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Abstract Policy responses for local and global fire management as well as interna-
tional green-gas inventories depend heavily on the proper understanding of the annual
fire extend as well as its spatial variation across any given study area. Proper statistical
models are important tools in quantifying these fire risks. We propose Bayesian meth-
ods to model jointly the probability of ignition and fire sizes in Australia and New
Zeland. The data set on which we base our model and results consists of annual obser-
vations of several meteorological and topographical explanatory variables, together
with the percentage of land burned over a grid with resolution of 1◦ across Austalia and
New Zealand. Our model and conclusions bring improvements on the results reported
by Russell-Smith et al. in Int J Wildland Fire, 16:361–377 (2007) based on a similar
data set.

Keywords Wildfires · Bayesian hierarchical models · Spatial statistics

1 Introduction

A series of recent studies have modeled spatial patterns of fire incidence as a func-
tion of a set of environmental covariates, at geographical scales ranging from regional
(Spessa et al. 2005) to continental (Russell-Smith et al. 2007; Archibald et al. 2009;
Sá et al. under review) and global (Krawchuk et al. 2009). Spessa et al. (2005) and
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Russell-Smith et al. (2007) focused on Australia and relied on generalized linear mod-
els to quantify fire-environment relations. Archibald et al. (2009) and Sá et al. (under
review) studied African fires and used, respectively, regression trees and geograph-
ically weighted regression. The global fire analysis by Krawchuk et al. (2009) was
performed with generalized additive models. Spatial data analysis requires careful
consideration of autocorrelation and heterogeneity issues. Spatial autocorrelation (or
spatial dependency) is the tendency for objects located close together to be more similar
than those farther apart (Legendre 1993). Heterogeneity (or spatial non-stationarity) is
not a property of the data but of the modeled relationship, and describes the tendency
for relationships to vary in space. Lack of consideration of these issues may lead to
biased parameter estimates, errors in significance tests, and sub-optimal prediction
(Anselin and Griffith 1988).

The Australian studies (Spessa et al. 2005; Russell-Smith et al. 2007) fail to address
or discuss spatial statistics issues at all. Archibald et al. (2009) discuss spatial autocor-
relation but do not address it explicitly, since no technique is available to incorporate
its effects in regression tree models. Data sub-sampling inherent in their ensemble
models, is expected to reduce spatial autocorrelation, but the authors admit to some
degree of uncertainty in statistical tests, potentially leading to inclusion of spurious
explanatory variables. Only the most important splits in regression trees were kept, in
an attempt to minimize this problem. Krawchuk et al. (2009) also acknowledged the
problem of spatial dependence and its potential effects on variable and model selection.
They did not explicitly incorporate a spatial component in their models, but performed
a geostatistical analysis of the data to determine a spatial sub-sampling pattern capable
of attenuating the effects of spatial autocorrelation. Sá et al. (under review) analysed
spatial non-stationarity of fire-environment relationships in sub-Saharan Africa, using
geographically weighted regression (GWR). This technique, which explicitly incor-
porates spatial locations of the data, was used to explore the assumption of spatial
stationarity of relationships between fire and a set of environmental covariates. How-
ever, as we will see later, it is questionable whether certain properties of spatial data
can be adequately dealt with by the standard weighted least squares method, based
on an independent Gaussian error structure.The main purpose of the present study
is to introduce space-time hierarchical Bayesian modeling to pyrogeography, and to
highlight its advantages relatively to modeling approaches used so far. In order to do
this, we use spatial data for fire occurrence and area burned in Australia and New
Zealand during the period 1998–2006, together with maps of climatic, vegetation, and
anthropogenic covariates. This data set is defined on a continental grid of 1◦ ×1◦ cells,
totaling 750 grid points. Fire affected areas in each grid cell between 1998 and 2006,
derived from satellite imagery, were used as the response variable, whereas dry season
severity, precipitation over the wet season, type of landcover, among other variables
observed in each grid cell, were used as a set of explanatory variables. No attempt was
made to model the temporal and spatial variation in the explanatory variables. The
principal objective of this study is to explore the relative importance of the explana-
tory variables under analysis and, as a consequence, assess the spatial variation of fire
affected areas at a continental scale.

Statistical methods and models so far used in the existing literature can be improved
in many directions: Percentage of land burned as well as the occurrence of ignition in
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each grid cell show high degree of spatial and temporal dependency for low resolu-
tion grid data, and this dependence probably is even stronger in data sets with higher
resolution than the one we use. Although part of this dependence is explained through
the explanatory variables, a significant portion of this dependence is due to latent,
unaccounted spatially and temporarily varying variables. Therefore, standard Gauss-
ian regression methods based on independent errors (Spessa et al. 2005; Russell-Smith
et al. 2007; Krawchuk et al. 2009) may be inappropriate. These unaccounted depen-
dence structures have particularly undesired and strong effects on the statistical tests
carried on the regression parameters.

Data set on ignition and percentage of land burned within each grid cell typically
contains large numbers of 0 values, that is, there are many grid points where no fire
occurs during the year. Under these conditions, the usual arcsine transformation (e.g.
Russell-Smith et al. 2007) is not particularly satisfactory if a substantial number of
the proportions are equal to 0 or 1 or for values at the extreme ends of the possible
range (near 0 and near 1).

Latent, unaccounted spatially and temporarily varying variables add significant
bias to the residuals and result in the underestimation of the structural variation in
the response variables. Therefore, inclusion of latent, spatially and temporally depen-
dent random factors in the link functions and in the regression should reduce bias and
improve the overall quality of the regression. They may also indicate future research
directions in searching for other explanatory variables having direct effect on fire
regimes.

Inference on the ignition probability and percentage of land burned should not
be done separately, since these two events are interconnected. Hence, the likelihood
should be specified jointly within a single model.

Finally, the use of Bayesian hierarchical models brings with it the usual benefits of
Bayesian methodology, such as incorporating sampling variation of model parameters
as well as prior expert knowledge into the model.

The structure of the paper is as follows: In Sect. 2, we explain the data set in detail.
In Sect. 3, we introduce the model, whereas in Sect. 3.2, we report on the model fitting.
In Sect. 3.3, we give the conclusions taken from the fitted model, and finally in Sect. 4,
we comment on how our model improves on previous research and summarize the
most important conclusions.

2 Data

All data surfaces used for analysis were compiled on a grid of 1◦ × 1◦ cells covering
Australian and New Zealand land mass, resulting in an equidistant lattice with 750
cells. This is a relatively coarse grid as compared to the grid used by Russell-Smith
et al. (2007). Let si = (lati tude, longitute) be the coordinates of the i-th pixel cen-
troid in this lattice, and Y (i, t) denote the percentage of land burned in pixel i , during
year t = 1998, . . . , 2006. The data set under study is of the form

(Y (i, t), X1(i, t), X2(i, t), . . . , X7(i, t), i = 1, . . . , 750, t = 1, . . . , 9),
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where we denote by X j (i, t), the j-th covariate observed at pixel i at time t , and
Y (i, t) is the dependent variable representing the estimated burned fraction over the
year, taken from the Global Fire Emissions Database (GFED) (Giglio et al. 2006).
Some of the covariates are static in time and they will be denoted by X j (i) The
description of the covariates are as follows:

1. X1(i, t): Dry Season Severity, observed from the Tropical Rainfall Mapping Mis-
sion (TRMM) satellite data (native resolution 0.25◦, aggregated to 1◦), calculated
as the values of 2T-Ppt, where T is mean monthly temperature, and Ppt is monthly
precipitation, summed over the months with a positive value of this difference
(Breckle 2002).

2. X2(i, t): Precipitation over the wet season (or growing season) observed from
TRMM satellite data. Wet season months are those for which the difference defined
above is negative.

3. X3(i): Human footprint (static), as defined in Sanderson et al. (2002).
4. X4(i): Tree landcover (static), varying from 0 (no cover) to 1 (full cover), based

on Global Land Cover 2000 data (Bartholome and Belward 2005).
5. X5(i): Grass and Shrubs landcover (static), same as above.
6. X6(i): Agricultural Landcover (static), same as above.
7. X7(i, t): Maximum number of consecutive dry pentads (pentad = 5 days) over the

corresponding year, computed from the Climate Predicition Center (CPC) Merged
Analyses of Precipitation product (CMAP), described by Xie and Arkin (1997).

Other independent variables known to affect the fire incidence, such as spatial hetero-
geneity of land cover, wind speed and direction, topography, etc., were not considered,
due to their perceived secondary role, at the spatial scale of the analysis. These unob-
served covariates will be represented in the model by a latent, random effect with
a specific spatio-temporal dependence structure. Some of the covariates in the list
exhibit strong time and space variation, but at this stage, there will be no attempt to
model these temporal and spatial structures in these independent variables; they will
be simply included in our model as fixed explanatory variables.

2.1 Preliminary data analysis

The data set reveals some characteristics which need to be taken into account while
modeling. The data contain an unusually high number of 0’s, and non-zero observa-
tions are highly skewed to the left with a fairly heavy right tail. Data also show strong
spatial and temporal dependence, which can not be ignored in the model. Therefore,
regression methods, assuming uncorrelated error structures will give erroneous results.

Let Y +(i, t) = Y (i, t)|Y (i, t) > 0 represent the non-zero observations. Due to the
skewness of the data, either a proper model and the consequent generalized linear
model has to be chosen or an adequate transformation has to be found so that the con-
venient Gaussian structure can be used in modeling the transformed data. Assuming
(the crude) assumption that the observations are independent, the models and trans-
formations given below were considered as part of a preliminary data analysis, to find
the option which, in principle, would be more suitable.
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Fig. 1 Normal approximation for log
(

Y +(i,t)
1−Y +(i,t)

)
; years 1998, 2006

Case (1) : Y +(i, t) ∼ Beta(θ1, θ2),
Case (2) : − log(Y +(i, t)) ∼ Gamma(α, β),

Case (3) : log
(

Y +(i,t)
1−Y +(i,t)

)
∼ Normal(μ1, σ

2
1 ),

Case (4) : Arcsine transformation arcsin(
√

Y +(i, t)) ∼ Normal(μ2, σ
2
2 ).

The transformation considered in case (3) resulted in residuals which are more com-
patible with normal distribution, for the null model and a model with all the covariates,
than the transformation in case (4).

In Fig. 1 we represent this approximation for the null model, for the years 1998 and
2006.

As expected, due to the large number of zeros and skewed distribution, the com-
monly used arcsin transformation was inadequate in obtaining Gaussian-like data,
even when only the non-zero values are considered. (see Fig. 2).

Although the models given in cases (1) and (2) are good alternatives, the inferences
on the corresponding generalized linear models are harder as compared to the Gaussian
model (3), without extra benefit attached. The dependence structure among the covar-
iates and their combined effect on the dependent variable is somewhat complicated
and interactions among the covariates are also suspected to exist. It is not compu-
tationally viable to run full factorial model with all levels of interactions. Therefore
upon a preliminary data analysis combined with wildfire expert opinion, a reduced
factorial model which included all the covariates and some second order interactions
was initially analyzed.
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3 Statistical methodology and models

Our objective is to quantify the relative importance of independent variables as deter-
minants of the fire incidence, as well as explaining the space-time variation in the
response variable. One possible way of handling such data and take adequate conclu-
sions is the use of geographically weighted regression analysis (GWR) (Fotheringham
et al. 2002). The main objective of GWR is to carry out the usual multiple regression
analysis using the well known weighted least squares method, where the weights
are chosen taking into consideration the distances between the spatial coordinates
over which the observations are taken. However, certain aspects of data, which were
reported in the previous section, are not compatible with the standard weighted least
squares method based on independent Gaussian error structure. Therefore, we suggest
an alternative hierarchical model to take into account the characteristics of this data
set.

3.1 Joint areal model for ignition probability and percentage of area burned

The geographical area under study is partitioned into a finite number or areal units,
which in our case are the fixed grid cells of size 1◦ × 1◦. These cells are areal units
with well defined boundaries. Hence, we consider the cell positions si as their respec-
tive centroids and take the data as areal data. Models for areal data are easier to deal
with, since the hidden spatio-temporal random effect is a discrete space-time pro-
cess which can be assumed to be a nearest neighbor Markov process (for example,
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conditionally autoregressive process (CAR), or Gaussian Intrinsic autoregressive pro-
cess (ICAR)), and can be simulated without the curse of dimension. See Banerjee
et al. (2004). As an alternative, it is possible to assume that the data are a realization
of a continuous parameter spatial process and model the data using a point referenced
model (Banerjee et al. 2004). In fact, in more general terms, the data can be modeled
as a marked spatial point process, where the points are the centroids of individual fire
perimeters and the marks are the percentage of burned area. However, this modeling
strategy will result in computational difficulties arising from numerical inversion of
matrices of size 750 × 750, which is not very feasible, although there are ways of
avoiding it (Banerjee et al. 2008).

We define Bernoulli variables

R(i, t) =
{

1, with probability p1(i, t) = 1 − p0(i, t);
0, with probability p0(i, t),

(1)

where, p1(i, t) represents the probability that a fire is ignited at the pixel i with centroid
at si , during year t .

Let V(i, t) = (V1(i, t), V2(i, t)) be a latent bivariate spatio-temporal process. Here,
we assume that V1 is the latent process representing the unobserved explanatory vari-
ables having influence on the ignition process, whereas V2 is the latent process repre-
senting the unobserved explanatory variables having influence on the fire sizes.

We assume that these latent processes have simple additive space-time structures,
namely we assume that

Vl(i, t) = Vl(i) + δl(t), l = 1, 2 (2)

where, V1(i) and V2(i) are dependent spatial processes (we define the nature of this
dependence later in this section), whereas δ1(t) and δ2(t) are temporal processes,
independent of each other. This model does not take into consideration space-time
interaction, and is relatively easy to implement. Another possibility, for further stud-
ies, is to model each Vl(i, t), l = 1, 2 as a dynamic CAR model

Vl(i, t) = ρl Vl(i, t − 1) + ηl(i, t), l = 1, 2 (3)

where ρl ∈ (0, 1), ηl(i, t) are iid random variables each having the distribution
N (0, ζ 2) and Vl(i, 1) are Markov Random Field with a CAR prior.

Let

Z(i, t) =
{

log
(

Y (i,t)
1−Y (i,t)

)
, if 0 < Y (i, t) < 1,

0, if Y (i, t) = 0.
(4)

and denote by Z, X, R and V
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(Z(i, t), i = 1, 2, . . . , 750, t = 1, 2, . . . , 9),

(X(i, t), i = 1, 2, . . . , 750, t = 1, 2, . . . , 9),

(R(i, t), i = 1, 2, . . . , 750, t = 1, 2, . . . , 9),

(V(i, t), i = 1, 2, . . . , 750, t = 1, 2, . . . , 9),

respectively. Let � be all the (random) model parameters to be defined later.
We observe Z and R and for the conditional likelihood

f (Z, R|X, V,�) = f (Z|R, X, V,�) f (R|X, V,�)

we have the model

f (Z, R|V, X,�) =
9∏

t=1

750∏
i=1

f (z(i, t), |R(i, t), X(i, t), V(i, t),�) f (R(i, t)|X(i, t),

V(i, t),�) . (5)

Assuming, as stated in the previous section, that for 0 < Y (i, t) < 1, Z(i, t) is
normally distributed, we have

f (z(i, t)|R, V, X,�) =
[
φ(μ(i, t), σ 2)

]R(i,t)
, (6)

where φ(μ, σ 2) denotes the normal density function, and the conditional distribution
of R(i, t) is Bernoulli with P[R(i, t) = 1] = p1(i, t).

State equations are the mean function μ(i, t) and the ignition probability p1(i, t),
through which the spatial dependence will be introduced. We assume the following
structures for μ(i, t) and for p1(i, t).

μ(i, t) = β0 + X(i, t)T β + V1(i) + δ1(t) (7)

log
p1(i, t)

1 − p1(i, t)
= η0 + X(i, t)T η + V2(i) + δ2(t), (8)

where β = (β1, . . . , βk), η = (η1, . . . , ηk) are regression parameters.
We assume that V(i) = (V1(i), V2(i)) is a coregionalization model (Banerjee et al.

2004; Gelfand et al. 2004) having the simple intrinsic specification

V1(i) = ν1W0(i) + ν2W1(i),

V2(i) = W1(i),
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and W0(i) and W1(i) are independent ICAR models given by

W0(i)|w0( j), j �= i ∼ N

⎛
⎝∑

j

bi jw0( j),
1

τ0

⎞
⎠ , (9)

W1(i)|w1( j), j �= i ∼ N

⎛
⎝∑

j

ci jw1( j),
1

τ1

⎞
⎠ . (10)

with τ0 and τ1 being precision parameters. Here, the parameters ν1 and ν2 control the
degree of dependence between the two latent processes.

We assume that the temporal processes δ1(t) and δ2(t) are independent of each
other, each having the identical structure of a random walk process of order 1. This
corresponds to having a set of temporally correlated random effects δl(t), l = 1, 2, t =
1, . . . , N (where N = 9 is the number of equally-spaced time points). In the case of
a random walk of order 1 we may write (Thomas et al. 2004)

δl(t)|δl(t
∗) ∼ N

(
δl(t + 1),

1

φ

)
for t = 1

∼ N

(
δl(t − 1) + δl(t + 1)

2
,

2

φ

)
for t = 2, . . . , N − 1

∼ N

(
δl(t − 1),

1

φ

)
for t = N , l = 1, 2

where δl(t∗) denotes all elements of δl except δl(t). This can be implemented in
WinBUGS as a ICAR model (Thomas et al. 2004). Note that, δ1(t) and δ2(t) are
temporal processes acting globally over the area under study.

The model parameters and hyperparameters are given by

τ = 1

σ 2 , β∗ = (β0, β1, . . . , βk), η∗ = (η0, η1, . . . ηk), ν1, ν2,

and the the precision parameters of the latent processes involved. Since sound prior
information for the parameters of the model is not available, we assume diffuse inde-
pendent priors for the parameters. Specifically, we assume

1. β∗ independent N (0, 1000), η∗ independent N (0, 1000).
2. ν1 ∼ N (1, 10) , ν2 ∼ N0(1, 10)

3. Gamma(0.01, 0.01) for precison parameters.

3.2 Analysis of the hierarchical model

The software WinBUGS (Lunn et al. 2000) was used to analyze the proposed Bayesian
hierarchical model.
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Table 1 Deviance information
criterion

Model DIC

(i) 13399.98

(ii) 12806.78

(iii) 10958.46

In the initial model, all the standardized covariates , the relevant interactions as well
as the random effects, enter linearly in the respective link functions of the model, so
that

μ(i, t) = β0 + X(i, t)T β + V1(i) + δ1(t) (11)

log
p1(i, t)

1 − p1(i, t)
= η0 + X(i, t)T η + V2(i) + δ2(t). (12)

Selection of variables was done using the Deviance Information Criterion (DIC)
coupled with information about the marginal posterior distribution of regression param-
eters. A variable (or interaction) is included in the model if the posterior distribution
of the corresponding coefficient is away from 0 (Ntzoufras 2009). This was iden-
tified by computing, for each regression parameter, the probability of the smallest
HPD interval containing zero and keeping the corresponding variables for which this
probability was large. After each variable was taken out of the model, DIC was com-
puted. The model with the smallest DIC value was chosen as the final model. Table 1
shows the values of DIC for (i) the model with all the covariates but without interaction
terms, (ii) the model with all the covariates and interaction terms of order two between
climatological variables and type of land cover, and (iii) the final model, as described
next.

The final model has the following structure For μ(i, t) and for log p1(i,t)
1−p1(i,t)

:

μ(i, t) = β0 + β1 X1(i, t) + β2 X2(i, t) + β3 X4(i)

+β4 X5(i) + β5 X7(i, t) + β6 X1(i, t)X4(i)

+β7 X2(i, t)X5(i) + β8 X1(i, t)X5(i) + β9 X1(i, t)X6(i)

+V1(i) + δ1(t),

log
p1(i, t)

1 − p1(i, t)
= η0 + η1 X1(i, t) + η2 X2(i, t) + η3 X4(i, t)

+η4 X5(i) + η5 X6(i) + η6 X7(i, t)

+η7 X2(i, t)X4(i) + η8 X1(i, t)X4(i) + η9 X2(i, t)X5(i)

+V2(i) + δ2(t).

The corresponding summary statistics for the posterior distribution of the parameters
are given in Tables 2 and 3.
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Table 2 Summary statistics for the marginal posterior distributions for the parameters of the linear model
for μ(i, t)

Var. name Parameter Mean SD MCerror 2.5% Median 97.5%

Intercept β0 −4.24 0.04 0.00 −4.33 −4.24 −4.17

X1 β1 0.20 0.06 0.00 0.09 0.201 0.31

X2 β2 0.27 0.04 0.00 0.19 0.27 0.36

X4 β3 0.42 0.088 0.00 0.24 0.41 0.59

X5 β4 0.12 0.09 0.00 −0.06 0.12 0.30

X7 β5 0.12 0.03 0.00 0.06 0.12 0.19

X1 X4 β6 0.52 0.08 0.00 0.37 0.52 0.66

X2 X5 β7 0.40 0.04 0.00 0.27 0.35 0.42

X1 X5 β8 0.34 0.10 0.00 0.17 0.35 0.52

X1 X6 β9 0.34 0.07 0.00 0.19 0.34 0.48

Table 3 Summary statistics for the marginal posterior distributions for the parameters of log p1(i,t)
1−p1(i,t)

Var. names Parameters Mean SD MCerror 2.5% Median 97.5%

Intercept η0 2.24 0.12 0.01 2.02 2.23 2.47

X1 η1 −0.21 0.12 0.01 −0.45 −0.21 0.02

X2 η2 0.49 0.12 0.01 0.25 0.49 0.73

X4 η3 1.58 0.24 0.02 1.10 1.58 2.04

X5 η4 1.11 0.23 0.02 0.65 1.11 1.55

X6 η5 0.80 0.15 0.01 0.51 0.80 1.09

X7 η6 0.17 0.068 0.00 0.04 0.17 0.31

X2 X4 η7 0.19 0.19 0.01 −0.09 0.19 0.45

X2 X4 η8 0.25 0.11 0.01 0.03 0.25 0.48

X2 X5 η9 0.78 0.18 0.01 0.44 0.78 1.13

3.3 Results

The fitted model reveals that the consecutive number of dry pentads over the year
(X7), interaction between dry season severity (X1) and tree land cover (X4), precip-
itation over the wet season with a grass and shrub landcover (X5) influence both the
fire ignition and the percentage off land burned. On the other hand, the interaction
between dy season severity (X1) and grass and shrub land cover (X5) only influences
the percentage of land burned. Ignition is also influenced by the interaction between
precipitation over the wet season (X2) and tree land cover (X4)

These findings show that the model captured some known key fire-environment rela-
tionships: fire occurrence and extent is favored by strong seasonal precipitation, that
is, there is a marked difference between a wet season, when abundant water promotes
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Fig. 3 Box-plot for the temporal random effects δ1(t) and δ2(t)

plant growth, and a dry season, when plant fuels cure and become highly flammable.
Interactions observed between climatic and vegetation variables are also very inter-
pretable. Indeed, in tree-dominated ecosystems, woody fuels are abundant since they
accumulate over several years, and meteorological conditions are the limiting factor
for fire occurrence and extent. Under severe dry seasons, extensive burning tends to
occur. In grass-dominated ecosystems, most fuel biomass is renewed annually and
depends of rainfall availability during the previous wet season. Here, fuel availability,
controlled by antecedent precipitation is the key determinant over fire occurrence and
extent.

As it is displayed in Fig. 3, the temporal random effect captures the temporal pattern
of the observed mean percentage of the land burned. This is also true for the observed
percentage of fires and the corresponding random effect. This is a good evidence that
the latent random effects are capturing some part of the temporal variation in the data.

Spatial effects were introduced through the processes V1 and V2. Although, in the
initial model, the relation between these processes was taken as V1(i) = ν1W0(i) +
ν2W1(i), V2(i) = W1(i), with W0(i) and W1(i) independent ICAR models, the sim-
ulated values of the posterior distribution for the parameter ν1 converged to zero,
meaning that this parameter was not significantly different from zero. Hence, in the
final model the spatial effects were modeled as V1(i) = ν2W1(i), V2(i) = W1(i), with

W1(i)|w1( j), j �= i ∼ N
(∑

j ci jw1(i), 1/τ1

)
, implying that a single latent process
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Fig. 4 Bayesian residuals (non-standardized and standardized) of the linear model

governs the ignition as well as the fire size probabilities. The posterior mean for the
variance (1/τ1) of this process was 7.765 and posterior standard deviation 0.1373.

The adequacy of the model was studied through the analysis of the Bayesian resid-
uals from the linear model and the analysis of the Bayesian estimate of the ROC curve
from the logit model.

The analysis of the standardized residuals (Fig. 4) obtained from the model shows
that there is a good fit.

The box plot (Fig. 5) of the posterior predictive mean and observed percentage of
burned area shows, as expected, an underestimation of large values of burned area
fraction. This suggests that grid cells displaying extensive burning may need to be
modeled separately, using extreme value theory. Other explanation for this underes-
timation is that the model is not capturing all the space-time variability. The second
set of box plots in Fig. 6 clearly shows, that an improvement is obtained with the
introduction of both the spatial and temporal random effects through the processes V1
and δ1.

However, these random effects may not be sufficiently rich enough to capture all
the space-time variations. Therefore, other modeling alternatives, such as the model
given in (3) should be considered.

The posterior mean of the spatial random effects is displayed in Fig. 7.
The area under the ROC curve (Fig. 8), which results from the logistic model for

the probability of ignition, is 0.96. Predicting a fire when the probability of ignition is
above 0.5, gives as result a sensitivity of 0.94, a specificity of 0.81, a positive predictive
value of 0.92 and a negative predictive value of 0.85. These numbers reveal a good
performance of the model.
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Fig. 5 Box plot of (a) observed and (b) posterior predictive mean of burned area by time
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Fig. 6 Box plot of the posterior predictive mean of burned area by time. a Without both random effects,
b with only spatial effect, c with only temporal effect
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Fig. 7 Posterior mean of the spatial random effects
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Fig. 8 ROC curve for probability of ignition

4 Conclusions

We believe that our model brings substantial improvements on previous spatial anal-
ysis of fire data in many aspects.

Arcsine transformation and the standard generalized linear model are not adequate
for data sets showing unusually high number of zeros. The composite model given

in Sect. 3.1, together with log
(

Y +
1−Y +

)
transformation seems to be an appropriate

modeling strategy.
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As it was clearly shown (see Figs. 5 and 6), temporal and spatial latent factors are
highly significant, and it is possible to improve upon these results by using dynamic
spatial latent factor, as suggested in (3). This observation leads to the conclusion that
models built around independent residuals will result in high bias and under estimation
of variability.

Finally, significant latent temporal-spatial dependent random factors indicate that
there are other unobserved explanatory variables which affect the ignition probabili-
ties as well as the percentage of land burned. These findings should encourage further
research into looking for other significant environmental determinants of observed
pyrogeographical patterns.
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