = 2 or k = 3 and, later on, Özdemir
and Gökpınar (2007) extended this result to a more general set size and compared
the inclusion probability for an RSS technique with that of a SRS with the same
sample size. However, both Al-Saleh and Samawi (2007) and Özdemir and Gökpınar
(2007) did not examine the second-order inclusion probabilities, which are necessary
for determining the variance of Horvitz–Thompson estimators (π -estimators), and for
determining if and when variance estimators are available.

In this paper we study the use of a variation of the RSS technique in finite popula-
tions described in Deshpande et al. (2006). We focus on a design-based approach to
estimate the population mean or total. Our results show that RSS designs can be used
in any large or small scale survey sampling to obtain more precise estimates, often at
reduced cost.
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The outline of the present paper is as follows. Section 2 introduces the notation used
throughout. In Sect. 3, we develop the first and second-order inclusion probabilities
for the RSS design considered and develop the properties of two Horvitz–Thompson
type estimators under this design. Section 4 introduces an alternate Hansen–Hurwitz
type estimator and develops its properties. We show that this estimator outperforms
its counterpart under SRS design. In Sect. 5, we extend these results to ratio estima-
tors and introduce an alternate estimator which performs extremely well compared to
our proposed Horvitz–Thompson estimators. Section 6 provides some numerical and
simulation studies as well as a case study using a well known data set. Specifically,
we compare the proposed estimators with other estimators under standard designs.
Section 7 provides some concluding comments.

2 Notation

Suppose we have a finite population of N elements, labeled U = {1, . . . , N }, con-
sisting of bivariate pairs (y1, x1), . . . , (yN , xN ) where the study variable is y and x is
an auxiliary variable. Throughout, we will assume that the x1, . . . , xN are unique. Let
xi :U denote the i th ordered x value in the population and, for a simple random sample
S, let xi :S denote the i th ordered x value in the sample (with realization xi :s).

Suppose we make use of the following ranked set sampling scheme. Fix an m
and k in N such that mk ≤ N and, for each j = 1, . . . , k, take a simple random
sample (without replacement), say S1, j , of size k and select the population element
y[ j :s1, j ] associated with x j :s1, j , returning all elements to the population between sam-
ples. This results in the ranked set sample rss1 = {y[1:s1,1], y[2:s1,2], . . . , y[k:s1,k ]}. Note,
this (ordered) sample may contain repeated elements since it is certainly possible that
x j :s1, j = x j ′:s1, j ′ , j �= j ′; j, j ′ = 1, . . . , k. We repeat this m times (or cycles), obtain-
ing the complete ranked set sample of size mk,

rss = {y[1:s1,1], . . . , y[k:s1,k ]
︸ ︷︷ ︸

rss1

, y[1:s2,1], . . . , y[k:s2,k ]
︸ ︷︷ ︸

rss2

, . . . , y[1:sm,1], . . . , y[k:sm,k ]
︸ ︷︷ ︸

rssm

},

where y[ j :sr, j ] denotes the element selected for the j th sample sr, j in the r th cycle.
We denote this RSS sampling design by RSSWR(m, k) since, after each without

replacement sample Sr, j , we return all elements back into the population. This is
the level 0 sampling design of Deshpande et al. (2006), where it is used to obtain
nonparametric confidence intervals for quantiles in finite populations.

Sums over the ordered sample(s) rss and rssr will be denoted

∑

rssr

g(y[ j :sr, j ]) =
k

∑

j=1

g(y[ j :sr, j ]) and
∑

rss

g(y[ j :sr, j ]) =
m
∑

r=1

k
∑

j=1

g(y[ j :sr, j ]),

where g is any suitable function. It will be convenient to introduce the set based sam-
ples rss∗

r and rss∗, which contain only the unique population elements [i :U ] contained

123



666 Environ Ecol Stat (2011) 18:663–685

in rssr and rss respectively. Sums over these sets will be denoted
∑

rss∗
r

g(y[i :U ]) and
∑

rss∗ g(y[i :U ]).

Remark 2.1 A few remarks are in order.

(i) Note that the RSSWR(m, 1) design is equivalent to simple random sampling
with replacement with m independent draws, which we denote by SRSWR(m).

(ii) In the RSSWR(m, k) design, the ranking is done according to the auxiliary
variable x which, to be effective, should be easily observable and have a high
correlation (in absolute value) with the variable of interest y. In our simulation
study (see Sect. 6), we consider the effect of the correlation coefficient between
x and y on the performance of our proposed estimators of the population total
ty = ∑

U yi .
(iii) In the RSSWR(m, k) design, judgmental ranking can be done without the use

of an auxiliary variable x . If ranking is done using x and the correlation coeffi-
cient between the auxiliary and response variable is perfect (|ρxy | = 1), then k
should be chosen as large as is practical to increase the efficiency of the proposed
estimators. However, if |ρxy | < 1, this choice of k may not be optimum.

In what follows, we will be making comparisons to other standard designs and
estimators. We briefly describe these here (see for example, Särndal et al. 1992, for
the details).

SRSWOR(n): In simple random sampling without replacement, the standard
Horvitz–Thompson estimator (π -estimator) for ty = ∑

U yi , its
variance and an unbiased variance estimator for this design will be
denoted by t̂y,π , V(t̂y,π ) and V̂(t̂y,π ) respectively.

SRSWR(n): In simple random sampling with replacement, the standard
Hansen–Hurwitz type estimator (pwr-estimator) for ty , its variance
and an unbiased variance estimator for this design are denoted by
t̂y,pwr, V(t̂y,pwr) and V̂(t̂y,pwr) respectively.

PPSWR(n): In probability proportional to size sampling with a (strictly positive)
auxiliary variable x , probability pi = xi/

∑

U xi of selecting the i th
element, and ordered sample os = {i1, . . . , in}, the standard Hansen–
Hurwitz type estimator for ty , its variance and an unbiased variance
estimator are denoted by t̂y,pps, V(t̂y,pps) and V̂(t̂y,pps) respectively.

Throughout, we will use the following notation for common population and sample
quantities

ȳU = 1
N

∑

U yi , S2
yU =

∑

U (yi −ȳU )2

N−1 , SyzU =
∑

U (yi −ȳU )(zi −z̄U )

N−1 ,

ȳs = 1
n

∑

s yi , S2
ys =

∑

s (yi −ȳs )
2

n−1 , Syzs =
∑

s (yi −ȳs )(zi −z̄s )

N−1 .
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3 Inclusion probabilities and the Horvitz–Thompson estimators

Define the first-order inclusion probability π
(m)
i :U as the probability that element [i :U ]

is included in rss∗ and the second-order inclusion probability π
(m)

i i ′:U as the probability
that both [i :U ] and [i ′:U ] are included in rss∗ under an RSSWR(m, k) design.

Lemma 3.1 Let αi, j =
(

i − 1
j − 1

) (

N − i
k − j

)/(

N
k

)

. Then, under the RSSWR(m, k)

design, the first and second-order inclusion probabilities are given by

π
(m)
i :U = 1 −

k
∏

j=1

(

1 − αi, j
)m

,

and, for i �= i ′,

π
(m)

i i ′:U = 1 −
k
∏

j=1

(

1 − αi, j
)m −

k
∏

j=1

(

1 − αi ′, j
)m +

k
∏

j=1

(

1 − αi, j − αi ′, j
)m

.

Proof Let Sr, j be the j th simple random sample (of size k) in the r th cycle and define

Ai,r, j = {x j :Sr, j = xi :U }

as the event that the j th ordered x in Sr, j is equal to the i th ordered x value in the
population. It is easy to see that

Pr{Ai,r, j } = Pr{x j :S = xi :U }
=

(

i − 1
j − 1

) (

N − i
k − j

)/(

N
k

)

:= αi, j , (αi, j := 0 for i < j).

Then, it is clear that Ai = ⋃m
r=1

⋃k
j=1 Ai,r, j is the event that xi :U (and hence y[i :U ]) is

included in the ranked set sample rss at least once. Since the Sr, j are independent, we
have that the inclusion probability for xi :U (and hence y[i :U ]) under the RSSWR(m, k)

design is

π
(m)
i :U := Pr{Ai } = Pr

⎧

⎨

⎩

m
⋃

r=1

k
⋃

j=1

Ai,r, j

⎫

⎬

⎭

= 1 − Pr

⎧

⎨

⎩

m
⋂

r=1

k
⋂

j=1

Ac
i,r, j

⎫

⎬

⎭

= 1 −
k
∏

j=1

(

1 − αi, j
)m

.

To determine the second-order inclusion probabilities π
(m)

i i ′:U for i �= i ′, we have

π
(m)

i i ′:U = Pr{Ai ∩ Ai ′ } = 1 − Pr{Ac
i } − Pr{Ac

i ′ } + Pr{Ac
i ∩ Ac

i ′ }.
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But, using the same arguments as above, we have Pr{Ac
i ∩ Ac

i ′ } = ∏k
j=1(1 − αi, j −

αi ′, j )
m and hence the result follows. ��

Lemma 3.1 leads to the following interesting properties of the inclusion proba-
bilities and allows for some comparisons of the RSSWR design with the SRSWR
design.

(i) For k = 1, αi,1 = 1/N and we obtain the usual inclusion probabilities for
the SRSWR(m) design, namely πi = 1 − (1 − 1/N )m and πi i ′ = 1 − 2(1 −
1/N )m + (1 − 2/N )m .

(ii) By definition, αi, j = αN−i+1, j for any j ∈ {1, . . . , k}, and hence π
(m)
i :U =

π
(m)
N−i+1:U for all i = 1, . . . , N . That is, the inclusion probabilities under the

RSSWR(m, k) design are symmetric with respect to the ordering induced by
the xi :U .

(iii) Since, α1, j = k/N if j = 1 and 0 otherwise, we have

π
(m)
1:U = 1 −

k
∏

j=1

(1 − α1, j )
m = 1 −

(

1 − k

N

)m

≥ 1 −
(

1 − 1

N

)mk

= π1,

with equality only if k = 1. Hence, by the symmetry in (ii), the inclusion prob-
ability of observing the minimum (or the maximum) value of the population
in an RSSWR(m, k) sample is greater than its counterpart in a SRSWR(mk)

design whenever k > 1, which is given by π1 = πN = 1 − (1 − 1
N )mk .

(iv) The probability of observing a very unrepresentative sample in the RSSWR
(m, k) design is smaller than in the SRSWR(mk) design. For example, probabil-
ity of observing a sample consisting entirely of y1:U or yN :U in the SRSWR(mk)

is 2
N mk . However, in the RSSWR(m, k) design with k > 1, this probability is

zero.
(v) The inclusion probabilities developed above are much simpler than those

derived in, for example, Al-Saleh and Samawi (2007) and Özdemir and
Gökpınar (2007), which make use of some without replacement variations of
RSS.

The first and second-order inclusion probabilities lead to two different Horvitz–
Thompson type estimators of the population total (or mean).

3.1 A Horvitz–Thompson estimator

Recall that rss is the complete ordered sample and that it may contain duplicates. Also
recall that rss∗ denotes the unique population elements that are contained in rss. Then,
by the usual theory (cf. Särndal et al. 1992, Chapter 3), the following Theorem holds.

Theorem 3.2 Consider the RSSWR(m, k) design. Then the estimator

t̂y,RSS,π =
∑

rss∗

y[i :U ]
π

(m)
i :U

(3.1)
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is unbiased for ty = ∑

U yi with variance

V(t̂y,RSS,π ) =
∑

i∈U

∑

i ′∈U

�
(m)

i i ′:U
y[i :U ]
π

(m)
i :U

y[i ′:U ]
π

(m)

i ′:U
, (3.2)

where �
(m)

i i ′:U := π
(m)

i i ′:U − π
(m)
i :U π

(m)

i ′:U . An unbiased estimator of V(t̂y,RSS,π ) is given by

V̂(t̂y,RSS,π ) =
∑

i∈rss∗

∑

i ′∈rss∗

�
(m)

i i ′:U
π

(m)

i i ′:U

y[i :U ]
π

(m)
i :U

y[i ′:U ]
π

(m)

i ′:U
. (3.3)

If z is an additional study variable with corresponding estimate t̂z,RSS,π , then

Cov(t̂y,RSS,π , t̂z,RSS,π ) =
∑

i∈U

∑

i ′∈U

�
(m)

i i ′:U
y[i :U ]
π

(m)
i :U

z[i ′:U ]
π

(m)

i ′3:U
, (3.4)

with unbiased estimator

Ĉov(t̂y,RSS,π , t̂z,RSS,π ) =
∑

i∈rss∗

∑

i ′∈rss∗

�
(m)

i i ′:U
π

(m)

i i ′:U

y[i :U ]
π

(m)
i :U

z[i ′:U ]
π

(m)

i ′:U
. (3.5)

The Horvitz–Tompson estimator t̂y,RSS,π in (3.1) suffers from a few problems.

(i) If the coefficient of variation of the ys (cv(y) := SyU /ȳU ) is small, then vari-
ations in the number of elements in rss∗ can cause instability in the estimator
t̂y,RSS,π . Indeed, the sampling distribution of t̂y,RSS,π can have multiple modes.
Section 3.2 introduces a slightly more stable version of this estimator.

(ii) We need to know all of the xi in order to calculate the inclusion probabilities.
While this is the case in many situations, in others, we only know the xi in the
observed samples sr, j , and hence a procedure that does not require knowledge
of all of the xi may be beneficial. This is addressed in Sect. 4.

(iii) While calculation of the variance and variance estimator is easily automated,
the form does not simplify and hence theoretical comparisons of efficiency with
other designs is difficult at best.

3.2 An alternate Horvitz–Thompson type estimator

To address concern (i), and to reduce the effect of the duplication of population
elements in rss, we may consider independent estimation within each cycle in the
RSSWR(m, k) design. To this end, for each cycle r = 1, . . . , m, we consider the
estimator

t̂ (1)
y,π,r =

∑

i∈rss∗
r

y[i :U ]
π

(1)
i :U

,
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where the π
(1)
i :U are now determined assuming m = 1, and the sum is over the distinct

population elements in rssr . We now define the alternate Horvitz–Thompson type
estimator of ty as the arithmetic mean of the estimators from the m cycles,

t̂y,RSS,m,π = 1

m

m
∑

r=1

∑

i∈rss∗
r

y[i :U ]
π

(1)
i :U

= 1

m

m
∑

r=1

t̂ (1)
y,π,r , (3.6)

Again, by standard results, we obtain the following.

Theorem 3.3 For the RSSWR(m, k) design, the estimator in (3.6) is unbiased for ty

with variance

V(t̂y,RSS,m,π ) = 1

m

∑

i∈U

∑

i ′∈U

�
(1)

i i ′:U
y[i :U ]
π

(1)
i :U

y[i ′:U ]
π

(1)

i ′:U
= V(t̂ (1)

y,π,r )

m
, (3.7)

where �
(1)

i i ′:U := π
(1)

i i ′:U − π
(1)
i :U π

(1)

i ′:U . An unbiased estimator of V(t̂y,RSS,m,π ) is given
by

V̂(t̂y,RSS,m,π ) = 1

m2

m
∑

r=1

∑

i∈rss∗
r

∑

i ′∈rss∗
r

�
(1)

i i ′:U
π

(1)

i i ′:U

y[i :U ]
π

(1)
i :U

y[i ′:U ]
π

(1)

i ′:U
= 1

m2

m
∑

r=1

V̂(t̂ (1)
y,π,r ).

(3.8)

If m ≥ 2, an alternate unbiased estimator of V(t̂y,RSS,m,π ) is given by

V̂(t̂y,RSS,m,π ) = 1

m(m − 1)

m
∑

r=1

(t̂ (1)
y,π,r − t̂y,RSS,m,π )2. (3.9)

If z is an additional study (or auxiliary) variable, with corresponding estimate
t̂z,RSS,m,π , then

Cov(t̂y,RSS,m,π , t̂z,RSS,m,π ) = 1

m

∑

i∈U

∑

i ′∈U

�
(1)

i i ′:U
y[i :U ]
π

(1)
i :U

z[i ′:U ]
π

(1)

i ′:U
. (3.10)

An unbiased estimator of Cov(t̂y,RSS,m,π , t̂z,RSS,m,π ) is given by

Ĉov(t̂y,RSS,m,π , t̂z,RSS,m,π ) = 1

m2

m
∑

r=1

∑

i∈rss∗
r

∑

i ′∈rss∗
r

�
(1)

i i ′:U
π

(1)

i i ′:U

y[i :U ]
π

(1)
i :U

z[i ′:U ]
π

(1)

i ′:U

= 1

m2

m
∑

r=1

Ĉov(t̂ (1)
y,π,r , t̂ (1)

z,π,r ). (3.11)
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Also, if m ≥ 2, then an alternate unbiased covariance estimator is given by

Ĉov(t̂y,RSS,m,π , t̂z,RSS,m,π ) = 1
m(m−1)

m
∑

r=1
(t̂ (1)

y,π,r − t̂y,RSS,m,π )(t̂ (1)
z,π,r − t̂z,RSS,m,π ).

(3.12)

Proof Equations (3.6)–(3.8), (3.10) and (3.11) follow from standard theory (cf.
Särndal et al. 1992). To show (3.9), let ar = t̂ (1)

y,π,r so that t̂y,RSS,m,π = ā. In this
notation, we have

E[V̂(t̂y,RSS,m,π )] = E

[

1

m(m − 1)

m
∑

r=1

(ar − ā)2

]

= V(ar )

m
= V(t̂ (1)

y,π,r )

m
,

which is equivalent to (3.7). Equation (3.12) follows similarly.

The advantage of the alternate forms of the variance and covariance estimators in
(3.9) and (3.12) respectively is that they do not require the calculation of the second-
order inclusion probabilities. We have not, however, undertaken a theoretical analysis
to determine which variance estimator is more precise.

4 A Hansen–Hurwitz type unbiased estimator

As mentioned, the Horvitz–Thompson type estimators suffer from a certain amount
of instability and this effect can be very large if cv(y) is small. To overcome this insta-
bility, we propose an alternate estimator of ty . Consider the RSSWR(m, k) design and
let δ[i :U ] denote the number of times y[i :U ] appears in the sample rss, then

E(δ[i :U ]) =
m
∑

r=1

k
∑

j=1

Pr{Ai,r, j } =
m
∑

r=1

k
∑

j=1

αi, j = m
k

∑

j=1

αi, j = mk

N
.

Now, we construct the alternate Hansen–Hurwitz type estimator of ty as follows

t̂y,RSS,pwr =
m
∑

r=1

k
∑

j=1

y[ j :sr, j ]
E(δ[ j :sr, j ])

= N

mk

m
∑

r=1

k
∑

j=1

y[ j :sr, j ]. (4.1)

Before developing the properties of this estimator, we present the following Lemma,
which describes a key relationship between the mean of certain functionals of an
RSSWR(m, k) sample and the corresponding mean in the underlying finite popula-
tion. This result mirrors that of the usual RSS from infinite populations.

Lemma 4.1 Let g : U → R. Then, for fixed r,

E

⎛

⎝

1

k

k
∑

j=1

g(y[ j :Sr, j ])

⎞

⎠ = 1

N

N
∑

i=1

g(yi ).
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Proof Recall that Pr{x j :Sr, j = xi :U } = αi, j =
(

i − 1
j − 1

) (

N − i
k − j

)/(

N
k

)

. We

have

E[g(y[ j :Sr, j ])] =
N
∑

i=1

E[ g(y[ j :Sr, j ]) | x j :Sr, j = xi :U ] Pr{x j :Sr, j = xi :U }

=
N
∑

i=1

g(y[i :U ])αi, j .

Therefore, since
∑k

j=1 αi, j = k/N , we obtain

k
∑

j=1

E(g(y[ j :Sr, j ])) =
k

∑

j=1

N
∑

i=1

g(y[i :U ])αi, j = k

N

N
∑

i=1

g(y[i :U ]) = k

N

N
∑

i=1

g(yi ).

��

The same arguments used in the proof of Lemma 4.1 also lead to the following
corollary.

Corollary 4.2 Let g, h : U → R and let z be an additional variable. Then, for fixed
r,

E

⎛

⎝

1

k

k
∑

j=1

g(y[ j :Sr, j ])h(z[ j :Sr, j ])

⎞

⎠ = 1

N

N
∑

i=1

g(yi )h(zi ).

We are now in a position to prove the following Theorem.

Theorem 4.3 For the RSSWR(m, k) design, the estimator in (4.1) is unbiased for ty

with variance

V(t̂y,RSS,pwr) = N (N − 1)

mk
S2

yU − N 2

mk2

k
∑

j=1

(μy[ j] − ȳU )2, (4.2)

where μy[ j] = E(y[ j :Sr, j ]). If m ≥ 2, an unbiased estimator of V(t̂y,RSS,pwr) is given
by

V̂(t̂y,RSS,pwr) = 1

m(m − 1)

m
∑

r=1

(t̂yr − t̂y,RSS,pwr)
2, (4.3)
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where t̂yr = N
∑k

j=1 y[ j :sr, j ]/k, r = 1, . . . , m. If z is an additional study variable,

with corresponding estimate t̂z,RSS,pwr, then

Cov(t̂y,RSS,pwr, t̂z,RSS,pwr)= N (N − 1)

mk
SyzU − N 2

mk2

k
∑

j=1

(μy[ j] − ȳU )(μz[ j] − z̄U ),

(4.4)

where μz[ j] = E(z[ j :Sr, j ]). If m ≥ 2, an unbiased estimator of Cov(t̂y,RSS,pwr,

t̂z,RSS,pwr) is

Ĉov(t̂y,RSS,pwr, t̂z,RSS,pwr) = 1

m(m − 1)

m
∑

r=1

(t̂yr − t̂y,RSS,pwr)(t̂zr − t̂z,RSS,pwr).

(4.5)

Proof For each r = 1, . . . , m, let t̂yr = N
∑k

j=1 y[ j :sr, j ]/k. Then

t̂y,RSS,pwr = N

mk

m
∑

r=1

k
∑

j=1

y[ j :sr, j ] = 1

m

m
∑

r=1

⎛

⎝

N

k

k
∑

j=1

y[ j :sr, j ]

⎞

⎠ = 1

m

m
∑

r=1

t̂yr .

Taking g(x) = x in Lemma 4.1 immediately shows that t̂yr is unbiased for ty and
hence t̂y,RSS,pwr is also unbiased for ty , being the arithmetic average of the t̂yr . To
show (4.2), we first note that, since the Sr, j are independent, so are the y[ j :Sr, j ] and
hence

V(t̂y,RSS,pwr) = V

⎛

⎝

N

mk

m
∑

r=1

k
∑

j=1

y[ j :Sr, j ]

⎞

⎠ = N 2

m2k2

m
∑

r=1

k
∑

j=1

V(y[ j :Sr, j ]).

Therefore, we need to determine V(y[ j :Sr, j ]). Letting μy[ j] = E(y[ j :Sr, j ]), we have

V(y[ j :Sr, j ]) = E[(y[ j :Sr, j ] − μy[ j])2] = E[((y[ j :Sr, j ] − ȳU ) − (μy[ j] − ȳU ))2]
= E[(y[ j :Sr, j ] − ȳU )2] − (μy[ j] − ȳU )2.

Taking g(x) = (x − ȳU )2 in Lemma 4.1 yields

k
∑

j=1

E[(y[ j :Sr, j ] − ȳU )2] = k

N

N
∑

i=1

(yi − ȳU )2 = k(N − 1)

N
S2

yU .

Hence

V(t̂y,RSS,pwr) = N (N − 1)

mk
S2

yU − N 2

mk2

k
∑

j=1

(μy[ j] − ȳU )2,
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which shows (4.2). It remains to show that (4.3) is unbiased. To this end, we write

V(t̂y,RSS,pwr) = 1

m2

m
∑

r=1

V(t̂yr ) = V(t̂yr )

m
.

Hence, the same argument in the proof of Theorem 3.3 shows that V̂(t̂y,RSS,pwr) is
unbiased for V(t̂y,RSS,pwr). For the covariance in (4.4), we have

Cov(t̂y,RSS,pwr, t̂z,RSS,pwr) = 1

m
Cov(t̂yr , t̂zr ) = N 2

mk2

k
∑

j=1

Cov(y[ j :Sr, j ], z[ j :Sr, j ]).

But,

k
∑

j=1

Cov(y[ j :Sr, j ], z[ j :Sr, j ]) =
k

∑

j=1

E
[

(y[ j :Sr, j ] − μy[ j])(z[ j :Sr, j ] − μz[ j])
]

=
k

∑

j=1

E
[

(y[ j :Sr, j ] − ȳU )(z[ j :Sr, j ] − z̄U )
]

−
k

∑

j=1

(μy[ j] − ȳU )(μz[ j] − z̄U ).

By Corollary 4.2, the first term becomes

k
∑

j=1

E
[

(y[ j :Sr, j ] − ȳU )(z[ j :Sr, j ] − z̄U )
]= k

N

N
∑

i=1

(yi − ȳU )(zi − z̄U )=k(N − 1)

N
SyzU .

Therefore,

Cov(t̂y,RSS,pwr,y, t̂y,RSS,pwr,z)= N (N − 1)

mk
SyzU − N 2

mk2

k
∑

j=1

(μy[ j] − ȳU )(μz[ j] − z̄U ).

That (4.5) is unbiased for (4.4) follows from the same argument as in Theorem 3.3.
��

Note that, if the ranking of the ys is completely random with respect to the xs, then
μy[ j] = ȳU for all j and hence

∑k
j=1(μy[ j] − ȳU )2 = 0, so that

V(t̂y,RSS,pwr) = N (N − 1)

mk
S2

yU ,

which is the variance of the estimator t̂y,pwr under the SRSWR(mk) design. This says
that the t̂y,RSS,pwr estimator under the RSSWR(m, k) design always performs at least
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as well as the t̂y,pwr estimator under the SRSWR(mk) design. If the ranking is rea-
sonable or perfect (i.e. yi :U = y[i :U ]), it can perform considerably better. Note also
that, t̂y,RSS,pwr and V̂(t̂y,RSS,pwr) may be calculated without the knowledge of all of
the xi in the population. That is, we need only know the relative orderings of the x j :sr, j

within each sr, j . This is a considerable advantage compared to the situation discussed
in Sect. 3 and to other designs which require a knowledge of all of the xi (like the
PPSWR design).

5 Ratio estimators under the RSSWR(m, k) design

Let z be an additional auxiliary variable, for which tz = ∑

U zi is known (in the sequel,
we will take z = x , but this is not required). The ratio estimator of ty = ∑

U yi is given
by t̂yra = tz R̂, where R̂ = t̂y/t̂z and t̂y and t̂z are estimates of the population totals
ty and tz respectively, which may be based on any sampling design and estimation
technique. From general theory (cf. Särndal et al. 1992, Chapter 5), we know that t̂yra

is approximately unbiased for ty and that the approximate variance of t̂yra is given by

AV (t̂yra) = V(t̂y) + R2
V(t̂z) − 2RCov(t̂y, t̂z),

where R = ty/tz . The variance estimator is given by

V̂(t̂yra) = t2
z

t̂2
z

[

V̂(t̂y) + R̂2
V̂(t̂z) − 2R̂Ĉov(t̂y, t̂z)

]

,

and the form of the variance and covariance estimators depends on the design used
to estimate ty and tz . For the SRSWOR(n) design, it is well established (cf. Särndal
et al. 1992, Chapter 5 again) that the ratio estimator, its approximate variance and a
variance estimator, when t̂y and t̂z are based on the Horvitz–Thompson estimators, are
given by

t̂y,π,ra = tz
t̂y,π

t̂z,π
, (5.1)

AV (t̂y,π,ra) = N 2(1 − n/N )

n

(

S2
yU + R2S2

zU − 2RSyzU

)

, (5.2)

V̂(t̂y,π,ra) = N 2(1 − n/N )

n

(

S2
ys + R2S2

zs − 2RSyzs

)

. (5.3)

We now present the following result, which gives the formulae for the ratio esti-
mator under the RSSWR(m, k) design and using the estimators t̂·,RSS,pwr. Results for
the ratio estimators based on t̂·,RSS,π and t̂·,RSS,m,π follow similarly.

Theorem 5.1 Under the RSSWR(m, k) design with study variable y, auxiliary vari-
able z, and ranking variable x, the ratio estimator

t̂y,RSS,pwr,ra = tz
t̂y,RSS,pwr

t̂z,RSS,pwr
(5.4)
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is approximately unbiased for ty . The approximate variance of t̂y,RSS,pwr,ra is given
by

AV (t̂y,RSS,pwr,ra) = V(t̂y,RSS,pwr) + R2
V(t̂z,RSS,pwr)

−2RCov(t̂y,RSS,pwr, t̂z,RSS,pwr), (5.5)

where V(t̂y,RSS,pwr), V(t̂z,RSS,pwr) and Cov(t̂y,RSS,pwr, t̂z,RSS,pwr) are given in Theo-
rem 4.3. If m ≥ 2, the variance estimator is given by

V̂(t̂y,RSS,pwr,ra) = t2
z

t̂2
z,RSS,pwr

[

V̂(t̂y,RSS,pwr) + R̂2
V̂(t̂z,RSS,pwr)

−2R̂Ĉov(t̂y,RSS,pwr, t̂z,RSS,pwr)
]

, (5.6)

where V̂(t̂y,RSS,pwr), V̂(t̂z,RSS,pwr) and Ĉov(t̂y,RSS,pwr, t̂z,RSS,pwr) are given by Theo-
rem 4.3.

Note that in Theorem 5.1 we may write AV (t̂y,RSS,pwr,ra) as

AV (t̂y,RSS,pwr,ra) = AV (t̂y,pwr,ra) − N 2

mk2

k
∑

j=1

(

(μy[ j] − ȳU ) − R(μz[ j] − z̄U )
)2

,

(5.7)

which shows that AV (t̂y,RSS,pwr,ra) ≤ AV (t̂y,pwr,ra) where t̂y,pwr,ra is the ratio esti-
mator under the SRSWR(mk) = RSSWR(mk, 1) design. As mentioned previously,
in all above results one can take z = x , thus making use of the information contained
in x twice—once for ranking and once for the ratio estimate. This is precisely what
we do in the numerical results.

5.1 An alternate estimator

The above discussion on ratio estimators suggests the alternate estimator of ty as
follows

t̃y,RSS = N
t̂y,RSS,π

N̂RSS,π

where N̂RSS,π =
∑

rss∗
1

π
(m)
i :N

. (5.8)

This estimator avoids most of the instability problems associated with t̂y,RSS,π men-
tioned earlier since the number of terms in the denominator is the same as the number
of terms in the numerator. The numerical results in the next section show that this esti-
mator can perform substantially better than t̂y,RSS,π , especially when cv(y) is small.
Again, by standard results, we have
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Theorem 5.2 Let t̃y,RSS and N̂RSS,π be as in (5.8). Then, t̃y,RSS is approximately
unbiased for ty with approximate variance

AV (t̃y,RSS) = V(t̂y,RSS,π ) + ȳ2
U V(N̂RSS,π ) − 2 ȳU Cov(t̂y,RSS,π , N̂RSS,π ),

where V(t̂y,RSS,π ) is given in Theorem 3.2,

V(N̂RSS,π ) =
∑

i∈U

∑

i ′∈U

�
(m)

i i ′:U
π

(m)
i :U π

(m)

i ′:U
,

and

Cov(t̂y,RSS,π , N̂RSS,π ) =
∑

i∈U

∑

i ′∈U

�
(m)

i i ′:U
π

(m)
i :U π

(m)

i ′:U
yi .

A variance estimator is given by

V̂(t̃y,RSS)=
(

N

N̂RSS,π

)2
[

V̂(t̂y,RSS,π ) + ỹ2
s V̂(N̂RSS,π ) − 2 ỹsĈov(t̂y,RSS,π , N̂RSS,π )

]

,

where V̂(t̂y,RSS,π ) is given in Theorem 3.2, ỹs = t̂y,RSS,π /N̂RSS,π ,

V̂(N̂RSS,π ) =
∑

i∈rss∗

∑

i ′∈rss∗

�
(m)

i i ′:U
π

(m)

i i ′:U π
(m)
i :U π

(m)

i ′:U
,

and

Ĉov(t̂y,RSS,π , N̂RSS,π ) =
∑

i∈rss∗

∑

i ′∈rss∗

�
(m)

i i ′:U
π

(m)

i i ′:U π
(m)
i :U π

(m)

i ′:U
yi .

One could also use the results of Theorem 3.3 to develop similar results for the
estimator

t̃y,RSS,m,π = N
t̂y,RSS,m,π

N̂RSS,m,π

, where N̂RSS,m,π = 1

m

m
∑

r=1

∑

i∈rss∗
r

1

π
(m)
i :U

.

The one disadvantage of these estimators is that they are biased, although it can be
shown that (cf. Särndal et al. 1992)

[E(t̃y,RSS) − ty]2

V(t̃y,RSS)
≤ V(N̂RSS)

N 2 .
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Table 1 Summary statistics for the y-values in populations U1, . . . , U4

Min Q1 Median Q3 Max ȳU S2
yU cv(y)

U1 66.50 92.97 99.74 106.77 130.01 99.83 102.64 0.10

U2 1.85 68.23 121.70 198.35 681.82 147.77 11317.57 0.72

U3 468.76 496.23 499.89 503.60 528.87 500.15 53.49 0.01

U4 3,325.20 4,814.24 5,301.08 17,764.83 25,614.76 9,474.86 48,720,400.33 0.74

6 Numerical results and simulations

In this section, we first evaluate the performance of our proposed estimators for four
simulated populations, each of size N = 1, 000. We then apply our results to a real
data set. In our simulation study: population U1 consists of 1,000 realizations from
a N (μ, σ ) distribution with μ = 100 and σ = 10; population U2 consists of 1,000
realizations from a Gamma(α, λ) distribution with shape parameter α = 2 and rate
λ = 1/75; population U3 is roughly symmetric and highly peaked and consists of
1,000 realizations from the Laplace density f (y) = (1/10) exp{−|x − 500|/5}; and
population U4 is bimodal and right skewed, consisting of 700 realizations from a
N (5,000, 500) distribution and 300 realizations from a N (20,000, 2,500) distribution.
Table 1 shows the summary statistics for these populations.

6.1 Perfect ranking

We first present some results under the assumption of perfect ranking, (i.e. y[i :U ] =
yi :U ). We report the design effect for each estimator, which we defined as

deff(t̂) = V(t̂)

N 2(1 − n/N )S2
yU /n

,

where n = ∑

U πi :U is the expected number of unique elements in the RSSWR(m, k)

design and the denominator is the variance of the usual π -estimator under the SRS-
WOR(n) design. Table 2 shows the design effects for the three proposed estimators
(3.1), (3.6) and (4.1). The exact variances were calculated using (3.2), (3.7) and (4.2)
respectively. For each of the populations U1, . . . , U4, five different RSSWR(m, k)

designs were analyzed. The values of m and k were such that mk = 30 and k =
2, 3, 5, 10 and 15. Note that the effect for the SRSWR(mk) design with mk = 30 and
N = 1, 000 is well known to be approximately 1.015 (see Särndal et al. 1992, Section
3.8.2).

Notice that the t̂y,RSS,π estimator does not perform well for populations U1 and U3.
Both of these populations have fairly small coefficients of variation (0.10 and 0.02,
respectively). Recall that the t̂y,RSS,π = (N/mk)

∑

rss∗ y[i :U ], which is a sum over
distinct elements in the ordered sample. When cv(y) is small, all of the y’s are of
the same order of magnitude and hence any variation in the number of terms in the
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Table 2 Design effects for perfect ranking with populations U1, U2, U3 and U4 with mk = 30 and
k = 2, 3, 5, 10 and 15

Population m k E(nrss∗ ) V(nrss∗ ) t̂y,RSS,π t̂y,RSS,m,π t̂y,RSS,pwr t̃y,RSS

U1 15 2 29.57 0.41 2.072 0.723 0.690 0.685

10 3 29.58 0.41 1.902 0.596 0.528 0.527

6 5 29.58 0.40 1.722 0.509 0.363 0.366

3 10 29.60 0.39 1.532 0.560 0.208 0.215

2 15 29.61 0.38 1.443 0.714 0.147 0.155

U2 15 2 29.57 0.41 0.746 0.725 0.725 0.718

10 3 29.58 0.41 0.596 0.572 0.571 0.569

6 5 29.58 0.40 0.436 0.410 0.407 0.410

3 10 29.60 0.39 0.275 0.251 0.243 0.250

2 15 29.61 0.38 0.208 0.189 0.176 0.183

U3 15 2 29.57 0.41 67.560 2.304 0.722 0.716

10 3 29.58 0.41 66.817 3.896 0.576 0.574

6 5 29.58 0.40 65.692 7.453 0.422 0.424

3 10 29.60 0.39 63.706 17.186 0.265 0.271

2 15 29.61 0.38 62.207 27.385 0.197 0.204

U4 15 2 29.57 0.41 0.792 0.774 0.773 0.765

10 3 29.58 0.41 0.655 0.634 0.633 0.629

6 5 29.58 0.40 0.501 0.477 0.475 0.475

3 10 29.60 0.39 0.338 0.316 0.309 0.314

2 15 29.61 0.38 0.268 0.250 0.238 0.244

summation causes significant instability in the estimator t̂y,RSS,π . When the coefficient
of variation of the y’s is moderate or large then, due to the symmetry of the inclusion
probabilities, the duplicated elements in the ordered sample are just as likely to be
very large or very small, hence mitigating the effect variations in the number of terms
in the summation. The estimator t̂y,RSS,m,π also suffers from this instability, but to a
lesser extent, since duplication between cycles is no longer a factor. We also comment
that π -estimation under the SRSWR(n) design also suffers from this instability. For
the designs chosen here, the design effect is approximately 1 + 0.014/cv2(y). The
estimator t̂y,RSS,m,π performs quite well for U1, U2 and U4 but exhibits problems with
U3, and these problems increase as k increases. On the other hand, the estimator t̃y,RSS
defined in Theorem 5.2 performs very well for the examples considered here.

Notice that, for U1, the design effect of the t̂y,RSS,m,π estimator first decreases and
then increases as k increases from 2 to 15. As mentioned, it is preferable to choose k
as large as practically possible, however, for this design, choosing k too large results
in more variation in the within cycle sample sizes, and hence reduces the efficiency.
This effect is even more dramatic for population U3 due to the very small coefficient
of variation.

The estimators t̂y,RSS,pwr and t̃y,RSS perform very well for all of the populations
considered here and exhibit the largest (and most consistent) improvement in precision
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over SRSWOR. Further simulation studies in Jafari Jozani and Johnson (2010) indi-
cate that the sampling distributions of t̂y,RSS,π and t̂y,RSS,π,m can be far from normal
(especially for populations U2 and U4). On the other hand, the sampling distribu-
tions of t̂y,RSS,pwr and t̃y,RSS, for these examples, are approximately normal, perhaps
slightly right skewed for populations U2 and U4, and this is a definite advantage for
approximate confidence intervals based on normal approximations.

6.2 Imperfect ranking

We now consider the case when the ranking of the y values is imperfect. For these
results, we generate the xi ’s according to the following model

xi | yi ∼ N

(

μx + ρ
σx

σy
(yi − ȳU ), σx

√

1 − ρ2

)

,

where μx = 100, σx = 10, ρ ∈ {0.3, 0.5, 0.7, 0.9} and, for convenience, σy = SyU .
Note that, due to the symmetry of the inclusion probabilities, the auxiliary variable x
may be negatively correlated with y.

Table 3 gives the finite population correlation coefficient ρ(x, y) between the x and
y values, the ratio cv(x)/cv(y) and the design effects (over SRS) for the following
estimators:

t̂y,pps: See Särndal et al. (1992) t̂y,π,ra : See Särndal et al. (1992)
t̂y,RSS,π : Theorem 3.2 t̂y,RSS,π,ra : see Theorem 5.1

t̂y,RSS,m,π : Theorem 3.3 t̂y,RSS,m,π,ra : See Theorem 5.1
t̂y,RSS,pwr: Theorem 4.3 t̂y,RSS,pwr,ra : Theorem 5.1

t̃y,RSS: Theorem 5.2

We make the following observations regarding Table 3.

(1) It is well known (cf. Särndal et al. 1992) that, under the SRSWOR(n) design,
the ratio estimator in (5.1) will be more efficient that the usual π -estimator pro-
vided that ρ(x, y) > cv(x)/[2cv(y)]. A similar dependence on cv(x)/cv(y)

also appears to hold for the RSSWR ratio estimators considered here. While a
detailed theoretical analysis has not been attempted, the results in Theorem 4.3
and (5.7) suggest that, at least for t̂y,RSS,pwr,ra , the dependence is a function of
both ρ(x, y) and

ρ(μy[ j], μx[ j]) =
∑k

j=1(μy[ j] − ȳU )(μx[ j] − x̄U )
√

∑k
j=1(μy[ j] − ȳU )2

∑k
j=1(μx[ j] − x̄U )2

.

(2) The estimators t̂y,RSS,pwr and t̃y,RSS again perform very well, especially when
the correlation between y and x is reasonably high.

(3) Notice that, when ratio estimation is appropriate, the estimator t̂y,RSS,π,ra per-
forms very well here. The instability of t̂y,RSS,π due to variations in the sample
size is now mitigated by the fact that both t̂y,RSS,π,ra and t̂x,RSS,π,ra are based on
the same sample size.
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(4) We finally comment that, when ratio estimation is appropriate, the estimator
t̂y,RSS,pwr performs quite well, although t̂y,RSS,π,ra has a very slight advantage
in some cases. However, recall that t̂y,RSS,pwr,ra only requires knowledge of tx
and the relative rankings of the xi in the samples. The estimators t̂y,RSS,π,ra and
t̂y,RSS,m,π,ra require a-priori knowledge of the relative ordering of all of the xi

in order to calculate the inclusion probabilities.

6.3 Case study

We conclude the numerical results section with a case study. We apply the techniques
described in this paper to a data set attributed to Platt et al. (1988). The original data
set consists of measurements made on 399 longleaf pine (Pinus palustris) trees. The
data set for the current example consists of the truncated version of the data set given
in Chen et al. (2004), which contains the diameter (in centimeters) at breast height
(x) and the height (in feet) (y) of 396 trees. For the purposes of this example, we take
these 396 trees as the population U . Variations of this data set have been analyzed in
many papers on ranked set sampling (see for example, Bhoj 2001; Deshpande et al.
2006). The idea is that, while the diameter at breast height is easy to measure, the
height is usually more difficult to obtain.

For this data set, we have ȳU = 52.67677, S2
yU = 3261.6826, x̄U =

20.96414, S2
xU = 310.3290 and ρ(x, y) = 0.9072982 and, after adjusting the degrees

of freedom for the variances to N − 1 instead of N , these agree with those reported in
Chen et al. (2004). Since the data had repeated x values, for the purpose of ranking,
we took xi +ui where the ui were 396 realizations from a N (0, 0.000001) distribution
(re-centered so that ū = 0).

Table 4 shows the variances and design effects for the various estimators as well as
the sample size that would be required to achieve the same variance under the SRS-
WOR design (n∗). Notice that t̂y,pps (the PPSWR(mk) estimator) performs extremely
well in this example. Unfortunately, since we would seldom know the diameter at
breast height for an entire population of trees, neither t̂y,pps, nor the estimators based
on the inclusion probabilities, are actually feasible in this example. On the other hand,

Table 4 Variances and design effects for various estimators for the trees data set

Non-ratio estimators Ratio estimators

Estimator Variance Deff. n∗ Estimator Variance Deff. n∗

t̂y,pps 11.411 0.109 167 t̂y,π,ra 20.292 0.194 115

t̂y,RSS,π 72.079 0.690 41 t̂y,RSS,π,ra 19.740 0.189 117

t̂y,RSS,m,π 70.207 0.672 42 t̂y,RSS,m,π,ra 20.413 0.195 114

t̂y,RSS,pwr 70.156 0.672 42 t̂y,RSS,pwr,ra 20.441 0.196 114

t̃y,RSS 68.908 0.660 43

The RSS designs used m = 10 and k = 3. The column n∗ shows the sample size required under the
SRSWOR design to achieve the same variance of the considered estimators
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the estimators t̂y,RSS,pwr and t̂y,RSS,pwr,ra require only the width at breast height of
the mk2 inspected trees, and this is entirely feasible. Again, in this example, the esti-
mator t̃y,RSS performs better that the Horvitz–Thompson and Hansen–Hurwitz type
estimators in estimating the population total (or mean).

We can also examine the efficiency from a cost perspective. Suppose the cost of
ranking per unit is c1 and the cost of obtaining a y measurement is c2. Then the
RSSWR(m, k) design will be more cost effective if c1mk2 + c2mk < c2n∗ or c1 <

c2(n∗ − mk)/mk2, where n∗ is the sample size required under the SRSWOR design
to achieve the same variance. In our example, the RSSWR(10, 3) design, with the
estimator t̂y,pwr, would be more cost effective if the cost of obtaining a y measurement
is more than about 8 times the cost of ranking per unit.

We also comment that Chen et al. (2004) report a simulated design effect of about
0.27 for this example based on 20 repeated samples. In experiments, we were able to
obtain simulated design effects of 0.27 or less (based on 20 replications) for t̂y,RSS,pwr
about 4% of the time, whereas the average was very close to the stated exact design
effect of 0.672.

7 Concluding remarks

In this paper, we studied the use of a variation of the RSS design in finite populations.
We derived the first and second-order inclusion probabilities of population elements
for this RSS design. These inclusion probabilities are very important. They give an
insight on how the RSS design has more control on which element enters the sample
as compared to SRS with or without replacement. They can also be used to construct
different designed-based π -estimators of the population parameters. To address these
issues, we proposed a number of designed-based estimators of the population mean
(or total) using the obtained inclusion probabilities. These estimators have been shown
to be more efficient than the usual estimators under SRSWOR designs of comparable
sample sizes. However, the performance of the Horvitz–Thompson type estimators
and their associated ratio estimators based on the RSS design compared to their coun-
terparts under SRSWOR design depends highly on the value of cv(y), the coefficient
of variation of the variable of interest in the underlying population. The consistent
performance of the estimators t̂y,RSS,pwr, t̂y,RSS,pwr,ra and t̃y,RSS suggest that these
are to be preferred in most situations. But, according to our simulation study, if cv(y)

is not too small then the Horvitz–Thompson type estimators and their associated ratio
estimators can perform extremely well compared to the usual estimator under the
SRSWOR design. In this situation the Horvitz–Thompson type estimators perform as
good as the Hansen–Hurwitz type estimators for almost all considered populations.
We also examined the efficiency of our proposed estimators from a cost perspective.
In addition, we examined the impact of imperfect ranking on the performance of our
proposed estimators by considering ranking according to an auxiliary variable with
different values of the correlation coefficient with the variable of interest. Our simu-
lation study suggests that, for auxiliary variables that are highly correlated with the
variable of interest, the design effect of our proposed estimators compared to that of
SRSWOR are less than 1. The results of this paper indicate that ranked set sampling
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should be seriously considered as a technique for improving the precision of estimates
when sampling from a finite population as it can increase precision considerably for
little extra effort. Note that the results of this paper can easily be adapted to differ-
ence and regression estimators as well as more complex designs such as stratified or
multi-stage sampling designs.

Acknowledgments Both authors were partially supported by the Natural Sciences and Engineering
Research Council of Canada. The authors would also like to thank Alexandre Leblanc for providing
comments on an earlier version of this manuscript and the anonymous referees for their comments and
suggestions.

References

Al-Saleh MF, Samawi HM (2007) A note on inclusion probability in ranked set sampling and some of its
variations. Test 16:198–209

Barabesi L, Marcheselli M (2004) Design-based ranked set sampling using auxiliary variables. Environ
Ecol Stat 11:415–430

Bhoj DS (2001) Ranked set sampling with unequal samples. Biometrics 57:957–962
Bouza CN (2001) Model-assisted ranked survey sampling. Biom J 43:249–259
Bouza CN (2002a) Estimation of the mean in ranked set sampling with non responses. Metrika 56:171–179
Bouza CN (2002b) Ranked set sub-sampling the non-response strata for estimating the difference of means.

Biom J 44:903–915
Bouza CN (2009) Ranked set sampling and randomized response procedures for estimating the mean of a

sensitive quantitative character. Metrika 70:267–277
Chen Z, Bai Z, Sinha B (2004) Ranked set sampling: theory and applications. Lecture Notes in Statistics.

Springer, New York
Deshpande JV, Frey J, Ozturk O (2006) Nonparametric ranked-set sampling confidence intervals for quan-

tiles of a finite population. Environ Ecol Stat 13:25–40
Jafari Jozani M, Johnson BC (2010) Ranked set sampling estimation in finite populations. Technical Report

2010-001, University of Manitoba, Department of Statistics
Kaur A, Patil G, Sinha A, Taillie C (1995) Ranked set sampling: an annotated bibliography. Environ Ecol

Stat 2:25–54
McIntyre GA (1952) A method for unbiased selective sampling using ranked sets. Aust J Agric Res 3:385–

390
Özdemir YA, Gökpınar F (2007) A generalized formula for inclusion probabilities in ranked set sampling.

Hacet J Math Stat 36:89–99
Ozturk O, Bilgin OC, Wolfe DA (2005) Estimation of population mean and variance in flock management:

a ranked set sampling approach in a finite population setting. J Stat Comput Simul 75:905–919
Patil GP, Sinha AK, Taillie C (1995) Finite population corrections for ranked set sampling. Ann Inst Stat

Math 47:621–636
Platt WJ, Evans GW, Rathbun SL (1988) The population-dynamics of a long lived conifer ( Pinus palustris).

Am Nat 131:491–525
Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer Series in Statistics.

Springer, New York
Takahasi K, Futatsuya M (1988) Ranked set sampling from a finite population. Proc Inst Stat Math 36:55–68
Takahasi K, Futatsuya M (1998) Dependence between order statistics in samples from finite population and

its application to ranked set sampling. Ann Inst Stat Math 50:49–70

Author Biographies

Mohammad Jafari Jozani joined the Department of Statistics at the University of Manitoba as an Assis-
tant Professor in 2009. He completed all his studies in Iran. He obtained a B.Sc. degree in Statistics
from Allameh Tabatabaie University, and M.Sc. and Ph.D. degrees in Mathematical Statistics from Shahid

123



Environ Ecol Stat (2011) 18:663–685 685

Beheshti University, Tehran, Iran. Mohammad’s research has primarily been in Bayesian statistics,
statistical decision theory, and estimation in restricted parameter spaces. Recently he has begun to do
research in more applied areas such as ranked set sampling, credibility theory and image processing.

Brad C. Johnson joined the Department of Statistics at the University of Manitoba as an Assistant
Professor in 2005. Brad received his Ph.D. in Statistics from Purdue University. He also holds Master’s of
Science degrees from Purdue University and the University of Manitoba, and a Bachelor of Science degree
in Statistics from the University of Manitoba. His research interests include applied probability, Markov
chains and survey sampling.

123


	Design based estimation for ranked set sampling  in finite populations
	Abstract
	1 Introduction
	2 Notation
	3 Inclusion probabilities and the Horvitz--Thompson estimators
	3.1 A Horvitz--Thompson estimator
	3.2 An alternate Horvitz--Thompson type estimator

	4 A Hansen--Hurwitz type unbiased estimator
	5 Ratio estimators under the RSSWR(m,k) design
	5.1 An alternate estimator

	6 Numerical results and simulations
	6.1 Perfect ranking
	6.2 Imperfect ranking
	6.3 Case study

	7 Concluding remarks
	Acknowledgments
	References


