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Abstract The past two decades have witnessed an increasing interest in the use
of space-time models for a wide range of environmental problems. The fundamental
tool used to embody both the temporal and spatial components of the phenomenon in
question is the covariance model. The empirical estimation of space-time covariance
models can prove highly complex if simplifying assumptions are not employed. For
this reason, many studies assume both spatiotemporal stationarity, and the separabil-
ity of spatial and temporal components. This second assumption is often unrealistic
from the empirical point of view. This paper proposes the use of a model in which
non-separability arises from temporal non-stationarity. The model is used to analyze
tropospheric ozone data from the Emilia-Romagna Region of Italy.

Keywords Spatiotemporal process - Temporal non-stationarity - Non-separability -
Deformation - Tropospheric ozone

1 Introduction

Spatiotemporal models arise whenever data are collected across both time and space.
Therefore such models have to be analyzed in terms of both their spatial and temporal
structures. Until recently, any theories of spatiotemporal processes had always been
linked with established theories of spatial statistics and time series analysis. Much of
the literature on space-time models is case-specific and tailored to the application in
question, the reason for this being the complexity of space-time modelling.

F. Bruno (X)) - D. Cocchi
Department of Statistics P. Fortunati, University of Bologna, Via Belle Arti 41, 40126 Bologna, Italy
e-mail: francesca.bruno@unibo.it

P. Guttorp - P. D. Sampson
Department of Statistics, University of Washington, Washington, WA 98195, USA

@ Springer



516 Environ Ecol Stat (2009) 16:515-529

When a spatiotemporal process is studied, some information about its distribution
is usually known, and in general the hypothesis of normality is assumed. When a
Gaussian distribution is inappropriate, certain data transformations (like square root,
logarithm or Box-Cox transformations) are proposed in order to obtain a more appro-
priate fitting. Since a Gaussian distribution is fully defined by its first two moments,
modelling and analysis will concern the expected value and the covariance struc-
ture.

With regard to questions of large-scale variation, the focus of analysis may be
placed on the spatiotemporal trend (or expected value); when the study concerns the
spatiotemporal connection (small-scale variability), then the focus may be the spatio-
temporal covariance (or correlation) function.

Since the spatiotemporal covariance function itself summarizes many aspects of
the process, spatiotemporal studies often propose a series of simplifying assumptions
about the process in question in order to estimate the spatiotemporal covariance func-
tion in the simplest possible way. The most important among them is the separability
assumption, as in Rodriguez-Iturbe and Mejia (1974) and De Cesare et al. (1997).

Modelling the levels of tropospheric ozone is important in order to understand
and improve air quality in major conurbations. Environmental experts and authorities
have a special interest in ozone because of the contribution it makes towards damaging
health, the natural environment and materials.

Ground-level ozone has been studied extensively in recent years. The Encyclo-
pedia of Environmetrics features an article on Ozone (Cocchi and Trivisano 2002)
containing a critical review of the approaches adopted by such studies. Methods for
studying extreme events have been proposed by, among others, Cox and Chu (1993)
and Smith and Huang (1993), as a method of analyzing daily maximum ozone con-
centrations. Meanwhile, Guttorp et al. (1994) have developed space-time correlation
models designed to spatially interpolate ground-level ozone data. The most recent
works also include information on meteorology. Such approaches have been driven by
both the desire for more accurate predictive models, and the need to take confounding
effects into account when investigating ozone trends and the health effects of ozone.
An example is Carroll et al. (1997), who proposed a model designed to evaluate the
risk assessment of ozone from emissions, by introducing meteorology into the model.

Our work aims to understand how the commonly proposed assumptions of sta-
tionarity and separability may be relaxed, in order to give a more flexible model. We
suggest a detailed construction of the model that is constantly checked by data. This
model-building approach is developed for the analysis of tropospheric ozone pollution
in an area characterized by homogeneous meteorological conditions. Ozone is one of
the major pollutants in the area in question, the Emilia-Romagna Region of northern
Italy.

The present paper proposes a spatiotemporal model designed to differentiate
between diverse mechanisms of non-separability. Section 2 describes the simplifying
assumptions that are usually stated for the spatiotemporal covariance function. Sec-
tion 3 puts forward a spatiotemporal model in which non-separability arises from the
non-stationarity of temporal variability. Section 4 describes the ozone data set, while
Sect. 5 presents the main results of the analysis. The final section offers a number of
conclusions.
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2 The simplifying assumptions: stationarity, isotropy and separability

Two kinds of stationarity assumptions are considered within the spatiotemporal
context: strict stationarity and second-order stationarity. A spatiotemporal random
field Z(z, x) is considered to be strictly stationary within its space-time domain 7' x S
if its spatiotemporal law is invariant under translations. This property is difficult to test,
since it needs to be demonstrated by considering the family of finite-dimensional dis-
tribution functions of the process. Hence a more restrictive property based on moments
of the spatiotemporal process is introduced. Second-order stationarity involves only
the first two moments of the spatiotemporal random field Z (¢, x): the mean function is
modelled as a constant, and the space-time covariance function is assumed to depend
exclusively on the spatial and temporal lags. Strict stationarity only implies second-
order stationarity if the first two moments exist, whereas second-order stationarity
only implies strict stationarity if the Z (¢, x) random field has a Gaussian distribution.

An additional assumption is made for the spatial component of the spatiotempo-
ral correlation function. For many spatiotemporal processes, there is little reason to
expect the spatial stationarity of the covariance function. Spatially varying anisot-
ropy can sometimes be modelled through deformations of the geographic coordinates
system (Sampson and Guttorp 1992; Damian et al. 2000), where the non-stationary
spatial correlation function of a spatiotemporal process is a function of the Euclid-
ean distances between site locations in a bijective transformation of the geographic
coordinate system. After an appropriate adjustment has been made to the coordinate
system, the correlation structure may be considered isotropic (i.e. it is not dependent
on direction but only on distance).

Due to the complexity of modelling spatiotemporal random fields, a separability
assumption is often made. A spatiotemporal model is deemed separable if its space-
time covariance function can be written as a product of two functions: one solely a
function of space and the other purely a function of time (see for example, Rouhani
and Myers 1990 and De Cesare et al. 1997). This simplifying assumption is often
introduced more for practical than for empirical reasons, as Cressie and Huang (1999)
observed when they wrote: Separable models are often chosen for convenience rather
than for their ability to fit the data well.

The first attempt at an analysis of non-separability was that of Cressie and Huang
(1999). They introduced classes of nonseparable stationary covariance functions to
model space-time interactions. They based their approach on Fourier transforms, and
used Bochner’s Theorem (1955) whereby a continuous function is defined as positive
definite if, and only if, it is the Fourier transform of a finite nonnegative measure.
Another important contribution to the analysis of non-separable spatiotemporal mod-
els was made by Gneiting (2002) who proposed a general class of nonseparable,
stationary covariance functions for spatiotemporal random fields directly in the space-
time domain (a construction not based on the inversion of a Fourier transformation).
By studying the parameter values characterizing this class of covariance functions,
one may establish whether separability can be assumed or not. Although these two
papers propose different methods of dealing with non-separability, they do share one
important feature: the assumption of stationarity in both time and space. A number
of statistical tests for separability have been proposed, based on parametric models

@ Springer



518 Environ Ecol Stat (2009) 16:515-529

(Roberts 2000), likelihood ratio tests and subsampling (Mitchell 2006), or spectral
methods (Scaccia and Martin 2005 and Fuentes 2005).

In this paper, we propose a constructive approach designed to introduce a sim-
ple method of modelling the case where non-separability arises from temporal non-
stationarity. This approach is particularly suitable when the consideration of an annual
process may take into account features of seasonal variability other than those encoded
in the spatiotemporal trend. This approach is developed by following an environmental
application without involving a general class of covariance models, like those of the
Cressie and Huang, and Gneiting papers, but providing some insight into a possible
generalization.

3 A general spatiotemporal model

A general model for spatiotemporal data {Y(z,x)} measured in discrete time
(t =1,...,T) and continuous space (X € R2) may be formulated as follows:

Y(,x) —n(t,x) = Z(t,x) = W(t,x) +€(t,X); D

where L (7, X) is the spatiotemporal mean field or trend, and the stochastic component
is considered, as in Dryden et al. (2005), to be a single term Z (¢, x) = W (¢, x)+€(t, X),
with mean 0 and spatiotemporal correlation function pz to be further specified. W (¢, x)
denotes a zero mean smooth Gaussian spatiotemporal underlying process, and €(?, X)
is an independent zero-mean random-error term. The aforesaid model (1) comprises
three independent additive components p, W and €. Because of this independence,
model estimation is usually performed component-wise. In some cases the focus is
on trend estimation. A broad review of trend formulations given in Kyriakidis and
Journel (1999), separates models into two classes, depending on whether the mean
component is viewed as deterministic or stochastic. Another review is that of Dimit-
rakopoulos and Luo (1997), who propose three alternative types of trend: traditional
polynomial functions, Fourier expressions and combinations of the two. When covar-
iates are available, a regression-type estimator may effectively represent the trend
component (Carroll et al. 1997). When there is no specific focus on trend detection,
and no covariate is available, a trend component may be expressed as a simple function
of spatial coordinates. Median Polish may be helpful in estimating the components of
an additive decomposition in order to separate time and space features (Cressie 1993;
Jaynes and Colvin 1997; Bakhsh et al. 2000).

When interest is on the spatiotemporal structure, the process Z(¢, x) is analyzed.
Separable spatiotemporal models are relatively easy to estimate, but situations requir-
ing nonseparable models are very common. Non-separability may arise from process
non-stationarity. In the present paper we have searched for an appropriate transforma-
tion f such that the original process Z can be expressed as a function of a separable
process Z*: Z(t,x) = f(Z*(t,x)). For a separable process V, the spatiotemporal
correlation function becomes the product:

py = Corr(V(2,%), V(t', X)) = pi(It — ' p2(lx = x’|); @)
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witht, 7’ =1,...,T, and x, X’ € N2, where p1 and py are, respectively, functions of
time and space only.

In particular, when non-separability is due to temporal non-stationarity, one possible
transformation, leading to Z (¢, x) in the spatiotemporal model (1), is as follows:

Y(t,X) — w(t,X) = oy xZ25(t,x); t=1,..., T, x € R%. 3)

In (3), the multiplicative parameter o)y represents the component of
non-stationary temporal variability which, when removed, leads to separable space
and time correlation components. The subscript () denotes an empirically derived
temporal reference set for this scale parameter, and the subscript x denotes the spa-
tial coordinates at each site. The o) x parameters can be estimated using different
techniques, such as moving average windows in time (¢) or non parametric methods
(Bruno 2004). Let us assume that a large-scale temporal process underlies the separable
spatiotemporal process Z*(z, x) in (3), which can be further modelled as a combina-
tion of simpler processes. We thus suggest the decomposition into two components:
a time-dependent process, i.e. a single temporal process that applies over the entire
spatial domain, denoted by Z1(¢), and a temporally uncorrelated space-time process,
Z»(t, x), which is suitable when the spatiotemporal process does not radically change
with time, i.e. when it displays similar temporal structures across space. Model (3) is
thus rewritten as:

Y(t,x) = n(t,x) =0 x(BxZ1(t) + Zo(t,x)); t =1,...,T, x € R%. 4)

where B is a site-specific coefficient for the process Z(¢), and the subscript x empha-
sizes the fact that this may vary from site to site.

A further complication that frequently arises is that of anisotropy, which can be
removed by deformation analysis (Sampson and Guttorp 1992; Damian et al. 2000).
Deformation may be applied to Z*(¢, x), when the spatiotemporal model considered
is (3), or to Z; (¢, x), when model (4) is assumed. In both cases, since the final spatio-
temporal model has a spatiotemporal correlation function which is separable between
temporal and spatial components, the final spatiotemporal correlation function for a
general process V is expressed as follows:

payv = Corr(V(t,x), V(t',x) = pi(lt — ' p2(lh(x) — k(X)) )

where 7, = 1,..., T, and x, X' € %? and the function % is assumed to be smooth
and bijective. The subscript d indicates that deformation analysis has been taken into
consideration.

The detailed specification of the spatiotemporal model depends on the specific
focus of analysis. In some cases, Z*(¢, x) is the target process, in other applications
may be broken down into a number of simpler processes, as in (4). In this latter case,
the spatiotemporal correlation function under analysis is pz, of type (2) or p(4)z, of
type (5).

Empirical spatiotemporal correlations are plotted against distances (spatial lags) and
are then fitted by using specific theoretical models (exponential, spherical, Gaussian,
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etc...). When we consider process Z (z, X), spatiotemporal correlations are interpolated
conditional on time, whereas when Z*(¢, x) or Z,(¢’, x") are analyzed, the temporal
component of the spatiotemporal correlations in question is already isolated.

4 Application to tropospheric ozone
4.1 Description of the data set

The data set consists of tropospheric ozone measurements from 31 monitoring sta-
tions situated throughout the Emilia-Romagna Region of Italy (see Fig. 1). The area
is located in the northern part of Italy, and is bounded to the east by the Adriatic Sea,
and to the south and west by the Apennines Mountains. The area is quite small, with
monitoring sites spread out over a distance of some 280 kms from northwest to south-
east. Ozone concentrations are measured on a daily time scale, expressed in terms
of daily maximum 8-h moving averages computed from hourly ozone concentration
data recorded in micrograms per cubic meter, pg/m>, over a five-year period (between
1998 and 2002). Eight-h moving average time series are suggested both by European
Community Law (1996) and by U.S. EPA air quality standards (EPA 1998).

The stations shown in Fig. 1 are spaced out unequally: most of them are situated
along the main trunk route (the Via Emilia) that crosses the entire region.

In Sect. 3, the proposed model was written without any reference to an empiri-
cal data; in this Section, on the other hand, we construct the final model according to
empirical evidence, following the same order indicated in Sect. 3. The next sub-section
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Fig. 1 Map of the monitoring sites in the Emilia-Romagna Region (Italy)
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Fig. 2 Trend decomposition by means of Median polish

describes the estimation of trend and seasonal effects, while Subsect. 4.3 gives the rea-
sons for the adoption of the final spatiotemporal model.

4.2 Beginning construction of our model: trend and seasonal effects

The spatiotemporal model is constructed along the same lines as those described in
the previous section. The trend component (¢, X) in (1) is estimated using a Median
Polish algorithm, and includes a seasonal effect (i.e. the annual ozone cycle is very
important), a yearly effect and a spatial effect.

The left-hand panel in Fig. 2 shows a seasonal cycle throughout the year, with
higher values during the summer days, and lower values during colder winter days.
The central panel in Fig. 2 shows the year effect. It seems to be decreasing over the
five-year period considered, albeit only slightly. The spatial effect represented in the
right-hand panel underlies higher values recorded in the central area of the region.
This spatial area corresponds to the largest city in the entire area, Bologna, where
ozone pollution can be considered to be higher than in other parts of the region.

4.3 A general spatiotemporal model applied to de-trended data

In this subsection, the decreasing behavior of the spatiotemporal correlation function
is modelled exponentially, since this model revealed the best fit, both conditionally
on time and after removing the temporal component. An exponential spatial correla-
tion function (see, for instance, Diggle et al. 1998) for Z (t, x) may be expressed as a
function of spatial lag d in (2) for each temporal lag /, as follows:

pz(,d) =C(,d) = o - exp(—d/0)). (6)

for/ = 0,...,3, a range commonly assumed in environmental applications, since
temporal correlations fall near to zero beyond 3 days. Figure 3 shows the plots of
empirical spatiotemporal correlations pz against distances (by considering a re-scaled
coordinate system with latitude and longitude of between 0 and 1) for the estimated
de-trended process Z(t,x) of (1) for temporal lags ranging from O to 3.
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Fig. 3 Spatiotemporal correlations for the process Z(z, x)

In a pure spatial correlation context, | — « denotes the nugget effect representing
micro-scale variations and/or measurement errors. It expresses the discontinuity at the
origin, while 6 denotes a scale factor.

In the empirical context in question, each panel in Fig. 3 shows the least squares
estimates for the two coefficients, ; and 6; in (6) for / = 0, ..., 3. For example, for
temporal lag O (Figure 3a), the spatial correlations are widely scattered around a fitted
exponential model with a nugget effect of approximately 0.35. For each lag, the spatial
correlation decreases with spatial distance, but does not reach zero within the region
of observations. This is due to the small size of the geographical area in question,
and to the uniform influence of meteorology throughout the area. From another point
of view, when comparing the panels in Fig. 3 in terms of temporal lag, the spatio-
temporal correlations tend, as expected, to decrease with distance and temporal lag.
At temporal lag 3, spatiotemporal correlations are very close to zero. The persistence
of correlations up to temporal lag 3 could be explained by meteorological conditions
producing similar levels for several days.

The de-trended series estimated, 7z (¢, x), for four sites are plotted in Fig. 4 to high-
light the presence of temporal variability that changes seasonally. In fact, this Figure
reveals a higher variability on certain specific days of the year, in a plot which is
repeated for each year during the period in question.

The temporal non-stationarity in scale (as shown in Fig. 4) suggests the adoption
of model (3). The estimation of the o) x component is performed by using a 30-day
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Fig. 4 Ozone time series (after removing the trend)

moving window. In Bruno (2004), non-parametric techniques are also used, although
the differences between the results given by the two methods are not substantial.

We can now check whether the introduction of o(;) x in the model estimation pro-
duces a separable spatiotemporal process Z*(t, x), by assessing whether all sites are
characterized by similar temporal structures. Figure 5 depicts AR1 and MA1 coef-
ficients of ARMA(1,1) models fitted at all sites (the magnitude and orientation of
the arrow originating from each spatial point corresponds to AR (x-coord) and MA
(y-coord) components). The AR1 coefficients average is 0.49, while the MA1 coef-
ficients average is 0.93; the small variability of the coefficients over space indicates
the spatial invariance of the structure in time. This lends support to the proposal for a
unique time series model for all sites.

The empirical check of the invariance of the temporal correlation structure in space
suggests a spatiotemporal process Z* (¢, X) as in (3), with separable spatiotemporal cor-
relation function (2); the temporal correlation p; shall be expressed as the ARMA(1,1)
autocorrelation function found to be suitable for the case in hand, whereas for the spa-
tial correlation function p, we retain the exponential model (6).

By taking the temporal varying scale parameter ;) x into account, process Z (t,x)
has been transformed into Z*(z, x), the empirical spatiotemporal correlations of which
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Fig. 5 Relative magnitude of site-specific AR and MA coefficients for all sites
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Fig. 6 Spatiotemporal correlations for process Z*(z, x)

are shown in Fig. 6 for temporal lags 0 and 1. A reduction in the scatter of spatial
correlations is observed, compared with Fig. 3, even if such correlations remain high
regardless of the distances in question.

Moreover, the o and 0 least squares estimates of the type (6) exponential correlo-
gram for process Z*(t, x) are also shown in Fig. 6.

4.4 From Z* process to Z1 and Z, decomposition

When the spatiotemporal correlations of Z* (t, x) remain high even for large distances
(Figure 6), and the time series have similar structures at each site, we can consider
model (4) as appropriate. Indeed, it comprises a large-scale process Z1(¢) and a tempo-
rally uncorrelated space-time process Z» (¢, X). The inclusion of the Z{(#) component
in model (4) may mean that the permanence of ozone in the air is spatially uniform.
This stands to reason since we know that ozone is a pollutant that behaves stably in
air, and has a wide spatial range.
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Fig. 7 Spatiotemporal correlations for process Z; (¢, X)

In (4) the process Z*(¢, x) is decomposed as the sum of BxZ;(¢) and Z,(z, X).
We estimate the process Zj(¢) using a principal component analysis in which the
first principal component incorporating the largest proportion of variability are rep-
resented. We also report least squares estimates for o and 6 parameters of (6). After
estimating the large-scale process, the Z;(z, x) process is directly estimated, and as
such it shall be the focal point of the following discussion of spatial structure. Figure 7
shows the spatiotemporal correlations for process Z,(t, x) for temporal lags 0 and 1.
It also shows least squares estimates for the o and 6 parameters of (6).

Removal of the large scale process Z1(¢) enables us to overcome the presence of
correlation for large distances, leading to correlations pz, tending towards zero within
the spatial range of the data (see Fig. 7 panel b).

4.5 Anisotropy: deformation analysis

Following the pattern of the Sect. 3, we achieve anisotropy in pz, as in (5), by adopting
the Bayesian model proposed by Damian et al. (2000), in order to estimate hetero-
geneous spatial covariances by means of a Markov Chain MonteCarlo simulation.
Figure 8 shows the posterior mean deformation: it is characterized mainly by com-
pression, meaning high spatial correlation along the northwest-southeast axis traced
by the principal road running through the region, especially in the northwest.

Finally, Fig. 9 shows the spatial correlations (temporal lag 0) in the original coordi-
nate system and in the new coordinate system for process Z(¢, x), respectively, which
is designed to evaluate the deformation.

This Figure shows the effect of anisotropy; if we compare panels (a) and (b) one
can see that the removal of anisotropy leads to spatial correlations with a smaller
dispersion around the fitted exponential correlogram.

4.6 Discussion of the final model
In this Section we are going to justify, and comment on, the proposed final model.

Table 1 lists all estimated coefficients of the exponential correlation model (6) and
their standard errors (in brackets), together with standard errors of residuals.
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Fig. 9 Spatial correlations for process Z; (7, x) by original coordinates (panel a) and by coordinates after
deformation analysis (panel b)

Parameter o has a spatiotemporal meaning, since it summarizes both the spatial dis-
continuity at the origin and the temporal correlation structure. The assessment of the
nugget effect is a way of comparing models. In the case of process Z*(¢, x) (obtained
after removing the non-stationary scale effect oy x), the nugget effect is approxi-
mately 0.21, which is smaller than the 0.35 estimated for the unscaled process Z(z, X).
The nugget has similar values for both Z*(¢, x) and Z,(¢, x). In the case of similar
nugget values, differences only derive from the 0 parameters, which represent the
correlation distance. By applying deformation analysis to Z»(t, x), the nugget effect
is reduced from 0.22 to 0.13 and the residuals are the smallest. Before deformation
analysis was carried out, the spatial correlations of process Z (¢, X) remain high even
for large distances and fis higher than 1; whereas when the model has been completed
by deformation, spatial correlations tend to zero in correspondence to high distances,
and 0 is lower than 1, meaning that there is no longer any spatial correlation beyond
the range of the spatial domain in question.

The comparison of Fig. 3 (panel a) with Fig. 9 (panel b) constitutes a graphical rep-
resentation of Table 1. Both comparisons witness the evaluation of the model effect.
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Table 1 Summary of parameter estimates (standard error within brackets) in the exponential correlation
function for all processes

Process Parameter estimate Lag0 Lagl

Z(t, x) o 0.66 (0.01) 0.37 (0.01)
2 1.65 (0.10) 2.33(0.23)
s.e. of residuals 0.147 0.111

Z*(t,x) o 0.79 (0.01) 0.30 (<0.01)
0 1.61 (0.05) 10.56 (1.54)
s.e. of residuals 0.090 0.046

Zy(t,X) a 0.78 (0.01) 0.14 (<0.01)
@ 1.31 (0.04) 3.88 (0.48)
s.e. of residuals 0.098 0.044

Z)(t,X) o 0.87 (<0.01)

(deformation) 0 0.83 (0.03)
s.e. of residuals 0.076

5 Conclusions

The aim of the present paper is to develop a strategy for modelling spatiotemporal
processes based on specification of their spatiotemporal correlation function. Such an
approach is appropriate when the removal of non-stationarity in temporal variabil-
ity leads to a separable spatiotemporal correlation function. In other words, it suits
those situations where non-separability is due to temporal non-stationarity, since the
variance of the series depends on time.

As an empirical result of our work, tropospheric ozone displays the following
behaviors: a high spatial correlation structure, similar temporal structures along space
and strong persistence as temporal lags increase, as shown also in Fass6 and Negri
(2002a,b). Such observations tend to agree with the findings of other studies con-
ducted in the region on fine particulate (Cocchi et al. 2006; Fasso et al. 2007) and as
such confirm that the area may be perceived, for both geographical, meteorological
and anthropic reasons, as a part of a unique metropolitan area covering the entire Po
Valley.
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