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Abstract In this paper I demonstrate some of the techniques for the analysis of
spatial point patterns that have become available due to recent developments in point
process modelling software. These developments permit convenient exploratory data
analysis, model fitting, and model assessment. Efficient model fitting, in particular,
makes possible the testing of statistical hypotheses of genuine interest, even when
interaction between points is present, via Monte Carlo methods. The discussion of
these techniques is conducted jointly with and in the context of some preliminary
analyses of a collection of data sets which are of considerable interest in their own
right. These data sets (which were kindly provided to me by the New Brunswick
Department of Natural Resources) consist of the complete records of wildfires which
occurred in New Brunswick during the years 1987 through 2003. In treating these
data sets I deal with data-cleaning problems, methods of exploratory data analysis,
means of detecting interaction, fitting of statistical models, and residual analysis and
diagnostics. In addition to demonstrating modelling techniques, I include a discussion
on the nature of statistical models for point patterns. This is given with a view to
providing an understanding of why, in particular, the Strauss model fails as a model
for interpoint attraction and how it has been modified to overcome this difficulty.
All actual modelling of the New Brunswick fire data is done only with the intent
of illustrating techniques. No substantive conclusions are or can be drawn at this
stage. Realistic modelling of these data sets would require incorporation of covariate
information which I do not so far have available.
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1 Introduction

Phenomena encountered in the natural sciences often manifest themselves in the form
of point patterns in two-dimensional space (the plane). Data observed in respect of
such phenomena consist of, or include, the locations of the objects of study—plants,
animals at a given instant, particles in a matrix, mineral deposits, nests, cells, and so on.
Sometimes it is the case that aspects of the manner in which these points are arranged
contain useful information or give some insight which helps to characterize the objects
of study. This information, if present at all, is of necessity subtle and difficult to detect
and even more difficult to extract and quantify.

The collection of forest fire locations (in a specified region over a specified time
period) constitutes a planar point pattern. There has recently been increasing interest
in applying the ideas of point pattern analysis to forest fire locations. Evidence of such
interest includes the Fields workshop on “Forest Fires and Point Processes”, 24–28
May 2005, and the BIRS workshop on “Forests, Fires, and Stochastic Modelling”,
6–11 May 2006. Papers in this area include Podur et al. (2003); Wotton and Martell
(2005); Preisler et al. (2004). Somewhat related papers include Chen and McAneney
(2004); Cunningham and Martell (1973).

Podur et al. (2003) study patterns of lightning caused fires in Ontario for the years
1976–1998, with emphasis on a rectangular window in northwestern Ontario. They use
the K -function (square root transformed to form the “L” function) to assess clustering,
and kernel density smoothing to provide graphical depictions of the clustering. They
conclude that there is clustering at distances of approximately 2.5◦ (latitude/longitude;
roughly 200 km. in the area under study) and significant regularity at scales larger
than 6◦.

Interestingly their results show (p. 15) “no obvious relationship between lightning
strike density and lightning-fire occurrence over a fire season, nor do they show any
obvious relationship between the sum of DSR over the season and fire occurrence
density.” (The quantity DSR is “Daily Severity Rating”, a composite measure of fire
risk.) They do discern a relationship between the intensity of lightning caused fires
and lightning strikes for days on which DMC (“duff moisture code”, another measure
of fire risk) exceeded 20. They also briefly consider the impact of topography and
human population density on lightning caused fire occurrence. (Population density
could conceivably have an impact via reporting or discovery rate.)

Wotton and Martell (2005) develop and fit a logistic model to estimate the probabi-
lity of lightning fire occurrences in terms of a number of meteorological variables and
indices relating to fire hazard (such as FFMC, i.e., fine fuel moisture code, and DMC).
They work in terms of a discretized structure in which the study region (Ontario) is
subdivided into 20 × 20 km. grid cells.

Preisler et al. (2004) use a spatio-temporal logistic model to estimate the probability
of fire occurrence, again on the basis of weather variables and fire danger indices. They
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too use discretization, subdividing time× space 1 day ×1×1 km. voxels. They analyze
the probabilities of “all” fires and of “large” fires (the latter being fires whose burn
area exceeds 40.5 ha).

Chen and McAneney (2004) make use of the K -function (L function) in studying
the pattern of homes destroyed when bush fires penetrate into urban areas in Australia.
Cunningham and Martell (1973) study a model for the number of human caused fire
occurrences in a given district, using FFMC as a predictor. They do not however
consider the fires in terms of spatial pattern.

Except in the simplest cases (Poisson processes) the points of a spatial pattern will
be mutually stochastically dependent. This dependence can be extremely complica-
ted. To some extent each point must be considered in relation to every other point.
This situation contrasts sharply with one-dimensional point processes in which the
dimension is usually considered to be time, whereby points may be considered only
in respect of their past history. Considering every point in relation to every other point
is, to put it mildly, difficult. Theoretical models are fundamentally intractable from
an analytical point of view. The only real exceptions to this are the Poisson models
referred to above in which the dependence between points is in fact absent.

The simplest of all possible models is the constant intensity Poisson process,
frequently referred to as the model of “complete spatial randomness” (CSR).
Heretofore much statistical inference for spatial point patterns in the forestry context
has been focussed on the often untenable null hypothesis of CSR. Such testing is “of
limited scientific interest in itself” (Diggle 2003, p. 12; see also Baddeley et al. 2005)
and appears to be done mainly because it is possible, or because “everybody else does
it” rather than because it provides any real insight into the data. Usually the nature of
the phenomenon under study, or a casual glance at a plot of the data, make it obvious
that CSR is not a realistic option.

What is usually of more interest is the detection of trends in the intensity of
fire locations, and determination of how (or whether) such trends are influenced by
covariates. These covariates might include vegetation, other descriptors of terrain (such
as elevation and slope), and proximity to concentrations of human population or to
concomitants of human activity such as roads and railroads.

Interaction between points may in general be of some interest in its own right, but in
the forest fire context the questions that might be asked about interaction would proba-
bly be very subtle and also very difficult to answer. More important is the impact of the
presence of interaction on statistical inference concerning trends and their dependence
upon covariates. If the process generating the pattern is inhomogeneous Poisson, then
models may be fitted by means of maximum likelihood, and tests for dependence on
covariates may reasonably be conducted via likelihood ratio tests. However, if there
is interaction between the points these tests may be seriously misleading.

It is therefore important to be able to assess interaction in point patterns and to be
able to model such interaction so that Monte Carlo testing for covariate dependence can
be carried out effectively. A fundamental requirement for addressing such questions
is a collection of plausible models for interactions. Describing interaction between
forest fires is likely to be a challenging problem, and it is probable that new models
for interaction may be required. However, formulating such models is consummately
difficult, and is moreover fraught with theoretical peril.
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A perfectly plausible model might easily turn out to be ill-defined. The primary
example of this phenomenon is the Strauss model (Strauss 1975) which was originally
proposed as a model for clustering but which turns out to be well-defined only when
it takes the form of a model for repulsion or inhibition. It is important to understand
the difficulties which arise here, and these will be discussed in Sect. 4.

In the following section (Sect. 2). I describe an interesting collection of forest fire
patterns and my efforts to massage them into a form amenable to analysis. In Sect. 3. I
discuss some exploratory data analysis including the formation of a naive estimate of
an underlying spatial trend. Most readers will be familiar with the use of Ripley’s K -
function for investigating the nature of the interpoint interaction. When a spatial trend
is present the use of the basic K -function is inappropriate. I describe a relatively recent
innovation, the inhomogeneous K -function, which goes some way to alleviating this
problem.

Section 4, as previously foreshadowed, contains a discussion of the nature of models
for planar point processes. Two ideas (one of which appears to be efficacious, and
one not) are suggested for modifying the Strauss process to accommodate modelling
attraction between points. In Sect. 5. I give examples of model fitting, including an
attempt to fit the “efficacious” model for clustering to one of the New Brunswick data
sets, and the results of applying some diagnostic tools to the fits. Finally in Sect. 6.
I suggest some alternative modelling strategies and summarize what has so far been
learned.

2 The New Brunswick forest fire patterns

In this section I describe an interesting collection of data sets, kindly provided to me
by the New Brunswick Department of Natural Resources. These data sets comprise
complete records of all fires in New Brunswick which fell under the responsibility
of this Department during the years 1987 to 2003, with—currently—the omission of
1988. (The 1988 data set lacks the specifications of the locations of the fires in terms of
latitude and longitude. The locations are specified only in terms of a now disused grid
system. Converting the grid locations to latitude and longitude would have to done by
hand and promises to be extremely tedious.)

The data sets are relatively large and rather complex. They were communicated to
me in the form of spreadsheets, one for each year. Each spreadsheet had 97 columns and
between 286 and 654 rows (i.e., fires). The data required a good deal of reorganization,
cleaning, and massaging to make them amenable to analysis from the point of view
of spatial point patterns. There were inevitably many missing values and anomalous
entries which had to be dealt with.

Much more remains to be done in the way of data cleaning and organizing. This
task includes dealing with the large quantity of auxiliary information—95 variables
in addition to the location (latitude and longitude) variables. Decisions will have to be
made as to which of these variables bear some promise of providing fruitful avenues of
investigation. Some of the variables (e.g., discovery date, size attained) are of obvious
importance. Many others (e.g., “payroll”, “fire boss”) are obviously of no immediate
interest. A substantial number require judicious consideration. Even more remains to
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be done in the way of acquiring appropriate information on a variety of covariates
which might influence the prevalence of forest fires. So far (sad to say) the acquisition
of such information remains on my to-do list.

The first step in organizing the data was to read the data sets from the spreadsheets
into R (R Development Core Team 2005) data frames. This process was greatly faci-
litated by the gdata package written by Gregory R. Warnes which is available from
the contributed packages repository of CRAN (2006). The next step was to extract
locations of the fires. These were given in latitude and longitude, as in the following
display:

latitude longitude
1 4554 6731
2 4600 6732
3 4618 6544
4 4612 6730
5 4455 6660
6 4519 6707
. . .
. . .
. . .

Note that these numbers consist of degrees and minutes, juxtaposed, and that the lon-
gitude is in degrees west (causing the data to plot “from right to left” unless some
adjustment is made). These coordinates had first to be translated into degrees expres-
sed as decimal fractions—e.g., “4554” becomes 45.9—and then translated into New
Brunswick stereographic projection coordinates (Thomson et al. 1977). These latter
coordinates are designed to produce minimal distortion when a map is projected from
an ellipsoidal surface (e.g., the Earth) onto the plane. They are also the coordinates in
which the observation window was made available to me.

It cannot be overemphasized that in order to specify a point pattern properly it is
necessary to specify an observation window. It is important to remember that there
is information in “where the data aren’t” as well as in where they are, and in order
to know where the data aren’t, it is necessary to know through what window one is
looking at the data.

Here the window consists of a map of New Brunswick, which I obtained in the form
of GIS “shapefiles”. These were read into R and transformed into a “raw” window
(consisting of a collection of polygons) using Roger Bivand’s maptools package
from CRAN (2006). These polygons were much too detailed to be of practical use in
forming an observation window. There were 628 separate polygons (lakes and islands,
in addition to “mainland New Brunswick”) the largest of which had 138,398 edges. I
therefore created two simplified windows, one being a “mask” and one being a simpler
and smaller collection of approximating polygons.

A mask type window consists of an array of TRUE/FALSE values associated with
a pixellation of a rectangular bounding box. In this instance I used a 500 × 500
pixellation which is relatively fine by the usual standards of point pattern analysis, but
may actually be somewhat coarse for current purposes. This window may be seen for
instance in the plot of the image depicting the “long term intensity” estimate in Fig. 4.
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The simplified polygonal window was constructed using interactive graphical tools,
written for this purpose in the R language. These tools plotted the raw boundary in small
increments, with the relevant part of the mask window and the locations of the nearby
fires (from all years) superimposed, and then made use of the locator() function
to choose endpoints for the edges of the simplified polygon. The simplified polygon
was reduced to 6 components: mainland New Brunswick, Deer Island, Campobello
Island, Grand Manan Island, Isle Lameque, and Isle Miscou.

The use of the New Brunswick stereographic projection coordinate system resulted
in having to deal with coordinates which are expressed as very large integers with a
bewildering number of digits. Amongst other things, these huge numbers often created
very untidy axis labels on graphs. I therefore decided to rescale the data in order to
alleviate these problems. I made the width of the bounding box of the window equal
to 1,000 units, and placed its lower left hand corner at the origin, i.e., at (0, 0). The

Fig. 1 Examples of points which plotted outside of the observation window
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height of the bounding box was changed proportionately (resulting in a value rounded
to 957). All of the forthcoming analyses will be expressed in terms of these transformed
(nameless) coordinates.

Having constructed usable windows, I was then able to construct point pattern
objects, that is, R objects “of class ppp”. (See Baddeley and Turner 2005). Plotting
these patterns revealed that many points lay outside of the observation window which
in theory should of course not happen. There are several reasons for this anomaly:

1. The simplification of the window (via discretization or the use of approximating—
somewhat rough—polygons).

2. The relative coarseness of the fire locations which were given only to nearest
minute which is of the order of 1 km.

3. Data entry errors.

I proceeded to “adjust” these “outsiders” by shifting points which appeared to be
“mildly” out of place to nearby locations inside the window, and deleting points which
appeared to be “wildly” out of place. (I assumed that these latter anomalies were due
to data entry error.) Many outsider points were borderline between being “mildly” and
“wildly” outside of the window. I such cases I mentally tossed a coin. Examples of
the adjustments are shown in Fig. 1.

In this figure, the + symbols indicate the initial, anomalous, positions of the points.
The ∗ symbols indicate the positions to which they were shifted (in those cases—(a),
(b), and (d)—for which such a shift made at least marginal sense). Case (c), in which
the fire seems to be placed in the middle of the Bay of Fundy, clearly appears to be
a case of data entry error. In cases (a) and (b) it seems plausible that the point is

Fig. 2 Aggregate of all New Brunswick forest fires for all 16 available years
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Fig. 3 New Brunswick forest fires, for all 16 available years, plotted individually

displaced due to the coarseness of the latitude and longitude coordinates. Case (d) is
at best borderline.

The fires in the data sets were classified into categories “forest”, “grass”, “dump”,
and “other”. For the purposes of this (very preliminary) analysis I restricted my atten-
tion to “forest” fires. It may well be the case that “grass” fires should be included with
“forest” fires. Fuel type is usually reported as the fuel at the estimated point of origin,
and many forest fires start in grass. However, for the time being, grass fires have been
omitted. A plot of the aggregate of the forest fires from all 16 available years is shown
in Fig. 2. A 4 × 4 array of plots of the forest fires year by year is shown in Fig. 3.
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3 Exploratory data analysis

In the analysis of spatial point patterns underlying spatial trends are often of foremost
interest. In the current context such trends should be modelled in terms of useful cova-
riates, such as vegetation, terrain, and concentrations of human population or activity.
Currently such covariates are not available to me. Instead of modelling trends in this
way I have, mainly for purposes of illustration, adopted the procedure of estimating
the long term trend for forest fires in New Brunswick, by smoothing the aggregate
of the available data. Smoothing the aggregate should average out the year to year
variations (in weather, human activity, etc.) that produce differences in the structure
of the yearly patterns. What remains, we might argue, is (roughly) a long term spatial
trend, provided that we assume stationarity of the behaviour of the trend with respect
to time. Changing patterns of human activity (building of roads, deforestation, etc.)
and climate change make the stationarity assumption rather dubious.

In analyzing the pattern of fires for a given year one of course requires a trend for
that year, rather than the long term trend. One (very simplistic) way to proceed is to
assume:

The trend for any given year is proportional to the long term trend. (1)

The proportionality constant is estimated as the ratio of the number of points in the
pattern for the given year to the total number of points in the aggregate pattern. While
such proportionality does not seem a priori completely implausible, it does appear
to invite some skepticism. For instance in a given year there may be effects of the
form “the northern part of the province is wetter than average, but the southern part
is dryer than average”. Nonetheless one may, for want of a better expedient, proceed
tentatively in this manner and examine the results.

I estimated the long term trend by applying a smoothing kernel (via the
density.ppp() function from spatstat) to the superimposition of all 16 avai-
lable point patterns. A major issue in applying density.ppp() is the choice of the
“smoothing parameter” sigma. In this analysis. I set sigma somewhat arbitrarily to
be equal to 0.05 × |W |1/2 where |W | denotes the area of the observation window i.e.,
I took sigma to be 5% of the edge length of a square of area equal to that of the win-
dow. Further exploration of the impact of the choice of sigma is clearly warranted,
but criteria for its choice remain unclear. A plot of the resulting long term estimate is
shown as an image in Fig. 4. I also experimented with sigma equal to 0.025×|W |1/2

and 0.10 ×|W |1/2. The impact of these different factors is discussed briefly at the end
of this section.

Many questions of interest in the study of forest fires require a distinction to be
made between forest fires that are due to “natural causes” and those that are caused by
human activity. (See e.g., Cunningham and Martell 1973; Podur et al. 2003; Wotton and
Martell 2005). The only “natural” cause recognized by the New Brunswick Department
of Natural Resources (in common with most organizations with responsibility for
dealing with forest fires) is lightning. Plots of the the aggregate of lightning caused fires
and of the estimated long term spatial trend in these fires evinced a very different pattern
from that of the totality of all forest fires. In future work with these data, lightning
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Fig. 4 Kernel smoothing estimate of long term trend

caused and human caused fires will need to be dealt with separately. However, for the
purposes of the (preliminary) analyses conducted in this paper, I made no distinction
between fires arising from the two causes.

The nature or behaviour of a point pattern may be thought of as comprising two
components: trend (which has already been referred to), and dependence or interac-
tion between the points of the patterns. The simplest manifestation of such interaction
consists of either attraction (aggregation or clustering) or repulsion (“regularity”) in
the pattern. A useful step in analyzing a point pattern is to apply graphical tools
which reveal information as to the nature of the interaction. A widely used tool
for exploring the nature of interaction is Ripley’s K -function (Ripley 1976, 1977,
Diggle 2003, pp. 43 & 50, Cressie 1993, p. 639).

The basic idea in interpreting the K -function is that a constant intensity Poisson
process (a process exhibiting “CSR”) has a K -function equal to K (r) = πr2. If there
is attraction (with impact at distance r ) then K (r) is larger than it would be under
CSR. Conversely, if there is repulsion then K (r) is smaller than it would be under
CSR.

What one deals with in practice is of course not that actual K -function of the
process but rather an estimate of this function calculated from the point pattern under
consideration. An issue that is worth emphasizing is that estimating the K Function is
a more delicate problem than it appears to be. Edge effects (see Ripley 1988, chapter 3)
are strongly biasing, and allowing for these effects is subtle. Some very clever people
(e.g., Brian Ripley, Peter Diggle, Adrian Baddeley) have put a great deal of thought
and effort into getting it right. The temptation to write one’s own software to estimate
the K function should be avoided. Software written by each of the aforementioned
experts is readily available, specifically in the packages spatial (part of the MASS
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bundle), splancs, and spatstat, respectively. All of these packages are available
from CRAN (2006).

For the purpose of illustration, we examine an estimate of the K -function for the
New Brunswick fires year 2000 data. Figure 5 shows an estimate (tran) of the K -
function as well as “theo”, the theoretical value (under CSR), and a 0.05 significance
level critical envelope (produced by the envelope() function from spatstat,
using simulation). It is worth emphasizing that this is a critical envelope, and not a
confidence envelope as it is often referred to by practitioners. Simulations are generated
from the (usually unrealistic) “null” model (CSR) and the resulting envelope surrounds
the K -function of the null model. If the K -function estimate for the observed pattern
exhibits excursions outside of the envelope, then this constitute evidence against the
null hypothesis of CSR.

The estimate “tran” is based upon the translation edge correction (Ohser 1983).
Superimposed upon this plot is a K -function estimate “bord” based upon the border
edge correction (Ripley 1988). This latter estimate is substantially different from the
first. It is much rougher and descends far below the theoretical value at distances
greater than about 60. However, the two estimates effectively agree at distances up to
about 50. The reliability of the estimates at greater distances should be treated with
caution. Note that the critical envelope shown was constructed using the translation
edge correction and “bord” should not be compared with it.

The K -function estimate shown in Fig. 5 lies substantially above the critical
envelope for distances up to about 200 units. On this basis one might be tempted
to conclude that there is attraction between the points of the process. However, such
a conclusion is unwarranted at this stage. There is indeed evidence against CSR, but
the long term trend estimate shown in Fig. 4 displays striking evidence that there are
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Fig. 5 Estimate of Ripley’s K -function for the year 2000 data
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several regions of high intensity. These regions could well explain the evidence of
“attraction” evinced by the K -function estimate.

It is important to be aware that it is impossible, in theory and in practice, to
distinguish rigourously between the concentrations of points due to trend, and concen-
trations due to (stochastic) interaction effects, on the basis of a single realization of a
process. (See for instance Bartlett 1964.) In the current context we indeed have mul-
tiple realizations of the forest fire process. However, these are not i.i.d. realizations so
there is no real replication available. Nonetheless an optimist might hope that the long
term trend estimated from the multiple realizations gives information which at least
partially separates trend and interaction effects.

Applying (tentatively!) assumption (1) makes available a trend estimate which in
turn permits the use of the inhomogeneous K -function of Baddeley et al. (2000).
A graph of an estimate of the inhomogeneous K -function for the year 2000 data,
together with a 0.05 significance level critical envelope, is shown in Fig. 6. The range
of distances at which the estimate is evaluated has been restricted to the short interval
[0, 25] so as to make more of the fine detail apparent.

Examination of this plot reveals a hint of attraction at distances between 5 and
15 units, and what might be termed a “nugget” effect at distance 0. Plots over larger
ranges of distance indicated that except for distances less than 15 units, the inhomoge-
neous K -function estimate stays within the critical envelope. For distances more than
about 40 units, it remains close to but slightly above the lower bound of the envelope.
Pursuit of an explanation for the “nugget” effect at 0 led to an examination of the
nearest neighbour distances of the data, several of which turned out to be 0, showing
that there are several coincident points in the pattern.

100 5 15 20 25

0
10

00
20

00
30

00
40

00

r

K
in

ho
m

(r
)

obs
mmean
hi
lo

Fig. 6 Estimate of the inhomogeneous K -function for the year 2000 data with intensity taken to be pro-
portional to the “long term trend” plotted in Fig. 4
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The theory on which this sort of analysis is based makes the fundamental assump-
tion that all points are distinct. This leaves one in a quandary as to what to do about
the present violation of this assumption. For the purposes of the current study, I
decided to eliminate points from coincident pairs. This is of course bad statistical
practice—one should not modify the data to fit one’s theory! On the other hand
it’s either that or develop a whole new theory, a rather Herculean task. Moreover,
fires at 0 distance from each other, in the same year, would seem to be implau-
sible from a practical point of view. It appears reasonable to proceed cautiously
with modified data, so as to be able to exploit the power of existing tools for
analysis.

The existence of coincident points is not peculiar to the year 2000 data. All of the
data sets have a number of such points. There are also many pairs which appeared
to be at anomalously small (though non-zero) distances as well. I decided to elimi-
nate all such pairs for the purpose of this exploratory analysis. All further discussion
will be in terms of the modified data sets. Any conclusions based on the forthco-
ming analyses should therefore be tempered with even more than the usual amount of
caution, at least until a deeper understanding of the coincident point phenomenon is
achieved. Possible reasons for the existence of coincident points should be explored
with the supplier of these data sets, as a part of other data cleaning and verification
tasks.

An inhomogeneous K -function plot was also constructed for the year 2000 modified
data. This plot differed little from that for the unmodified data except that the “nugget
effect” disappeared. Plots over larger distance ranges showed it to stay below the
simulated mean level for distances greater than 40+units, but to remain substantially
above the lower bound of the critical envelope. The message from this is unclear. It
would appear (see Sect. 5) that at least part of the problem is the assumption (1) that
the annual trend is proportional to the long term trend.

Plots of the inhomogeneous K -functions, with critical envelopes, similar to that for
the year 2000 data, were produced for all sixteen available years. The only plot which
evinced any evidence of interaction was that for the year 1996. This plot seemed to
indicate attraction or clustering for distances between about 15 and 80 units. The plots
for the 1992 and 1994 data sets, like that for the year 2000 data set, track fairly close
to the the lower edge of the critical envelope.

All of the plots involved in the foregoing discussion were based on a trend estimate
proportional to the “long term trend”, The latter trend was calculated using a smoothing
parameter equal to 0.05 times the square root of the window area. Naturally, when a
factor of 0.025 was used in place of 0.05, there was even less “evidence” for interaction.
When a factor of 0.10 was used, there was “more” evidence.

In particular, for the year 2000 data there is little if any indication of attraction
when a factor of 0.025 is used, merely a hint of attraction when 0.05 is used, and
substantial indication of attraction at distances up to 25 units when 0.10 is used. For
all three values of the factor the K -function graph tends to track the lower bound of the
envelope for large values of distance; for the 0.025 value it goes well below the lower
bound for distances greater than 100. On the basis of only an ad hoc trend formed by
smoothing, and with no genuine replication of patterns, there appears to be no sensible
way of determining the “right answer”.
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4 Models for point process interaction

The inhomogeneous K -function for the 1996 data seems to indicate some evidence of
interaction in the form of attraction, so it would be interesting to fit a model capable of
reflecting this property to this data set. The prototype model for point process interac-
tion, appearing in the seminal work of David Strauss (1975) was indeed proposed as a
model for attraction or “clustering”. Unfortunately it turned out to be appropriate only
for modelling repulsion. If one is to understand point process models, it is important
to see clearly why this is so.

A point process, roughly speaking, is a mechanism which generates random patterns
of points. Mathematically the word “random” means that these patterns are the values
of a random variable which takes values in a “space” consisting of all possible point
patterns. (We will not go into technical details here. Detailed discussion of this issue
can be found in Kelley and Ripley (1976). See also Ripley and Kelley 1977, and Daley
and Vere-Jones 2003, p. 123 ff.) From certain points of view, the most convenient
descriptor of a random variable (such as a point process) is its probability density
function, if it possesses one—and those processes in which we are interested do indeed
possess one.

However, density functions for point processes are difficult to grasp intuitively. A
closely related concept, which is somewhat easier to comprehend, is that of “Papange-
lou conditional intensity function” (see Papangelou 1974; see also, e.g., van Lieshout
2000, p. 39) which I shall denote by λ(u, x). Roughly speaking λ(u, x)|�u| is the
probability of observing a point of the process in a small neighbourhood �u of u,
conditional upon the rest of the process x. The “rest of the process” simply means x
with u removed, if u is a point of x, and x if u is not a point of x. Note that if x is a Pois-
son process with constant intensity λ then λ(u, x) = λ for all u, and more generally
if x is an inhomogeneous Poisson process with intensity λ(u), then λ(u, x) = λ(u).

The Papangelou conditional intensity function of a process is related (under certain
theoretical restrictions) to the probability density function of the process (say f (x))
by

λ(u, x) = f (x ∪ {u})
f (x\{u}) .

It should be noticed that if u ∈ x then x ∪ {u} = x, and if u /∈ x then x\{u} = x.
The function f (x) takes the form αg(x) where g(x) is explicitly representable in

terms of model parameters and statistics calculated from x. The constant α must have
the property that f (x) integrates to one, i.e.,

1

α
=

∫
X

g(x) dµ(x) (2)

where X , is the space of all point patterns in W and µ is an appropriate measure
on X .

Except for Poisson processes, the integral on the right hand side of (2) cannot
be calculated, so that it is impossible to express α explicitly in terms of the model
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parameters. It is this recalcitrance of α that makes spatial point process analysis such
a difficult subject.

Most interest, in models involving non-trivial interaction, focuses on pairwise
interaction processes of which the prototype is the Strauss process (Strauss 1975).
A pairwise interaction model is expressed in terms of a (symmetric) pairwise interac-
tion function h(u, v) = h(v, u). In order that the process be stationary it is necessary
that h(u, v) depend only on the distance |u − v| between u and v. (See Ripley 1988,
p. 51.) The Papangelou conditional intensity function of a pairwise interaction process
is equal to

λ(u, x) = β ×
∏

xi ∈x
h(u, xi )

where β is a constant—a parameter of the process. In general h(u, v) will depend on
other parameters.

For the Strauss process, the pairwise interaction function is

h(u, v) =
{

γ if 0 < |u − v| < r
1 if |u − v| ≥ r

where 0 ≤ γ ≤ 1 and r ≥ 0. The parameter r is called the interaction radius of the
process. It is convenient to refer to a pair of points {u, v}(u �= v) such that |u −v| < r
as being an r -close pair. The conditional intensity function becomes

λ(u, x) = β × γ t (u,x)

where t (u, x) = #{xi ∈ x : 0 < |u − xi | < r} and the density function becomes

f (x) = αβn(x)γ s(x)

where n(x) is the number of points in x and s(x) is the number of r -close pairs in x.
If γ = 1 the process becomes simply a Poisson process with constant intensity β.

If γ = 0 then there is zero probability of there being a point of the process within
distance r of any other point of the process i.e., there is “total inhibition” at distances
up to r . This special case of the Strauss process is called the “hard core” process. In
general, for 0 < γ < 1 there is inhibition at distances smaller than r but this inhibition
is less than total.

One might reasonably expect that if one were to take γ to have a value greater than
1 then the model would determine a process in which there was a strong tendency
for points to be at distance less than r from each other, that is to say a process which
exhibited clustering. This does not however work: If γ > 1 then the integral of g(x) =
βn(x)γ s(x) on the right hand side of (2) is infinite, whence the density function f (x)

does not exist.
We might then seek to adjust the Strauss process so as to come up with a model

that encompasses the clustering phenomenon. To make the appropriate adjustment,
we note that goes wrong if we try to use γ > 1 in the Strauss model is that there is a
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“blow-up” effect. Intuitively we may think along the lines that the more points of the
pattern there are near u, the more there tend to be, resulting in an infinity of points
anywhere that there is a point. To obtain a model that produces clustering we need
to include attraction between points, and at the same time keep the “blow-up” effect
under control.

One “obvious” way of doing this is to introduce inhibition at small interpoint
distances. We define a pairwise interaction function

h(u, v) =
⎧⎨
⎩

0 if 0 < |u − v| < r1
γ if r1 ≤ |u − v| < r2
1 if |u − v| ≥ r2

This interaction prevents points from piling up next to each other, and the resulting
density is indeed well-defined, i.e., the “un-normalized density” h(x) does indeed
have a finite integral, for any (non-negative) value of γ .

The model so defined is called the “Strauss hard core model” in the “folk lore”
of spatial point process theory. Although this model appears to be well known to the
cognoscenti, I have been unable to find any explicit reference for it. For example,
(Møller and Waagepetersen 2004, p. 86), proceed from the Strauss process to the
“multiscale process” for which they cite Penttinen (1984). The multiscale process
is also discussed by Takacs and Fiksel (1986). The multiscale process is a pairwise
interaction process for which the interaction function is a step function, and the Strauss
hard core process is clearly a special case. Takacs and Fiksel use the Strauss hard core
model in their paper, without explicitly calling it that, and also use bivariate Strauss
hard core models. Särkkä (1993) likewise uses bivariate Strauss hard core models, and
this idea is further taken up in Baddeley and Turner (2000).

It would appear that the Strauss hard core model should provide a sensible means
of modelling attraction. However, in practice the model seems to be highly unstable.
For example I fitted a Strauss hard core model (with trend) to the year 2000 fire data,
and then simulated a pattern from the fit. The pattern to which the model was fitted had
229 points; the simulated pattern (which one would expect to have a commensurate
number of points) turned out to have 2679 points, mostly concentrated around hot spots
of the trend in the Acadian Peninsula and between St. John and the Maine border.

Another way of preventing “blow-up” is to place an upper bound on the amount of
influence that near neighbours can have. A model incorporating this idea, the “satu-
ration model”, was introduced by Geyer (1999). The density function for Geyer’s
model is made to depend upon quantities of the form min{c, t (u, x)} where c is a
constant greater than or equal to 0. The parameter c is called the saturation parameter.
The un-normalized density function for Geyer’s model is indeed integrable for all
non-negative γ and values of γ > 1 induce clustering.

Geyer (1999) also proves that processes satisfying this model have the pleasant
Ruelle stability property which guarantees that they have “thermodynamic behaviour”
and hence can be reliably simulated via the Metropolis–Hastings algorithm. The Geyer
model appears to provide a reasonably effective means of modelling attraction in point
patterns.
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Notice that if c is very large, then min{c, t (u, x)} will be equal to t (u, x) for all i .
In such a case, for a given pattern, Geyer’s model effectively reduces to the Strauss
model as the saturation parameter is allowed to grow. Note that the γ of the (equivalent)
Strauss model is equal to the square of the γ parameter in Geyer’s model.

5 Fitting models to data

I now consider some examples of fitting models to forest fire patterns. I start out with
the year 2000 data, for which I previously examined the inhomogeneous K -function
estimate. This estimate produced no clear evidence of interaction between the points of
the pattern, so I fitted a simple “trend only” (inhomogeneous Poisson) model, invoking
assumption (1) to model the trend.

To fit this model I made use of the flexible modelling capabilities of the spatstat
package. In this paper I only discuss the (quick and dirty) maximum pseudolikelihood
(mpl) method of fitting, but it should be noted that spatstat is also capable of using
the “one step improvement” on mpl developed by Huang and Ogata (1999).

Models to be fitted by the spatstat package must be expressed in terms of their
Papangelou conditional intensity functions, given in exponential family form as

λ(u, x) = exp{φTb(u) + θTS(u, x)}

where φTb(u) is the trend component of the conditional intensity and θTS(u, x) is the
interaction component. The modelling syntax of spatstat is based on this decom-
position. This syntax is, as a result, closely analogous with that of the glm() function
from R (R Development Core Team 2005) which is based in turn on the GLIM package
(Royal Statistical Society GLIM Working Party 1999) with “trend” corresponding to
“linear predictor”, and “interaction” corresponding to “family”. The modelling capa-
bilities of spatstat directly estimate the exponential family parameters φ and θ ;
the functions b(u) and S(u, x) may depend on further parameters (termed “irregu-
lar”) such as the interaction radius in the Strauss model. These parameters must be
estimated by other means, possibly profile pseudolikelihood.

To model the trend on the basis of assumption (1) I include the long term trend
(of which I have already obtained a completely specified estimate) in the model as
an “offset” term. (This is generalized linear modelling terminology.) To conform to
the exponential family structure, the offset must be the log of the existing trend esti-
mate. Explicitly I assume that the conditional intensity function (which is actually
“unconditional” since there is no interaction term) is equal to

λ(u, x) = λ(u) = βτ(u) = exp{φ + log(τ (u)}

where τ(u) is the (estimated) long term trend, β is the proportionality constant and
φ = log(β) is the only parameter to be estimated.
The spatstat syntax for fitting this model is

fit1 <- ppm(nbff.00,˜offset(log(intens)),
covariates=list(intens=intens))
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where intens is the (non-parametric) estimate of the long term trend produced by
density.ppp(), and nbff.00 is the point pattern object of all New Brunswick
forest fires in the year 2000.

The output from this fit is a large and complicated object, but the print method
for objects of this class (“ppm”) gives concise and interpretable output, the relevant
feature of which is the “intercept” term, φ̂ = −2.917439. The exponential of this term,
0.05407199, is the ratio of the (fitted) year 2000 intensity to the long term intensity.
This is of course nearly identical to the ratio of the number of points in the (modified)
year 2000 data set, to the total number of data points, i.e., 246/4599 = 0.05348989. The
reason that it is not truly identical is “numerical”—integrals are being calculated via
various numerical approximations. Observe in particular that the (calculated) integral
of the long term intensity

> summary(intens)$integral
[1] 4556.586

is a bit smaller than its theoretical value of 4,599, in part due to the fact that the kernels
involved in the kernel smoothing estimator of trend are being integrated only over the
observation window (rather than the whole plane) and hence are losing a small amount
of “tail mass”.

The output from the fit of course does not say whether the model being fitted is
actually sensible. In other areas of statistics, the appropriateness of the model being
fitted is often assessed via residual plots. Up until recently there was no appropriate
concept of “residual” to associate with planar point process models. That situation
changed with the publication of a paper by Baddeley et al. (2005) and the imple-
mentation of the concepts in that paper within the spatstat package. Thus residual
plots of various sorts are now available for planar point process models. There remains
however a great deal of effort to be expended in practicing with the use of these plots
and building up an understanding of, and intuition for, their interpretation.

A quantile–quantile plot for the “trend only” model fitted to the year 2000 data is
shown in Fig. 7. This plot gives a very strong message that the fit is not good. Since
there seems little indication (from the inhomogeneous K -function) of interaction in
the pattern the explanation would seem to be that the form of the trend is wrong. I
decided to try a much more flexible form for the trend, using the s() (spline) function
from the mgcv package. The fit with this form of trend is obtained by

fit <- ppm(nbff.00,˜s(intens),
covariates=list(intens=intens),use.gam=TRUE)

The quantile–quantile plot for this model is shown in Fig. 8. This plot appears to
indicate that the fit is adequate. The conclusion would appear to be that at least for the
year 2000 assumption (1) is not valid. That is, in a particular year the intensity of the
forest fire process may go up in some areas, with respect to the long term average, and
down in others. While not overwhelmingly surprising, this conclusion is, as remarked
on page 205 not a priori completely obvious.

Other diagnostic plots for the “spline trend” model are shown in Fig. 9. These
are harder to interpret. If the model fits well, then the image plots should “ideally”
depict relatively flat surfaces for the smoothed residuals. The pattern of contours in
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Fig. 7 The quantile–quantile plot for the inhomogeneous Poisson model with trend taken to be proportional
to the “long term trend” plotted in Fig. 4
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Fig. 8 The quantile–quantile plot for the model with trend equal to a smooth (spline) function of the long
term trend, fitted to the year 2000 data
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Fig. 9 Diagnostic plots for the model referred to in Fig. 8

the image plot in the lower right corner is complicated, but does not appear to have any
particularly high or low spots, and might well be asserted to depict a surface with a
“random” shape. In any case the quantile–quantile plot for this fit provides assurance
that the residual surface is no less random than one might expect given that the model
is appropriate.

The 1996 data set seems to be different from the other years in the available collec-
tion in that its inhomogeneous K -function estimate appears to indicate concentrations
of points not explained by the trend based on assumption (1). Just why, in practical
terms, 1996 is different from the other years is an interesting question in its own right,
but one which I have not yet had a chance to explore. A trend only model, employing
a smooth spline transform of the long term trend estimate, did not provide a good fit to
this data set, unlike the case for the 2000 data. Hence there is some reason to believe
that there is interaction, in the form of attraction or clustering, among the points of the
1996 pattern.

I attempted to model this apparent attraction in the 1996 pattern by means of the
Geyer model discussed in Sect. 4. The Geyer model involves two irregular parameters,
namely the interaction radius r and the saturation parameter c, which must be estimated
somehow. I approached this problem via a (very rough) “profile pseudolikelihood”
procedure. That is, I tried interaction radii varying from 10 to 80 in steps of 10 (the
upper bound of 80 being chosen on the basis of the inhomogeneous K -function plot
for these data). Likewise I considered values for c in the set {1, 2, . . . , 10}. I then fitted
models with interaction Geyer(r,s) for all 80 pairs of these (r,s) values, and
extracted the log pseudolikelihood.
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A plot of the resulting values is shown in Fig. 10. The r = 10 and r = 20 profiles
appear to be very similar for c ≥ 5. I tried several parameter pairs, including (r =
10, c = 4), (r = 20, c = 5) and (r = 20, c = 8). I fitted these models by means of R
code such as the following :

fit.geyer<- ppm(nbff.96,˜s(intens),inter=Geyer(10,4),
covariates=list(intens=intens),use.gam=TRUE)

The quantile–quantile plot of the residuals looked best for the (r = 10, c = 4) pair.
This plot is shown in Fig. 11. This figure still indicates considerable lack of fit, although
it was a substantial improvement over the fit of a trend only model.

To get a feel for diagnostic techniques, it is helpful to apply them to simulated
data where the right answer is known. To this end I simulated a point pattern from
the foregoing fit of the “trend plus Geyer” model. I then fitted the “trend plus Geyer”
model to the simulated data, and plotted the diagnostic and quantile–quantile plots
that resulted. The quantile–quantile plot is shown in Fig. 12. This quantile–quantile
plot makes it clear that what we can reasonably expect to get (if the form of the model
is correct) is much better than what we actually get from the fit to the real 1996 data. It
is interesting to note the striking sigmoid shape of the quantile–quantile plot—present
despite the fact that the model is right. Presumably this is evidence that a sigmoid
shape is acceptable provided that the plot stays within the critical band.

The estimate of γ from the Geyer(10,4) fit to the real 1996 data is γ̂ = 1.4632.
This would appear to be substantially greater than 1 (in conformity with the apparent
phenomenon of attraction between points). Whether it is significantly greater than 1
could be assessed by Monte Carlo inference, but there seems little point in my doing
so, since I still haven’t got the model right.
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Fig. 11 Quantile–quantile plot for the smooth trend plus Geyer(10,4) model fitted to the 1996 data
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Fig. 12 Quantile–quantile plot for the smooth trend plus Geyer(10,4) model that was fitted to data
simulated from this model

So what is the right model? That seems to be a “question for future work”. In
particular the trend should be modelled sensibly (rather than by assumption (1)).
Other interaction models should be experimented with and the available set of models
should be expanded. One type of model that holds some promise is the “multiscale
process” (Møller and Waagepetersen 2004, p. 86) also called the “piecewise constant
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pairwise interaction” model, which is implemented by the function PairPiece in
the spatstat package. As noted in Sect. 4 this generalizes the Strauss process by
replacing a two-valued step function (with values γ and 1) by a multi-valued step
function.

The difficulty is that this model is capable only of modelling repulsion between
points; if any of the function values are greater than 1, the density function for the
model does not exist (is not integrable). Developing a corresponding valid model may
be possible, but will entail a substantial amount of work.

In the meantime, just for fun, I fitted the (meaningless) PairPiece model to the
1996 data. It is meaningless because several of the step function values do indeed turn
out to be larger than 1:

fit <- ppm(nbff.96,˜s(intens),inter=PairPiece(10*(1:8)),
covariates=list(intens=intens),use.gam=TRUE)

fit
.....
Fitted interaction parameters gamma_i:
[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70)
[70,80)
1.8912 1.1813 1.1013 1.0516 0.9385 1.0865 0.9997 0.9832

The quantile–quantile plot for this fit is shown in Fig. 13. It indicates that in some
sense the fit is better—for most of its extent the plot is very close to the theoretically
ideal line. However, the lower end of the plot plunges down dramatically and protrudes
beyond the lower edge of the critical envelope. Thus it appears that the lower tail of
the residuals is too heavy, i.e., the lowest residuals are too (negatively) large. What is
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Fig. 13 Quantile–quantile plot for the (invalid) piecewise constant pairwise interaction model, with smooth
trend, that was fitted the 1996 data
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causing this phenomenon, and what sort of model might be used to accommodate it
remain problems whose solutions are opaque to me at this time.

Note that there are extra subtleties associated with interpreting the quantile–quantile
plot in Fig. 13. The critical envelope is based upon simulations from the fitted model.
Since the fitted model is not a valid model, the simulation software projects the model
onto the nearest valid model and simulates from that. In the current case, this makes
the model effectively Poisson. This will have little impact on the conclusions however,
since the fit is very close to “ideal” except for the droopy lower tail, which definitely
indicates that something is not as it should be, irrespective of the critical envelope.

6 Alternative modelling strategies and conclusions

Clearly a great deal more remains to be done in analyzing the New Brunswick fire
pattern data; the surface has not even been scratched as yet. What I can say on the
basis of my analysis so far is that for most years there is no compelling evidence of
interpoint interaction in the patterns. The situation is of course far from clear; evidence
of interaction has been sought by means of the inhomogeneous K -function. I remain
caught in the dilemma of how much to smooth the underlying trend estimate, which is
all part of the over-riding dilemma of the indistinguishability of trend and interaction
on the basis of a single realization of a spatial point process.

On the other hand, new diagnostic techniques indicate that the year 2000 pattern
is adequately modelled in terms of a trend which is a smooth (spline) function of the
long term trend estimate, with no interaction. The trouble with this argument is that the
spline trend is too flexible, and too arbitrary. To have any hope of discerning reliably
between trend effects and interaction effects, it is necessary to have a trend estimate
that one can believe in. To produce such an estimate one needs to model the trend
in terms of meaningful covariates (vegetation, terrain, etc.). Another possible class of
covariates could be smooths of the patterns for the past, say, three years.

At the given level of smoothing of the “long term trend” estimate, the year 1996
stands out as being different. There seems to be substantial evidence of interpoint
interaction for this data set. Why, in practical terms, 1996 is different in this respect
from the other available years is an interesting question which should be pursued
further. It may be the case that 1996 is anomalous because a substantial number of
fires in that year were caused by a relatively small number of e.g., thunderstorms, or
railway incidents, or activities of arsonists. It may also be the case that considerable
theoretical development, to expand the scope of available models, will be required in
order to obtain a satisfactory fit to the 1996 data.

Scope for a very different sort of modelling opens up if the available temporal
information is used; so far I have made no attempt to do so. Each fire in the collection
of New Brunswick data sets comes with a “discovery time” and an “out time”. The
discovery times could be used (as surrogates for occurrence times) in spatio-temporal
modelling of the patterns. For the available temporal data to be useful, further data
cleaning will be required: Some of the fires are recorded as having out times which
precede their discovery times!
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The spatio-temporal approach makes more sense than simply treating the patterns
in a purely spatial manner. As Vere-Jones remarks (2006), referring to an observation
of Whittle (1962), “space-time models are more likely to be insightful, to penetrate
further into the physical process generating the picture in front of us at any given time,
than a purely static analysis of that picture.” Once adequate spatio-temporal models
are developed, temporal covariates, such as the weather history over, say, two or three
weeks preceding the current time point, might provide useful explanatory power.

As proposed in Vere-Jones (2006) it may be possible to construct spatio-temporal
models for forest fire patterns by adapting those already developed in the geophysical
context for earthquake patterns. (See Ogata 1998, 1999, 2004; Daley and Vere-Jones
2003, p. 203 ff., p. 239 ff. for discussions of earthquake models.) On the other hand, it
may be necessary to develop completely new models. There does not appear to have
been a great deal of work done on spatio-temporal modelling of forest fire patterns
so far, possibly in part for the reason that temporal information for forest fires is less
readily available. Two exceptions are the papers of Peng et al. (2005) and Preisler et
al. (2004).

A somewhat different approach to modelling forest fire patterns might be make use
of Cox processes (see Daley and Vere-Jones 2003, p. 169, Diggle 2003, pp. 68–71,
Cressie 1993, p. 657 ff., Stoyan et al. 1995, p. 154 ff., Møller and Waagepetersen 2004,
Chap. 5). Briefly, these processes are inhomogeneous Poisson processes where the
underlying trend is itself random (a Gaussian random field). These “doubly stochastic”
processes (with, say, the random field varying continuously in time) seem intuitively
plausible as models for forest fire data. The idea of using the Cox process model is
interesting in theory at least. Fitting such processes presents substantial challenges
however and it is not clear how much progress can be made.

Let me conclude by reiterating that the New Brunswick fire patterns constitute
an interesting collection of data sets. A great deal remains to be done in the way of
analyzing them. These data sets are now included in the spatstat package which
is available from CRAN (2006).
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