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Abstract Boundary analysis of cancer maps may highlight areas where causative
exposures change through geographic space, the presence of local populations with
distinct cancer incidences, or the impact of different cancer control methods. Too
often, such analysis ignores the spatial pattern of incidence or mortality rates and
overlooks the fact that rates computed from sparsely populated geographic entities
can be very unreliable. This paper proposes a new methodology that accounts for the
uncertainty and spatial correlation of rate data in the detection of significant edges
between adjacent entities or polygons. Poisson kriging is first used to estimate the
risk value and the associated standard error within each polygon, accounting for the
population size and the risk semivariogram computed from raw rates. The boundary
statistic is then defined as half the absolute difference between kriged risks. Its ref-
erence distribution, under the null hypothesis of no boundary, is derived through the
generation of multiple realizations of the spatial distribution of cancer risk values. This
paper presents three types of neutral models generated using methods of increasing
complexity: the common random shuffle of estimated risk values, a spatial re-ordering
of these risks, or p-field simulation that accounts for the population size within each
polygon. The approach is illustrated using age-adjusted pancreatic cancer mortality
rates for white females in 295 US counties of the Northeast (1970–1994). Simulation
studies demonstrate that Poisson kriging yields more accurate estimates of the cancer
risk and how its value changes between polygons (i.e., boundary statistic), relatively to
the use of raw rates or local empirical Bayes smoother. When used in conjunction with
spatial neutral models generated by p-field simulation, the boundary analysis based
on Poisson kriging estimates minimizes the proportion of type I errors (i.e., edges
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wrongly declared significant) while the frequency of these errors is predicted well by
the p-value of the statistical test.

Keywords Mortality rates · Neutral model · Pancreatic cancer · Poisson kriging ·
Geostatistical simulation · Wombling

1 Introduction

Cancer mortality maps are important tools in health research, allowing the iden-
tification of spatial patterns, clusters and disease ‘hot spots’ that often stimulate
research to identify potential factors for locally high cancer mortality or morbidity rates
(Jacquez 1998; Rushton et al. 2000). In particular, borders where these cancer mor-
tality or morbidity rates vary abruptly may indicate areas where causative exposures
change through geographic space, the presence of local populations with distinct can-
cer incidences, or the impact of different cancer control methods (Jacquez and Greiling
2003; Lu and Carlin 2005). Because of the need to protect patient privacy, publicly
available data are often aggregated to a sufficient extent to prevent the disclosure or
reconstruction of patient identity. The detection of local boundaries in studies of human
populations is thus conducted on areal data, using methods often referred to as areal
or polygonal wombling following the seminal work by Womble (1951). Like other
pattern recognition approaches, boundary analysis starts with the computation of a
statistic that quantifies a relevant aspect of the spatial pattern. Typically a dissimilarity
metric (e.g., Manhattan or Euclidian distance) is computed to assess the difference
between rates measured in two adjacent geographical units. The observed value of this
statistic is then compared to its distribution generated under a null spatial model, for
example under the assumption of uniform risk across these two units. This provides
a probabilistic assessment of how unlikely an observed spatial pattern is under the
null hypothesis. The major weakness of most wombling or edge detection methods
currently available is that both the uncertainty attached to the rates and their spatial
correlation are ignored in the computation and testing of the boundary statistic.

Mortality rates computed from sparsely populated geographical entities or for dis-
eases with a low frequency of occurrence can be very unreliable. Boundary analysis
of raw rates can thus lead to the spurious detection of significant edges in areas of low
population density where extreme rates are observed. Simulation studies have dem-
onstrated the benefit of spatial smoothers to obtain more accurate predictions of the
underlying risk of cancer. These methods range from simple deterministic techniques
(i.e., head banging method, Mungiole et al. 1999) to sophisticated full Bayesian models
(Best et al. 2005). Empirical Bayes smoothers (Clayton and Kaldor 1987) and Poisson
kriging (Goovaerts 2005) provide model-based approaches with intermediate diffi-
culty in terms of implementation and computer requirements. Despite their greater
accuracy, risk estimates are still uncertain and this uncertainty should be properly
accounted for in the computation and interpretation of the boundary statistic. Since
this statistic involves two rates at a time, a measure of joint uncertainty is required
in the common situation where these two rates are spatially dependent. Goovaerts
(2006) recently developed a geostatistical approach that combines Poisson kriging
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and p-field simulation to generate multiple realizations of the spatial distribution of
risk values. These simulated maps were then fed into local cluster analysis, allowing
one to assess how the uncertainty about the spatial distribution of risk values trans-
lates into uncertainty about the location of spatial clusters and outliers. Lu and Carlin
(2005) proposed a more complex approach based on Bayesian hierarchical models to
account for uncertainty in areal wombling procedures.

In many implementations of the wombling approach (e.g., BoundarySeer commer-
cial software), the detection of significant edges is still based on the subjective choice
of a relative threshold, say 25%. Edges with a dissimilarity metric in the top 25% are
then declared significant regardless of whether the difference between the two rates
is statistically significant. Permutation tests were developed to assess the significance
of boundaries, for example through subboundary analysis (Oden et al. 1993; Jacquez
and Greiling 2003). However, these tests are based on the hypothesis that each permu-
tation of the observed values is equally likely. In other words, there is an underlying
null hypothesis of spatial independence (SI) of observed rates, which is frequently
invalidated by the presence of spatial patterns in mortality maps. The term “Neutral
Model” captures the notion of a plausible system state that can be used as a reasonable
null hypothesis. Goovaerts and Jacquez (2004) described a typology of neutral mod-
els that accounts for the spatial dependence of cancer rates, their regional background
and spatially heterogeneous population sizes. These models were created using
geostatistical simulation and their use in local cluster analysis led to the detection
of different clusters and outliers according to the type of hypothesis included in the
neutral model.

This paper presents a new geostatistical methodology to account for the instability
and spatial patterns of rate data in the detection of significant edges between adjacent
polygons. The approach is illustrated using age-adjusted pancreatic cancer mortality
rates for white females in 295 US counties of the Northeast (1970–1994). Simulation
studies are conducted to compare the performance of the proposed method to common
tests based on the null hypothesis of spatial randomness and applied to raw rates or
rates stabilized using local empirical Bayes smoothers. Performance criteria include
the proportion of edges that are wrongly identified as significant or non-significant, as
well as the ability of the significance level of the test to predict the actual proportion
of false positives (type I errors).

2 Geostatistical methodology

2.1 The boundary statistic

For a given number N of entities Aα (e.g., counties, states, electoral ward), denote
the observed mortality rates as z(uα) = d(uα)/n(uα), where d(uα) is the number of
recorded mortality cases and n(uα) is the size of the population at risk. These entities
are referenced geographically by their centroids with the vector of spatial coordinates
uα = (xα, yα). The objective is to detect any significant change between neighbor-
ing entities which are here defined as entities sharing a common border or vertex
(1-st order queen adjacencies). In this paper, the boundary statistic between any two
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adjacent entities Aα and Aβ is simply defined as half the absolute difference between
their corresponding rates:

�αβ =
∣
∣z(uα) − z(uβ)

∣
∣

2
(1)

This measure does not account for the shape or size of the two entities, and is not a
gradient since the distance between centroids is ignored. By analogy with the local
Moran’s I used in local cluster analysis, the boundary statistic (1) can be viewed as
a local decomposition of the following global statistic known as madogram in the
geostatistical literature:

γM (h1) = 1

2P1

∑

α,β

∣
∣z(uα) − z(uβ)

∣
∣ (2)

where P1 is the number of pairs of entities that share a common border, and h1 is the
average Euclidian distance between their centroids.

2.2 Spatial smoothers

The boundary statistic (1) becomes very unreliable whenever one of the two rates is
computed from sparsely populated geographical entities, in particular for diseases with
low frequency of occurrence. To correct for the so-called “small number problem”,
the observed rates in Eq. 1 can be replaced by risk estimates:

�∗
αβ =

∣
∣r̂(uα) − r̂(uβ)

∣
∣

2
(3)

A straightforward approach is the local empirical Bayes smoother that estimates the
risk at any location uα as a weighted sum of the rate observed at that location (kernel
rate) and a prior local mean:

r̂LEB(uα) = λ(uα)z(uα) + [1 − λ(uα)]m∗(uα) (4)

where the local mean m∗(uα) is, for example, a population-weighted average of K
neighboring observed rates, including the kernel rate (e.g., see Waller and Gotway
2004, p. 87). The Bayes shrinkage factor λ(uα) is computed as:

λ(uα) =

⎧

⎪⎨

⎪⎩

s2(uα)−m∗(uα)/n̄(uα)

s2(uα)−m∗(uα)/n̄(uα)+m∗(uα)/n(uα)
if s2(uα) ≥ m∗(uα)/n̄(uα)

0 otherwise

where m*(uα) and s2(uα) are the population-weighted mean and variance of K neigh-
boring observed rates, and n̄(uα) is the average population size for these K entities.
The relative weight λ(uα) assigned to the kernel rate z(uα) is smaller for less densely
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populated entities. For entities with similar population sizes, the factor λ(uα) is also
smaller in areas of greater homogeneity, i.e., characterized by a lower local variance
s2(uα). In other words, where there is less local variability, the estimate (4) tends to
be closer to the local mean.

Simulation studies have demonstrated the greater accuracy of risk estimated by
Poisson kriging relatively to Bayes smoothers (Goovaerts 2005). Similarly to the
Bayes estimate (4), the Poisson kriging estimate can be expressed as a linear combi-
nation of the kernel rate and the rates observed in (K − 1) neighboring entities:

r̂P K (uα) =
K

∑

i=1

λi (uα)z(ui ) (5)

where λi (uα) is the weight assigned to the rate z(ui ) when estimating the risk at uα .
The K weights are computed so as to minimize the mean square error of predic-
tion under the constraint that the estimator is unbiased. They are the solution of the
following system of linear equations:

K∑

j=1
λ j (uα)

[

CR(ui − u j ) + δi j
m∗

n(ui )

]

+ µ(uα) = CR(ui − uα) i = 1, . . . , K

K∑

j=1
λ j (uα) = 1

(6)

where δij = 1 if ui = uj and 0 otherwise, and m* is the population-weighted mean of
the N rates. The term µ(uα) is a Lagrange parameter that results from the minimization
of the estimation variance subject to the unbiasedness constraint on the estimator. The
addition of an “error variance” term, m*/n(ui), for a zero distance accounts for vari-
ability arising from population size, leading to smaller weights for less reliable data
(i.e., measured over smaller populations). The prediction variance associated with
the estimate (5) is computed using the traditional formula for the ordinary kriging
variance:

σ 2
P K (uα) = CR(0) −

K
∑

i=1

λi (uα)CR(ui − uα) − µ(uα) (7)

The computation of kriging weights and kriging variance (Eqs. 6 and 7) requires knowl-
edge of the covariance of the unknown risk, CR(h), or equivalently its semivariogram
γR(h) = CR(0) − CR(h). Following Monestiez et al. (2006) the semivariogram of
the risk is estimated as:

γ̂R(h) = 1

2
∑N (h)

α=1
n(uα)n(uα+h)

n(uα)+n(uα+h)

N (h)
∑

α=1

{
n(uα)n(uα + h)

n(uα) + n(uα + h)
[z(uα)

−z(uα + h)]2 − m∗} (8)
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where the different pairs [z(uα) − z(uα + h)] are weighted by the corresponding
population sizes to homogenize their variance. A permissible model, γR(h), is then
fitted to the experimental semivariogram, i.e., using weighted least-square regression
(Pardo-Iguzquiza 1999) in this paper.

2.3 Probability field simulation

Despite the incorporation of the population size into the computation of the boundary
statistic (3), there is always some uncertainty attached to the risk estimates, hence to
their differences. In Poisson kriging, the uncertainty about the risk prevailing within
an entity Aα is modeled using the Gaussian distribution:

F(uα; r |(K )) = Prob {R(uα) ≤ r |(K )} = G

(
r − r̂P K (uα)

σP K (uα)

)

(9)

where G(.) is the cumulative distribution function of the standard normal random
variable. The notation “|(K )” expresses conditioning to the local information, say, K
neighboring observed rates. This distribution has a mean and variance corresponding
to the Poisson kriging estimate and variance.

In presence of spatial dependence between the risk at uα and uβ , knowledge of the
function (9) does not suffice to characterize the uncertainty attached to the difference
(3). A measure of the uncertainty prevailing jointly at locations uα and uβ is required.
This joint uncertainty can be modeled numerically through the simulation of a set of
pairs of correlated risk values

{(

r (l)(uα), r (l)(uβ)
)

, l = 1, . . . , L
}

, leading to a set of

L simulated values for the boundary statistic
{

�
(l)
αβ, l = 1, . . . , L

}

. The ensemble of

L simulated values �
(l)
αβ is an empirical model of the uncertainty attached to the value

of the boundary statistic between Aα and Aβ . The mean of the boundary statistic can
be computed as the arithmetical average of the L simulated values:

�s
αβ = 1

L

L
∑

l=1

�
(l)
αβ (10)

At each location uα the average of simulated risk values, known as E-type estimate,
is approximately equal to the kriged risk (Goovaerts 2006):

r̂E (uα) = 1

L

L
∑

l=1

r (l)(uα) ≈ r̂P K (uα) (11)

Despite the equivalence of the E-type and Poisson kriging estimates, the statistics
�∗

αβ and �s
αβ are likely different since the absolute value function is convex
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(Lu and Carlin 2005), more precisely:

�s
αβ = 1

L

L
∑

l=1

∣
∣r (l)(uα) − r (l)(uβ)

∣
∣

2

≥ 1

2

∣
∣
∣
∣
∣

1

L

L
∑

l=1

r (l)(uα) − 1

L

L
∑

l=1

r (l)(uβ)

∣
∣
∣
∣
∣

= 1

2

∣
∣r̂E (uα) − r̂E (uβ)

∣
∣ = �E

αβ ≈ �∗
αβ (12)

Correlated sets of risk values, {r (l)(uα), α = 1, . . ., N}, are generated through the
sampling of the set of Gaussian distributions of type (9) by a set of spatially correlated
probability values {p(l)(uα), α = 1, . . ., N}, known as probability field or p-field.
The simulated risk value at uα is thus generated as:

r (l)(uα) = F−1(uα; p(l)(uα)|(K )) = r̂P K (uα) + σP K (uα)y(l)(uα) (13)

where y(l)(uα) is the quantile of the standard normal distribution corresponding to
the cumulative probability p(l)(uα). The L sets of random deviates or normal scores,
{y(l)(uα), α = 1, . . ., N}, are generated using non-conditional sequential Gaussian
simulation which is described in details in Goovaerts (2006).

2.4 Neutral models

Testing the significance of the difference between risks in adjacent entities Aα and Aβ

amounts at testing whether the boundary statistic is significantly different from zero or
not. This test requires the comparison of the observed statistic �∗

αβ (or the distribution

of simulated statistic values �
(l)
αβ) to a reference distribution generated under a null

hypothesis. The term “Neutral Model” captures the notion of a plausible system state
that can be used as a reasonable null hypothesis, e.g., the hypothesis of uniform risk.

Let
{

�
( j)
αβ|H0

, j = 1, . . . , J
}

be the set of boundary statistic values generated under

the null hypothesis H0. The p-value is the probability that the test statistic takes on a
value that is at least as extreme as the observed value when H0 is true. It is computed
as:

pαβ = 1

J + 1

⎛

⎝1 +
J

∑

j=1

i ( j)
αβ

⎞

⎠ (14)

where i ( j)
αβ = 1 if the observed boundary statistic exceeds �

( j)
αβ|H0

, and zero otherwise.
When an empirical distribution for the boundary statistic exists, which takes the form
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of a set of simulated values
{

�
(l)
αβ, l = 1, . . . , L

}

, the p-value is computed as:

pαβ = 1

L J + 1

⎛

⎝1 +
L

∑

l=1

J
∑

j=1

i (l j)
αβ

⎞

⎠ (15)

where i (l j)
αβ =1 if the simulated statistic �

(l)
αβ exceeds �

( j)
αβ|H0

, and zero otherwise. The
p-value is compared to the significance level chosen by the user and representing
the probability of rejecting the null hypothesis when it is true (Type I error). The
edge between Aα and Aβ is declared significant if the p-value is no greater than the
significance level.

The common way to generate the reference distribution under the null hypothesis
H0 of uniform risk is to shuffle randomly the set of observed or smoothed rates, then

the boundary statistic is computed for all pairs of adjacent entities,
{

�
( j)
αβ|H0

,∀α, β
}

.

This operation is repeated J times, i.e., J =999 in this paper. The main drawback
of this randomization procedure is that it implies a typically unrealistic assumption
of spatial independence of rates. Intuitively, ignoring the spatial correlation of rates
would lead one to overestimate the value of the boundary statistic expected under the
null hypothesis, thereby increasing the risk that significant edges go undetected (i.e.,
larger proportion of false negatives or type II errors).

To account for the spatial pattern of rates the random shuffle can be replaced by
the spatially ordered shuffling procedure proposed by Goovaerts and Jacquez (2004).
The idea is to generate a standard normal random field with a given spatial covariance,
e.g., the covariance of the risk CR(h), using non-conditional sequential Gaussian sim-
ulation. Each simulated normal score is then substituted by the value of same rank in
the distribution of observed or smoothed rates. For example, the maximum simulated
normal score indicates the location of the maximum observed or smoothed rate in the
re-ordered map.

A limitation of the above ordered shuffle is that it ignores the population size within
the different geographical units, hence the locally varying reliability of the boundary
detection analysis. To account for both the spatial pattern and population sizes, a sto-
chastic simulation procedure similar to the one described in Sect. 2.3 can be used to
generate the neutral models. In this paper, neutral models under the null hypothesis of
uniform risk were generated as:

r ( j)(uα|H0) = m∗ + σP K (uα)y( j)(uα) α = 1, . . . , N (16)

where m* is the population-weighted mean of all N rates, and σP K (uα) is the Poisson
kriging standard deviation. The J sets of random deviates or normal scores, {y( j)(uα),
α = 1, . . ., N}, are generated using non-conditional sequential Gaussian simulation.

In summary, three types of neutral models can be generated using the following
mechanisms of increasing complexity:

1. Random shuffle of rates, risk estimates or simulated risk values (Model I)
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2. Spatially ordered shuffle of rates, risk estimates or simulated risk values (Model
II)

3. Probability-field simulation (Model III)

These three types of neutral models correspond to the following three null
hypotheses:

1. H0: uniform and spatially random risk, uniform population size (Model I)
2. H0: uniform and spatially correlated risk, uniform population size (Model II)
3. H0: uniform and spatially correlated risk, heterogeneous population size (Model

III)

3 Case study

The new boundary detection method will be illustrated using directly age-adjusted
mortality rates for pancreatic cancer. These data are part of the Atlas of Cancer Mor-
tality in the United States (Pickle et al. 1999) and were downloaded from http://
www3.cancer.gov/atlasplus/download.html. The rates were adjusted using the 1970
population pyramid. The analysis focuses on rates recorded for white females over the
1970–1994 period for 295 counties of 12 New England States. The population at risk
was computed as: 100,000 × the total number of deaths over the 1970–1994 period
divided by the age-adjusted cancer mortality rate; both datasets are available on NCI
website. Figure 1 (top maps) shows the spatial distribution of age-adjusted mortality
rates per 100,000 person-years and the county population at risk.

An objective assessment of performances of the different boundary analyses
requires the availability of the underlying risk map and set of “true” boundaries, which
are unknown in practice. Simulation provides a way to generate multiple realizations
of the spatial distribution of cancer mortality rates under specific scenarios for the
underlying risk. The following sections describe the creation of the reference risk map
and identification of the set of significant edges, followed by the generation of maps
of simulated cancer mortality rates.

3.1 The reference risk map

The reference risk map, {r(uα), α = 1, . . ., N}, was created in two steps:

1. The original cancer mortality map is smoothed by replacing each rate by the pop-
ulation-weighted average of rates recorded in the 32 closest counties, see Fig. 1
(left bottom map). The closeness is measured by the Euclidian distance between
the geographic centroids of these counties.

2. The smoothed rate in each county of Pennsylvania is raised by a mortality of
1.45/100,000 person-years, which corresponds to 20% of the population-weighted
average of all rates recorded in 295 counties, see Fig. 1 (right bottom map).

This operation creates an artificial set of 58 edges that coincide with the Pennsylvania
state limits and are referred to as target edges in the subsequent analysis, see Fig. 2.
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Fig. 1 Generation of the reference risk map. The original map of pancreatic cancer mortality rates is first
smoothed using a population-weighted kernel, then the rate in each Pennsylvania county is raised by a
mortality of 1.45/100,000 person-years. The fill color in each county represents the mortality rate or risk
per 100,000 person-years for the period 1970–1994; the class boundaries correspond to the deciles of the
histogram of raw rates and the same color scheme is used for all cancer maps

Nine additional edges were identified on the original map of smoothed rates based on
the value of the boundary statistic (value >0.3195 deaths per 100,000 person-years)
and its spatial gradient (value >0.7904/100 km), see scattergram in Fig. 2. The final
set of target boundaries thus consists of 67 edges, which represents 8.6% of the total
number of pairs of adjacent counties in the dataset.
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Fig. 2 Scattergram of the boundary statistic versus a measure of spatial gradient (i.e., boundary statistic
divided by Euclidian distance between centroids) for all 781 pairs of adjacent counties in the New England
dataset. Large grey dots depict the target edges that are represented with thick white lines in the reference
risk map

3.2 Simulated maps of mortality rates

Twenty-five maps of simulated rate values were generated from the same underlying
risk map of Fig. 1 using the Poisson simulation procedure described in Goovaerts
(2005). Each map will be considered as a real dataset and undergo the boundary anal-
ysis. Although the choice of 25 as number of simulations is somewhat arbitrary, this
sample size allows one to reduce statistical fluctuations while processing all scenarios
within a reasonable amount of CPU time. The number of cases recorded over each
county Aα is simulated by random drawing of a Poisson distribution whose mean
parameter is r(uα) × n(uα), that is the product of the reference risk by the population
size. The simulated rate is computed by dividing the simulated count by the popula-
tion size. Figure 3 shows the first three realizations generated by this procedure. These
rates will be referred to as “raw rates” in the subsequent analysis.

4 Results and discussion

Each simulated rate map underwent a boundary analysis. Results were compared to
the reference risk map and set of target edges shown in Figs. 1 and 2. The following
four approaches of increasing complexity were implemented:

1. analysis of raw rates
2. analysis of rates smoothed using local empirical Bayes smoother
3. analysis of risk values estimated using Poisson kriging
4. modeling and propagation of uncertainty using p-field simulation (L = 100)
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Fig. 3 Three realizations of the spatial distribution of pancreatic cancer mortality rates generated using
Poisson simulation with the reference risk and population maps displayed in Fig. 1. The units are age-
adjusted mortality rates per 100,000 person-years

Bayes smoothing, Poisson kriging and p-field simulation were performed using the
public-domain executables presented in Goovaerts (2005, 2006). Results of the analy-
sis of the first map of simulated rates (Fig. 3, left top graph) are displayed in Figs. 4–7.
The experimental risk semivariogram for pancreatic cancer mortality was estimated
using Eq. 8 along four directions. Figure 4 (bottom graph) shows the risk semivari-
ogram, while the traditional semivariogram computed directly from the raw rates is
displayed at the top of the figure. On each graph, the solid curve denotes the model
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Fig. 4 Directional semivariograms for pancreatic cancer mortality rates (realization #1 in Fig. 3) computed
using the traditional equally-weighted estimator and the risk estimator (Eq. 8) that accounts for population
size. Azimuth angles are measured in degrees clockwise from the NS axis. The solid curve denotes the
anisotropic (i.e., direction-dependent) model fitted using weighted least-square regression

fitted using weighted least-square regression. The weight is the ratio of the square root
of the number of data pairs N (h) by the semivariogram value, thereby assigning more
importance to the modeling of the semivariogram at the origin. The semivariogram
of the risk is much better structured and has a much smaller sill than the correspond-
ing semivariogram of raw rates. This is expected since the weights in expression (8)
attenuate the influence of extreme rates computed from small population sizes and
subtraction of the correction term m* reduces the variance even more. Accounting
for population size in the semivariogram computation reveals a strong anisotropy,
with smaller variability along the EW direction of azimuth 90◦. Such anisotropy is
consistent with the North–South trend exhibited by the reference risk map.

Figure 5 shows the maps of reference risk values and estimates obtained from the
first simulated rate map by application of local empirical Bayes (LEB) smoother,
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Fig. 5 Maps of reference risk values and estimates obtained from the first simulated rate map by applica-
tion of local empirical Bayes smoother, Poisson kriging, and averaging of 100 realizations generated using
p-field simulation (E-type estimate). The units are age-adjusted mortality rates per 100,000 person-years

Poisson kriging, and averaging of 100 realizations generated using p-field simulation
(E-type estimate). Comparison of the two top maps indicates that the Bayes smoother
overestimates the reference risk in the West Virginia and Maryland counties close to
the Southwest border of Pennsylvania. Visually, Poisson kriging produces a risk map
that is closer to the reference map, which is confirmed by the higher correlation coeffi-
cient with reference values (ρ = 0.91) than the one computed between reference and
LEB risk estimates (ρ = 0.86). As expected in theory (Eq. 11), the maps of E-type
and Poisson kriging estimates are similar (ρ = 0.99). Indeed, the p-field realizations
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Fig. 6 Two simulated maps of probabilities (i.e., probability field) that are used to sample local probability
distributions for the risk, generating the two bottom maps of simulated risk values

are generated by random sampling of Gaussian probability distributions centered on
the Poisson kriging estimates, recall Sect. 2.3.

Figure 6 shows the first two probability fields (top maps) and the corresponding
simulated risk maps. Note the clear EW bands of high and low probabilities, which
reflects the anisotropy displayed by the risk semivariogram model in Fig. 4. Higher
probabilities cause the sampling of the upper tail of local probability distributions,
hence the generation of higher risk values in those counties. The map of Poisson kri-
ging variances that define the spread of local probability distributions of risk values
is displayed in Fig. 7. The scattergram illustrates the higher reliability (i.e., smaller
variance) of risk estimates for counties with larger population size.
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Fig. 7 Map of the Poisson kriging variance and scattergram that illustrates the greater uncertainty of the
risk estimated for sparsely populated counties

4.1 Prediction of the underlying risk

For each of the 25 simulated rate maps, the prediction performance of each approach
was quantified using the mean absolute error (MAE) of prediction of risk values defined
as:

MAE = 1

295

295
∑

α=1

∣
∣r(uα) − r∗(uα)

∣
∣ (17)

where r(uα) is the reference risk value for Aα and r*(uα) is either the raw rate, the
local empirical Bayes estimate (Eq. 4), the Poisson kriging estimate (Eq. 5), or the
E-type estimate (Eq. 11). Table 1 shows, for each approach, the average and extreme
MAE values calculated over the 25 simulated rate maps. Worst results are obtained for
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Table 1 Mean absolute error (MAE) of prediction for four alternate predictors. The average, minimum and
maximum value calculated over 25 simulated rate maps are reported. The last column gives the percentage
of simulations where the MAE for the geostatistical methods is lower than for the local empirical Bayes
smoother

Predictor Average Minimum Maximum % Best prediction

Raw rates 0.6984 0.6413 0.7467
Empirical Bayes 0.2584 0.2252 0.2916
Poisson kriging 0.2345 0.1961 0.2740 92
E-type estimate 0.2348 0.1967 0.2750 92

Table 2 Average of the reference risk values and the estimates obtained using four alternate approaches.
The average, minimum and maximum value of the statistic calculated over 25 simulated rate maps are
reported

Predictor Average Minimum Maximum

Reference risk 7.209 – –
Raw rates 7.210 7.083 7.295
Empirical Bayes 7.303 7.227 7.364
Poisson kriging 7.242 7.165 7.300
E-type estimate 7.242 7.164 7.300

the analysis of raw rates. As expected in theory, the E-type and Poisson kriging esti-
mates perform equally. On average, the geostatistical predictors slightly outperform
the local empirical Bayes smoother. The benefit of Poisson kriging over the Bayes
smoother is however systematic since it leads to smaller prediction errors 92% of the
time. All estimators are globally unbiased: the mean of estimated risk values is close
to the mean of the reference risk map, see Table 2. The largest bias, albeit small,
is caused by the local empirical Bayes smoother that tends to overestimate the risk
values, which confirms the visual interpretation of the maps of Fig. 5.

4.2 Prediction of the boundary statistic

To investigate how the prediction accuracy of the risk value influences the prediction
of the boundary statistic (1), the mean absolute error of prediction of that statistic was
computed as:

MAE = 1

P1

∑

α,β

∣
∣
∣�αβ − �est

αβ

∣
∣
∣ with �αβ =

∣
∣r(uα) − r(uβ)

∣
∣

2
(18)

where �est
αβ is the boundary statistic computed from either the raw rates, the local

empirical Bayes estimates (Eq. 4), the Poisson kriging estimates (Eq. 5), or the E-type
estimates (�∗

αβ in Eq. 12). The MAE statistic is also computed using the average of
simulated boundary values (�s

αβ in Eq. 10). Table 3 shows, for each approach, the
average and extreme MAE values calculated over the 25 simulated rate maps. The
ranking of methods is similar for criteria (17) and (18): Poisson kriging provides more
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Table 3 Mean absolute error (MAE) of prediction of the boundary statistic by five alternate estimators.
The average, minimum and maximum MAE calculated over 25 simulated rate maps are reported. The last
column gives the percentage of realizations where the MAE for the geostatistical methods is lower than for
the local empirical Bayes smoother

Predictor Average Minimum Maximum % Best prediction

Raw rates 0.4556 0.4178 0.4907
Empirical Bayes 0.1027 0.0830 0.1199
Poisson kriging 0.0890 0.0809 0.0985 96
Statistic �E

αβ 0.0890 0.0807 0.0982 96
Statistic �s

αβ 0.1074 0.0925 0.1287 28

Table 4 Average of the reference boundary statistic values and the estimates obtained using five alternate
approaches. The average, minimum and maximum value of the statistic calculated over 25 simulated rate
maps are reported

Predictor Average Minimum Maximum

Reference value 0.1019
Raw rates 0.5263 0.4826 0.5664
Empirical Bayes 0.1200 0.0954 0.1476
Poisson kriging 0.0937 0.0742 0.1187
Statistic �E

αβ 0.0938 0.0743 0.1189
Statistic �s

αβ 0.1329 0.0990 0.1750

accurate predictions than local empirical Bayes smoother for all but one simulations
(24/25). The last two lines in this table indicate that estimating the boundary statistic
from the average of simulated risk values (i.e., E-type estimates) is more accurate
than averaging simulated values of the boundary statistic. This result disagrees with
the findings in Lu and Carlin (2005). The culprit for the poorer performance of the
simulation approach is the over-estimation of the boundary statistic: the average value
of �s

αβ over all counties and simulations is 0.1329, which is much larger than the
reference value of 0.1019, see Table 4. It is also much larger than the average value
of the statistic �∗

αβ (0.0938), which is expected according to expression (12). In other
words, the simulation approach over-estimates the local variability of the risk, which
might be caused by the use of a very smooth reference risk map in this simulation
study. Poisson kriging results are the closest to the reference value, with a slight under-
estimation of the boundary statistic. Local empirical Bayes smoother overestimates
the value of the boundary statistic, though to a lesser extent than the statistic �s

αβ . The
erratic fluctuations caused by the small number problem leads to a boundary statistic,
computed from raw rates, that is five times larger than the reference value.

4.3 Detection of target edges

For the five types of estimators compared in Table 2, the significance of the boundary
statistic was tested using neutral models (J = 999) generated by the three following
mechanisms described in Sect. 2.4:
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1. Random shuffle of rates, risk estimates or simulated risk values (Model I)
2. Spatially ordered shuffle of rates, risk estimates or simulated risk values

(Model II)
3. Probability-field simulation (Model III)

In each case, a p-value pαβ is computed for every pair of adjacent counties Aα and
Aβ , and the corresponding edge is declared significant if pαβ does not exceed a given
significance level α0. Two types of errors could then occur: misclassification of a
non-target edge as significant (type I error or false positive) and misclassification of a
target edge as non-significant (type II error or false negative).

Regardless of the choice of a significance level, it is worth comparing approaches
according to the order of detection of the 67 target edges. For the neutral models I–III,
these 67 edges were ranked according to increasing p-value, that is starting with the
most easily detected edge. The boundary analysis was conducted on the raw rates, the
local empirical Bayes and Poisson kriging estimates, and the simulated risk values.
Each edge is characterized by the following two quantities: the value of the “true”
boundary statistic computed from reference risk values, and the average population
size of the two adjacent counties. The results were averaged over the set of 25 simu-
lated rate maps, and they are plotted versus the relative order of detection in Fig. 8.
Poisson kriging and p-field simulation lead to the early detection of edges between
counties with the largest differences in the underlying risk values, i.e., largest value of
the “true” boundary statistic. The change in the value of the boundary statistic between
the first and second half of target edges is particularly pronounced under neutral model
III. The analysis of raw or smoothed rates does not allow one to discriminate between
edges with large or small change in risk values (i.e., flat curve). When the boundary
analysis is conducted on population-based estimates (i.e., smoothed rates, kriged or
simulated risks), the target edges that separate the most densely populated counties
are detected first, see Fig. 8 (right column). The impact of the population size on the
order of detection increases from neutral models I to III, with a strong effect when the
uncertainty about the boundary statistic (p-field simulation approach) is accounted for
under neutral model III.

4.4 Receiver operating characteristics curves

Detection of target edges that have higher p-values requires the use of higher signif-
icance levels, thereby increasing the risk of type I error or false positive. The most
efficient algorithm is the one that allows the detection of a larger fraction of target
edges at the expense of fewer false positives. This information can be summarized
in Receiver Operating Characteristics (ROC) curves that plot the probability of false
positive versus the probability of detection (Swets 1988). The probability of detection
corresponds here to the proportion of target edges that are detected as the significance
level increases. In practice, 67 significance levels, corresponding to the p-values of
the 67 target edges, are selected. For each of them the probability of false positive is
computed as the proportion of non-target edges that are wrongly declared significant.
Figure 9 (left column) shows the ROC curves obtained for the three types of neutral
models and various estimators for the boundary statistic. Note that the neutral model
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Fig. 8 Characteristics (value of the reference boundary statistic and population of adjacent counties) of the
target edges detected using four estimators for the boundary statistic: raw rates, smoothed (LEB) rates, risk
values estimated by Poisson kriging or simulated by the p-field approach. The edges are ordered according
to increasing p-value calculated under neutral models I–III: edges with low p-values are detected first.
Results are averaged over the 25 maps of simulated rates

III can be applied only to geostatistical estimators. Results are averaged over the 25
maps of simulated rates.

A quantitative measure of the detection efficiency is the relative area above the
ROC curve, which represents the average proportion of false positives. The smaller
this value, the better the detection algorithm. Table 5 shows, for each approach, the
average and extreme values of the proportion of false positives calculated over the 25
simulated rate maps. The ranking of approaches is similar for neutral models I and II:
raw rates cause the largest proportion of false positives, while the fewest errors are
obtained using Poisson kriging. The p-field simulation approach outperforms Bayes
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Fig. 9 ROC curves (left column) and scattergrams of the expected versus actual proportions of false pos-
itives (right column) calculated using three types of neutral models and four estimators for the boundary
statistic. Results are averaged over the 25 maps of simulated rates
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Table 5 Average proportion of false positives necessary to the detection of all 67 target edges using three
types of neutral models and four estimators for the boundary statistic. The average, minimum and maximum
proportions calculated over 25 simulated rate maps are reported. The last column gives the percentage of
simulations where the particular method yields the smallest proportion of false positives

Predictor Average Minimum Maximum % Best results

Neutral Model I
Raw rates 33.0 24.8 43.7 0
Empirical Bayes 17.2 9.63 27.4 4
Poisson kriging 12.7 7.39 18.2 16
Statistic �s

αβ 15.9 10.3 20.4 0
Neutral Model II
Raw rates 34.0 26.5 45.1 0
Empirical Bayes 18.5 10.7 29.1 0
Poisson kriging 12.3 6.86 18.4 68
Statistic �s

αβ 15.3 10.9 21.4 0
Neutral Model III
Poisson kriging 13.2 7.00 19.5 8
Statistic �s

αβ 13.2 6.84 20.3 4

smoothers for the early detection of target edges. The two geostatistical approaches
are the only ones to benefit slightly from the use of spatial neutral models (type
II) over complete randomization (type I). In agreement with the results obtained for
the boundary MAE statistic (Table 3), accounting for the uncertainty attached to the
boundary statistic through p-field simulation generates more false positives than the
more straightforward and less CPU intensive Poisson kriging. Differences between
both approaches become negligible when using neutral model III that accounts for
population size.

4.5 Goodness of the probabilistic model

In addition to minimizing the proportion of false positives, the boundary analysis
should provide a reliable estimate of the risk of these type I errors. In other words,
the significance level should be as close as possible to the actual proportion of edges
that are wrongly declared significant. For each ROC curve displayed in Fig. 9, the
expected and actual proportions of false positives, denoted Fi and F∗

i , were computed
for significance levels corresponding to the p-values of the test for the 67 target edges.
The scatterplots of the two sets of proportions are displayed in Fig. 9 (right column);
the 45 degree line represents the best case scenario. The agreement between both sets
of values can be quantified using the goodness statistic (Goovaerts 2001) defined as:

G = 1 − 1

67

67
∑

i=1

ωi
∣
∣Fi − F∗

i

∣
∣ (19)

where ωi = 1 if F∗
i < Fi , and 2 otherwise. Twice more importance is given to devi-

ations when the proportion of false positives is higher than expected according to the
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Table 6 Goodness statistic measuring the agreement between the actual proportion of false positives and
the significance level used in tests based on three types of neutral models and four estimators for the
boundary statistic. The average, minimum and maximum values calculated over 25 simulated rate maps
are reported. The last column gives the percentage of simulations where the particular method yields the
largest goodness statistic

Predictor Average Minimum Maximum % Best results

Neutral Model I
Raw rates 0.898 0.873 0.919 0
Empirical Bayes 0.676 0.605 0.713 0
Poisson kriging 0.554 0.450 0.628 0
Statistic �s

αβ 0.561 0.472 0.629 0
Neutral Model II
Raw rates 0.822 0.718 0.945 0
Empirical Bayes 0.877 0.814 0.927 0
Poisson kriging 0.772 0.691 0.817 0
Statistic �s

αβ 0.605 0.532 0.656 0
Neutral Model III
Poisson kriging 0.969 0.883 0.994 96
Statistic �s

αβ 0.914 0.857 0.953 4

Table 7 Average p-value for the tests conducted over the sets of target and non-target edges. The average,
minimum and maximum values calculated over 25 simulated rate maps are reported. The last column reports
the ratio of average p-values for non-target versus target edges

Predictor Target edges Non-target edges Contrast

Aver. Min. Max. Aver. Min. Max.

Neutral Model I
Raw rates 0.432 0.255 0.575 0.599 0.209 0.918 1.38
Empirical Bayes 0.496 0.216 0.883 0.801 0.381 0.966 1.62
Poisson kriging 0.573 0.275 0.872 0.856 0.516 0.961 1.49
Statistic �s

αβ 0.596 0.312 0.858 0.808 0.558 0.921 1.36
Neutral Model II
Raw rates 0.251 0.106 0.433 0.420 0.084 0.843 1.67
Empirical Bayes 0.308 0.049 0.756 0.657 0.206 0.920 2.13
Poisson kriging 0.351 0.088 0.727 0.723 0.292 0.883 2.06
Statistic �s

αβ 0.544 0.273 0.813 0.772 0.505 0.894 1.42
Neutral Model III
Poisson kriging 0.141 0.001 0.578 0.532 0.037 0.855 3.76
Statistic �s

αβ 0.159 0.001 0.428 0.399 0.079 0.494 2.51

significance level. Table 6 shows, for each approach, the average and extreme values of
the goodness statistic calculated over the 25 simulated rate maps. The corresponding
average p-value of the tests conducted for target and non-target edges are reported in
Table 7.

Under neutral model I, the p-values of the tests based on the two geostatistical
approaches are unrealistically large and fail to predict the small proportion of false
positives. The best agreement is found for the boundary analysis of raw rates, but it
simply means that the p-value correctly predicts the large number of false positives
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generated by this approach, e.g., average = 0.432 for target edges and 0.599 for non-
target edges. The use of spatial neutral models II increases the goodness statistic for all
approaches, at the exception of the analysis of raw rates that now understates the actual
proportion of false positives. Indeed, accounting for spatial correlation between rates
in the generation of neutral models leads to smaller simulated values of the boundary
statistic (i.e., reference distribution of the test statistic is shifted to the left), hence
a reduction in the magnitude of p-values relatively to neutral model I, see Table 7.
The contrast between target and non-target edges also improved under neutral model
II. There is very good agreement between expected and actual proportions of false
positives when the statistic �∗

αβ based on Poisson kriging estimates is used in con-
junction with neutral model III. The average goodness statistic is 0.969 and there is
a strong contrast between the average p-value of the tests conducted for target and
non-target edges: 0.141 vs. 0.532. This approach outperforms all others for 24 out of
25 simulations, and it is worth noting it also yields the second smallest proportions of
false positives, recall Table 5.

5 Conclusions

The analysis and interpretation of cancer mortality or incidence maps is frequently
hampered by the presence of extreme values caused by the estimation of rates from
sparsely populated geographic entities. This problem is particularly stringent whenever
rare cancers or minority populations are studied. Smoothers, such as the median-based
head banging or empirical Bayes estimators, are routinely applied to stabilize rates.
Yet, these methods fail to account for the fact that rates measured in entities that are
close in the geographic space tend to be more similar than the ones recorded further
apart. Recently, geostatistical variography and prediction were tailored to the situation
where the data are composed of a numerator (i.e., death counts) and a denominator
(i.e., population size). A form of kriging of data with varying measurement errors,
called Poisson kriging, was developed to account for population size in the estimation
of risk values from observed rates. The algorithm is easy to implement and the risk
semivariogram can be calculated from raw rates using a population-weighted esti-
mator. The simulation study in this paper confirmed that the geostatistical approach
systematically outperforms empirical Bayes smoothers for the estimation of cancer
risks.

Mapping rates of cancer mortality or incidence is often a preliminary step towards
the detection of local areas of excess and deficit, which may guide future surveillance
and control activities. Local cluster analysis aims to detect either aggregates of enti-
ties with significantly higher or lower cancer risk (i.e., clusters), or single entities that
differ significantly from their neighbors (i.e., anomalies). Boundary analysis allows a
finer analysis by considering two entities at a time, leading to the detection of signif-
icant changes or edges. The significance of both the cluster and boundary statistics is
typically assessed under the assumption of independence of rates and without a proper
account of the underlying population size. Studies have shown that ignoring spatial
dependence in local cluster analysis can lead to over-identification of the number of
significant spatial clusters or outliers. Unlike the cluster analysis that relies on a mea-
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sure of similarity, boundary analysis is based on a dissimilarity metric whose reference
value under the null hypothesis of uniform risk is overestimated whenever the spatial
autocorrelation of rates is not incorporated in the generation of neutral models. This
paper presented p-field simulation as an innovative way to account for both population
size and spatial patterns in the generation of more realistic neutral models. The use of
these models in statistical tests greatly reduces the magnitude of p-values that reflects
better the frequency of false positives. Fewer errors were also committed when the
analysis was conducted on the risks estimated by Poisson kriging.

The use of p-field simulation to propagate the uncertainty through the computation
of the boundary statistic did not improve over the most straightforward Poisson kri-
ging. The boundary statistic estimates were less accurate and the ROC curves revealed
a larger proportion of type I errors for the simulation approach when the neutral models
were generated by random or spatially constrained shuffling. Under the most complex
neutral model of type III, differences between the kriging and simulation approaches
became negligible. Yet, the availability of multiple simulated risk maps makes pos-
sible statistical inference regarding the existence of connected strings of significant
edges. In other words, the probability for multiple edges to be jointly significant under
the null hypothesis of uniform risk could be numerically approximated from the set
of spatially correlated risk values.
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