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Abstract Landscapes exhibit various degrees of spatial heterogeneity according to
the differential intensity and interactions among processes and disturbances that they
are subjected to. The management of these spatially dynamical landscapes requires
that we can accurately map them and monitor the evolution of their spatial arrange-
ment through time. Such a mapping requires first the delineation of various spatial
features present in the landscape such as patches and their boundaries. However, there
are several environmental (spatial variability) as well as technical (spatial resolution)
factors that impair our ability to accurately delineate patches and their boundaries
as polygons. Here, we investigate how the spatial structure and spatial resolution of
the data affect the accuracy of detecting patches and their boundaries over simulated
landscapes and real data. Simulated landscapes consisted of two patches with para-
meterized spatial properties (patches’ level of spatial autocorrelation, mean value and
variance) separated by a boundary of known location. Real data allowed the investi-
gation of a more complex landscape where there is a known transition between two
forest domains with unknown spatial properties. Boundary locations are defined using
the lattice-wombling edge detector at various aggregation levels and the degree of
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patch homogeneity is determined using Getis-Ord’s G∗. Results show that boundary
detection using a local edge detector is greatly affected by the spatial conditions of
the data, namely variance, abruptness of the spatial gradient between two patches and
patches’ level of spatial autocorrelation. They also suggest that data aggregation is
not a panacea for bringing out the ecological process creating the patches and that
indicators derived from local measures of spatial association can be complementary
tools for analysing spatial structures affecting boundary delineation.

Keywords Edge detection · Local statistics · Spatial autocorrelation · Stationarity

1 Introduction

Landscapes exhibit various degrees of spatial heterogeneity according to the differ-
ential intensity and interactions among natural and anthropogenic processes and dis-
turbances that they are subjected to. The management of these spatially dynamical
landscapes requires that we can accurately map them and monitor the evolution of
their spatial arrangement through time. Maps can be produced by photo-interpreting
aerial photographs, by classifying remotely sensed images or using field data. How-
ever, such mapping requires first the delineation of various spatial features forming
the landscape such as patches and their boundaries. Ideally, natural patches should
be represented using polygons (i.e., vector format) to facilitate their comparison with
anthropogenic landscape features (e.g., cities, counties). In natural landscapes, how-
ever, there are several ecological (e.g., dispersal, disturbance, spatial competition) as
well as technical factors (e.g., spatial resolution of the measurements, edge detection
techniques) that impair our ability to accurately delineate patches and their boundaries
as polygons (Fortin and Edwards 2001).

Ecological patches (e.g., forest stand) are usually determined assuming that for at
least one variable (qualitative or quantitative) its values within the patch are homogen-
eous. The natural landscape features with sharp boundaries are mostly of anthropogenic
origins (e.g., forest logging, especially traditional clear cutting and road construc-
tion) while natural boundaries vary usually over space creating less abrupt (i.e.,
gradual, fuzzy) boundaries (e.g., at a regional scale, from a deciduous to a coniferous
forest). Furthermore, most of the ecological patches are spatially structured (Fig. 1) due
to spatial dependence and spatial autocorrelation processes (Fortin and Dale 2005).
Spatial dependence arises from interactions with other environmental processes (e.g.,
drainage, topography, climate) while spatial autocorrelation is an intrinsic character-
istic of an ecological process (e.g., seeds dispersal, competition). In addition, patches
can be highly variable (i.e., high variance, Fig. 1) and their strength can depend on
the data themselves and their spatial resolution (Gosz 1993), making the detection of
patches (i.e., difference in patches average; Fig. 1) difficult (Fortin and Edwards 2001).

In this study, we investigate the effect of spatial structure and spatial resolution
on the accuracy of detecting patches and their boundaries using both simulated and
real data. Specifically, we examine how “within-patch” spatial structures (i.e., spatial
autocorrelation) and variability (i.e., mean and variance) affect the ability of a local
edge detector, here the lattice-wombling (Fortin and Drapeau 1995), to accurately find
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Fig. 1 Illustration of the effects of high values of variance and spatial autocorrelation in the ability to detect
boundaries among three patches

the location and the width of ecological boundary. This edge detector was favoured
among others (Pitas 2000) as it can detect boundary region/area, not just boundary
line (Fortin and Drapeau 1995; Fortin and Dale 2005). The use of a local measure
of spatial associations (local Getis statistics; Getis and Ord 1992) as an exploratory
analysis for identifying patches is also evaluated.

2 Methods

2.1 Patch and boundary

Operationally, boundaries are defined as connected locations at which large changes
occur between two patches based on a given attribute (i.e., species abundance, species
type) where each patch shows a relative level of homogeneity for that given variable
(Jacquez et al. 2000). In order to evaluate how spatial structures and variability, as
well as scale of analysis, affect the accuracy of local operators, both simulated and
real data were used: simulated landscapes allowed to control for (parameterize) spatial
and statistical properties in two patches; real data allowed to investigate how these
local operators are affective on a more complex landscape where there is a known
transition between two forest domains, black spruce and balsam fir but where the
spatial properties of each domain are unknown (unparameterized values). First we
explain how the simulated data were simulated and described the real data. Then we
review the local edge detector algorithm as well as the local spatial association statistic.

2.2 Simulated data

To investigate the effects of known degree of spatial autocorrelation and statistical
values (mean and variance), simulations were produced using a conditional autore-
gressive model (CAR; Csillag et al. 2001; Fotheringham et al. 2000; Cressie 1993;
Haining 1990). The conditional probability distribution of a value at a location is
given by:
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P[z(si)] :∼ Gauss(ρ∗ave(zNi), τi),

where ave(zNi) is the average of the neighbours of location si, ρ the spatial autocorre-
lation value attributed to a patch and τ the conditional variance assigned to the entire
landscape.

This simulation model is an iterative process from which a given iteration is the
result of the modification of the values at locations sampled from the previous iteration.
Locations for which the values to be modified are chosen from a random sub-lattice
and their values are assigned following given conditions. The conditions are to follow
a Gaussian distribution with a patch-specific mean and a global variance (i.e., for the
whole landscape) and to keep a given level of spatial autocorrelation within a patch.

From an original image of 50×50 cells showing two perfectly homogeneous
patches separated by a crisp boundary of known location, location values inside each
patch were modified following the three parameters defined above as follow: (a) 1,
2 and 10 for the conditional variance; (b) a difference of 0, 1, 2 and 10 between
patches’ average; and (c) 0.0, 0.95 and 0.9999 for the spatial autocorrelation (1 being
the strongest level of spatial autocorrelation). Combining all the possible values of the
three parameters leads to 72 sets of conditions. For each set of conditions, 20 replicates
were generated as preliminary analyses on sub-sets of simulations indicated that 40
and 60 replicates yielded to similar results (not shown). For all these sets, the step of
the random sub-lattice used for aggregating was set to three (see Sect. 2.4) and a new
iteration was launched after aggregating a total of 100 locations. The simulation was
stopped after 150 iterations after a visual assessment indicated stability in the spatial
structure of the landscapes. Figure 2 illustrates the landscape spatial differences while
using different values for the three parameters.

2.3 Real data

The real data originate from a digitised forest inventory (SIFORT digitised database)
made in the boreal forest of northern Québec, Canada (Fig. 3). A portion of the Abitibi
region, where the black spruce (Picea mariana) and the balsam fir (Abies balsamea)
forests meet, was selected from the SIFORT database. This sector will therefore serve
to test the ability of the methodology described below to find the boundary between
the black spruce domain (north) and the balsam fir domain (south). Numerical values
of the data represent black spruce percentage coverage and the resolution of the pixels
is 14 ha (350 pixels in longitude and 425 pixels in latitude).

2.4 Local edge detector

Most commonly used edge detectors are local operators that are detecting boundaries
among adjacent locations in terms of strength of gradient (i.e., quantitative difference;
Pitas 2000). These detectors operate as moving kernels, usually defined by square
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Fig. 2 Examples of simulated landscapes following various combinations of spatial and statistical condi-
tions. (a) Is a landscape where there is no spatial autocorrelation within each patch, the global variance is
1 and the difference between patches’ average is 10; (b) shows no spatial autocorrelation in the upper-left
patch but a high level (0.9999 on a 0–1 scale) of spatial autocorrelation in the lower-right patch, a conditional
variance of 1 and no difference between patches’ average; (c) is a landscape where spatial autocorrelation
in each patch and the difference between patches’ average were set to 0 but the amount of global variance
was at its highest (10); (d) the same conditions as (c) except for the amount of spatial autocorrelation in the
lower-right patch, which was set to 0.9999

grids of n × n spatial units (e.g., 3×3 or 5×5, etc.), centered at x, y coordinates
or at a given pixel. Such local operators are therefore sensitive to local heterogeneity
found in the spatial data which will result in local edges that are not corresponding to
boundary (Fig. 1).

Given that the purpose of this study is to investigate the effect of within-patch
properties on the detection of boundaries, most of the existent local edge detectors
could have been used. Here we used the lattice-wombling edge detector that computes
first-order derivatives, m, over immediately adjacent four spatial units forming a square
(Barbujani et al. 1989). The choice of the lattice-wombling is justified by the fact that
it is an edge detector known to ecologists and that tests were developed to assess the
significance of the identified boundaries (Fortin et al. 1996; Oden et al. 1993).

This magnitude of rate of change (hereafter simply referred as edges), m, is com-
puted for the centroid of every 2×2 overlapping window and is position at the centroid
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Fig. 3 Percentage coverage of black spruce (Picea mariana) in the boreal forest of northern Québec,
Canada

of these four adjacent units creating the search window:

m =
√

[∂ f (x, y)/∂x]2 + [∂ f (x, y)/∂y]2

where f (x, y) is a bilinear function of the values at the x and y coordinates of the
units. The maximum number of rates of change computed is the number of rows minus
one times the number of columns minus one.

To test where edges are “high enough” to identify the position of boundaries (here-
after referred as BLs for boundary locations) several approaches can be used: statis-
tical, geographical and arbitrary. In the statistical approach, the significance of each
edge is assessed (Oden et al. 1993). It has been shown however that this method is
not effective because the randomization procedures can have higher values than those
observed so that no edge would be found significant (Fig. 4; Fagan et al. 2003). In the
geographical approach, edges are mapped in a descending order (i.e., from the highest
value to the lowest one) up to the level at which the study area is split into two patches
(Fortin and Drapeau 1995). This method can result in having several isolated edges
(called singletons; Jacquez et al. 2000) over the entire study area making comparisons
among data sets more difficult. In the arbitrary one, edges above a numerical thresh-
old or proportion are considered as boundary locations (BLs) and the significance test
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Fig. 4 Example of observed quantitative values belonging to two patches (circles and squares) along a
transect (a). When the observed values are randomized (b) highest differences are found than in the observed
data which could be interpreted as if there were not distinct patches in the observed data

is based on these boundary units as entities using boundary statistics rather than the
individual edges (Oden et al. 1993). This last approach, although subjective, allows the
comparison among different simulated maps and spatial resolutions. Hence, locations
where the rate of change value was above a given threshold were identified as BLs
and those below the threshold were considered as being part of a homogeneous patch.

For the simulated data (Fig. 2), there are 50×50 cells for a total of 2,401 edges
(n = (ncol − 1) × (nrow − 1) = (50 − 1) × (50 − 1)). From these edges, BLs were
selected using two thresholds: 3% and 10%. The first 3%-threshold corresponds to
the actual number of BLs forming the known boundary separating two homogeneous
patches, where there are 72 BLs (72/2401 ≈ 3%). A second threshold arbitrarily set at
10% was also used as it has been shown to be a good estimator in boundary detection
of ecological and simulated data sets (Fortin 1994). Using that 10%-threshold implies
the definition of 240 BLs (10% of 2,401 cells). Because there is no known boundary in
the real data set, only the 10%-threshold was used for detecting the boundary between
black spruce and balsam fir domains.

2.5 Data aggregation

The lattice-wombling being a local edge detector, it is sensitive to local variation
(noise; Fig. 1). Data aggregation (using the average value) into a coarser resolution
with a 2×2 window is expected to reduce the effect of local variation and to favour the
detection of meaningful ecological boundaries rather than high rates of change caused
by local noise. To avoid any confusion with other terms related to the concept of scale,
aggregation level will be used hereafter. The simulated data were aggregated twice: a
first aggregation (aggregation level 2), where the value of each pixel corresponds to
the average value a of 2×2 window from the original resolution (aggregation level 1),
and a second aggregation (aggregation level 3), where each pixel covers a 4×4 cell
size from the original resolution (aggregation level 1). Real data from boreal forest
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were aggregated at six aggregation levels, producing various resolutions equivalent to
the following cell sizes at original resolution: 2×2, 4×4, 8×8, 16×16, 32×32 and
64×64.

For the simulated landscapes, the true boundary counts 36 BLs at aggregation level
2 and 27 BLs at aggregation level 3. The proportion of BLs found over the original
image at these two aggregation levels is not equal to 3% as it was the case for the
analysis of the first level the original resolution; at level of aggregation 2, the 36 BLs
found to represent approximately 6%, whereas the BLs from the level of aggregation
3 correspond to 20% of the total spatial units. The three latter thresholds (3, 6 and
20%) for the three aggregation levels are hereafter termed true boundary thresholds
at the respective aggregation levels.

2.6 Sensitivity analysis

In order to assess the sensitivity in spatial location of the boundary detected by the
lattice-wombling according to spatial and statistical conditions, a binomial test was
used to evaluate the significance of the number of BLs from a given simulated land-
scape found at the same location as the BLs from the original image (Barbujani and
Sokal 1991). Indeed, overlapping BLs from simulated landscapes with those from the
original image gives an indication of the sensitivity of the edge detection algorithm
by looking for direct overlaps between the two (Fortin et al. 1996). It is the number
of these direct overlaps that is tested under a binomial distribution (overlaps versus
non-overlaps), where the number of trials is the total number of BLs forming the true
boundary at each aggregation level.

Multiscale representations of the results from boundary detection over simulated
and real data were obtained by mapping the amount of spatial occurrences of BLs
across all levels of aggregation (cell sizes from 2×2 to 64×64), for a given location.

2.7 Local spatial association

While edge detectors allow the identification of heterogeneous areas in a landscape,
indices of local spatial association provide information on local levels of homogeneity,
which can also contribute to patches’ identification (Fortin and Dale 2005). Here, we
used the Getis-Ord’s G∗ (Getis and Ord 1992; Boots 2002) which is a local measure
of spatial association. This statistic defines the level of association resulting from a
concentration of similar values in an area (defined by weighted locations) in relation
to all the values of the study area. G∗ is expressed by:

G∗
i =

∑
j Wi j (d)x j∑

j x j

where i = j , Wi j is the connectivity matrix, d is the distance, x a quantitative variable
at a location and i and j are a given location and neighbours respectively. The null
hypothesis for G∗

i states that the sum of the values of all sites j within a radius d (i.e.,
neighbourhood search distance) around site i is not different than the one obtained
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under random conditions. If there is spatial association in the data set, one will observe
a spatial clustering (i.e., patch) of high or low values (relatively to the average of the
distribution). Spatial clusters of high values will be indicated by a positive result of
G∗

i while a negative result indicates clusters of low values.
One of the limits of G∗

i is that it identifies clusters, areas, that are spatially homoge-
neous, because they share similar values that are either high (“hot spots”) or low (“cold
spots”) ones, but the determination of these clusters are all relative to the average value
to start with. Also, significance testing are associated with the Getis-Ord statistics, as
well as with other local indicators of spatial association, is problematic as the presence
of global autocorrelation over the study area violates the assumption of randomness of
the Getis’ statistics, that is the absence of spatial structure at the landscape level (see
Ord and Getis 1995 for a detailed discussion). Because of the problems of significance
testing, G∗

i is not used here on the basis of its statistical significance but rather as an
indicator of local spatial variation for an exploratory analysis.

Local spatial associations were estimated at different scales by using various win-
dow sizes within which G∗

i was calculated: 3×3, 5×5, 7×7, 9×9 and 11×11.
For each location, two measures were used to summarise the local spatial association
(Wulder and Boots 1998): the maximum absolute value of G∗ (Gmax) found through-
out all G∗s computed at various scales and the maximum G∗ distance (MGD), which
corresponds to the scale at which Gmax was found. Gmax thus indicates the highest
level of local spatial association found across scales while MGD identifies the range
(or local extent, neighbourhood size) at which this maximum level of local stationar-
ity (i.e., Gmax) was detected. These two values will be used as exploratory tools to
determine the presence of spatial non-stationarity at local scale and its spatial extent.

3 Results

3.1 Local edge detector

The lattice-wombling results, over simulated landscapes after a thresholding procedure
using an a priori knowledge of the real boundary location (true boundary threshold,
i.e., ∼3% at aggregation level 1), are shown in Table 1. It can be seen that when
the difference between the patches’ average and spatial autocorrelation are fixed, the
accuracy of the boundary detection tends to decrease as the level of variance increases.
Conversely, increasing the difference between the patches’ average augments the acc-
uracy of the boundary delineation when other parameters are fixed. When only spatial
autocorrelation is kept constant, the accuracy of the boundaries’ location follows the
ratio of variance to difference between the patches’ average; accuracy is high when
the ratio is small (low variance, high difference) and it is low when the ratio is high
(high variance, low difference). For a fixed difference between the patches’ average
and a fixed variance, the algorithm appears to be sensitive to the global level of spatial
autocorrelation: as the global level of spatial autocorrelation increases, the lattice-
wombling shows a diminishing accuracy in finding the boundary at the real location.
Fewer replicates show a significant number of BLs detected at the real location when
one or both patches have no spatial autocorrelation (Table 1). The low accuracy of
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Table 1 Number of landscapes (replicates) in which a significant number of direct overlaps was found at
each aggregation level using a true boundary threshold for a total of 20 replicates, where the aggregation
level 1 refers to the original resolution, level 2 is equivalent to a 4 × 4 kernel at the original resolution and
level 3 to a 8 × 8 kernel at the original resolution

Variance Regions’ spatial Difference between regions’ mean
autocorrelation

0 1 2 10

Aggregation levels

1 2 3 1 2 3 1 2 3 1 2 3

1 (0.0, 0.0) 0 0 0 12 20 20 20 20 20 20 20 20
(0.0, 0.95) 2 1 0 5 13 7 17 20 20 20 20 20
(0.0, 0.9999) 2 0 0 3 8 3 14 20 20 20 20 20
(0.95, 0.95) 1 0 0 1 7 2 5 16 20 20 20 20
(0.95, 0.9999) 0 0 0 0 4 3 7 16 19 20 20 20
(0.9999, 0.9999) 0 0 0 2 2 1 2 14 20 20 20 20

2 (0.0, 0.0) 1 0 1 2 6 1 12 20 19 20 20 20
(0.0, 0.95) 2 1 0 1 0 0 5 13 8 20 20 20
(0.0, 0.9999) 0 2 0 3 2 0 5 11 7 20 20 20
(0.95, 0.95) 0 0 0 0 2 0 0 4 1 20 20 20
(0.95, 0.9999) 0 0 0 2 2 0 2 4 2 20 20 20
(0.9999, 0.9999) 0 0 0 1 0 0 0 2 0 20 20 20

10 (0.0, 0.0) 2 1 0 3 1 0 1 0 0 10 20 19
(0.0, 0.95) 4 1 0 1 3 0 0 2 1 6 12 6
(0.0, 0.9999) 7 0 0 6 1 0 2 0 0 9 11 5
(0.95, 0.95) 2 0 0 0 0 0 2 0 0 2 3 4
(0.95, 0.9999) 1 0 0 2 0 0 2 1 0 2 1 0
(0.9999, 0.9999) 1 1 0 2 0 0 2 1 0 7 3 0

boundary delineation due to a high ratio of variance to patches’ difference is further
decreased by a high level of spatial autocorrelation. Results from edge detection using
a 10%-threshold (Table 2) suggest that it is an appropriate arbitrary estimator as they
are comparable to those obtained using the true boundary threshold.

3.2 Aggregation

The aggregation level has an asymmetric effect on the lattice-wombling algorithm
depending on the spatial structures of the simulated data. When the variance is low
and the difference between patches’ average is high (i.e., small ratio of variance to
patches’ difference), results are enhanced in comparison to those obtained at the orig-
inal resolution (Table 1). When the variance is high, results from level of aggregation
2 are less different than those from the lattice-wombling, even less accurate. There
is also a slight decrease in sensitivity to spatial autocorrelation as when one or both
patches have no spatial autocorrelation, the algorithm shows a more accurate delin-
eation of the true boundary. At aggregation level 3 the algorithm performs slightly
better than at both first and second levels of aggregation when the variance is low
(Table 1). However, when the ratio of variance to patches’ difference is high, there is
no improvement in the algorithm’s accuracy. When compared to the second level of
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Table 2 Number of landscapes (replicates) in which a significant number of direct overlaps was found at
each aggregation level using an arbitrary 10%-threshold for a total of 20 replicates, where the aggregation
level 1 refers to the original resolution, level 2 is equivalent to a 4 × 4 kernel at the original resolution and
level 3 to a 8 × 8 kernel at the original resolution

Variance Regions’ spatial Difference between regions’ mean
autocorrelation

0 1 2 10

Aggregation levels

1 2 3 1 2 3 1 2 3 1 2 3

1 (0.0, 0.0) 2 0 0 11 19 20 14 20 20 20 20 20
(0.0, 0.95) 1 1 0 8 15 5 18 20 20 20 20 20
(0.0, 0.9999) 2 0 0 3 10 5 15 20 20 20 20 20
(0.95, 0.95) 0 0 0 1 8 5 3 15 19 20 20 20
(0.95, 0.9999) 0 0 0 0 2 2 9 14 19 20 20 20
(0.9999, 0.9999) 1 0 0 3 2 4 2 14 19 20 20 20

2 (0.0, 0.0) 0 0 0 2 8 5 14 20 19 20 20 20
(0.0, 0.95) 2 1 0 0 1 0 5 11 8 20 20 20
(0.0, 0.9999) 0 2 0 1 2 1 4 13 8 20 20 20
(0.95, 0.95) 0 0 1 0 1 0 2 5 3 20 20 20
(0.95, 0.9999) 0 0 0 1 4 0 1 5 4 20 20 20
(0.9999, 0.9999) 0 0 0 0 0 0 0 2 7 20 20 20

10 (0.0, 0.0) 1 0 0 2 1 0 0 3 0 12 20 20
(0.0, 0.95) 4 2 0 2 2 1 2 1 0 3 12 8
(0.0, 0.9999) 2 1 0 2 0 0 1 2 0 7 11 7
(0.95, 0.95) 0 0 0 0 0 0 1 1 0 0 3 5
(0.95, 0.9999) 0 0 0 0 0 0 2 1 1 1 1 1
(0.9999, 0.9999) 2 0 0 0 0 0 1 0 0 4 2 3

aggregation, there is a decrease in the algorithm’s ability to detect the true boundary
that follows an increase in variance and a diminution in the difference between patches’
average. With regards to spatial autocorrelation, the algorithm is less sensitive at the
second level of aggregation than at the first. Results from the third level of aggregation
suggest an enhanced accuracy in comparison to the original resolution but not to the
second level of aggregation.

When observing the effect of aggregation on BLs location from their spatial
occurrences in simulated landscapes (Fig. 5), one notices that when there is no spatial
autocorrelation in either patch, a high ratio of variance to patches’ difference makes
it impossible to identify a cohesive boundary. When the variance and the patches’
difference are of the same value (ratio = 1), the true boundary is visible but at a coarse
resolution as it was already visible after the edge detection at the third level of aggre-
gation. A low ratio leads to a clear picture of the true boundary, mostly resulting from
the BLs found at the second and third levels of aggregation. In the presence of spatial
autocorrelation in one of the two patches, using a multiscale representation provides
more or less the same results as when spatial autocorrelation is null for both patches
in cases where the ratio of variance to patches’ difference is low. It is when the ratio
is close to or greater than one that such a representation brings new perspectives to
identifying the landscape’s patches. Indeed, even though the boundary does not appear
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Fig. 5 Sum of spatial occurrences of BLs over the 20 replicates (white = 0 and black = 20) at the three
aggregated levels (2 × 2, 4 × 4 and 8 × 8) where a conditional variance of 1 and there is no spatial
autocorrelation in the upper-left patch but a high level (0.9999) in the lower-right patch, while the difference
between patches’ average is: 1 in the upper row, 2 in the middle row and 10 in the lower row

clearly under these conditions, this type of representation allows us to appreciate the
differences in spatial structures between the two patches, especially those detected at
the lower aggregation levels.

The results on simulated landscapes shown that a multiscale representation of the
boundaries can be informative on the behaviour of spatial structures across aggregation
levels. In Fig. 6, each pixel shows the number of times this location was defined as
a boundary across all aggregation levels over the real data. High spatial occurrences
of BLs across aggregation levels suggest stability in the spatial structure of ecotones
(i.e., gradual boundary area rather than a sharp boundary). Moreover, mapping spatial
frequencies of boundaries can provide information on the level of fuzziness of the
boundaries across scales by indicating less stable transition zones. One can see that
darker areas in Fig. 6 correspond to sharp transitions, from 20% to 40% black spruce
cover or from 10% to 30% (Fig. 3), and that the boundaries’ fuzziness (i.e., areas of
lower BLs occurrences) can be associated to zones of high local heterogeneity in cover
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Fig. 6 Spatial occurrences of BLs across aggregation levels over the boreal forest data. Each location is
given the value corresponding to the number of times (from 0 to 6) it has been detected as a BL across all
analysed aggregation levels

percentage. Table 3 provides similar information from the proportion of areas defined
as BLs at each aggregation level. Let us note that due to the various resolutions used
after aggregating the data, the number of pixels can be misleading; it is preferable
to consider them as areas defined as transition zones across all analysed aggregation
levels (1 pixel = 14 ha at original resolution). These results also illustrate that the spatial
structure of the transition between the black spruce domain and the balsam fir domain
is relatively stable across aggregation levels (around 10% of whole landscape).

3.3 Local spatial association

Figure 7 shows a map of the maximum values of spatial association found across all
the aggregation levels analysed (Gmax): dark green and dark blue colours indicate
the highest levels of spatial association where positive spatial association (i.e., homo-
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Table 3 Total number of BLs
and proportion of landscape
defined as transition areas at
each aggregation scale from the
boreal forest data

Aggregation scale Number of BLs % Landscape

2×2 13,472 0.1218
4×4 10,896 0.0985
8×8 10,368 0.0938

16×16 10,432 0.0943
32×32 11,520 0.1042
64×64 12,288 0.1111

geneity) is presented in green and negative spatial association (i.e., heterogeneity) in
blue. The northern part of the area seems relatively homogeneous with a vast region
of the same colour, that is, dark green indicating clusters of high values. The southern
part appears more heterogeneous as many locations indicate low spatial association
(yellow tints). However, low G∗ values have to be interpreted with caution as they
could also indicate clusters of medium values (Wulder and Boots 1998). Figure 8
illustrates the aggregation levels at which Gmax values were obtained (MGD values).
The homogeneous patch in the northern area appears clearly as it reached its high-
est level of spatial association at the highest aggregation level used (11×11 window

Fig. 7 Variations in Gmax values over the boreal forest data
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Fig. 8 Variations in MGD values over the boreal forest data

size). However, MGD does not allow for the identification of other clearly defined
homogeneous patches as the southern portion of the landscape is characterised by a
highest level of spatial homogeneity obtained at the lowest aggregation level (3×3
window size), suggesting a rather heterogeneous area.

4 Discussion

This study aimed at evaluating the effect of within-patch (local) spatial structures
on the accuracy of local operators for locating patches and their boundaries. It was
found that spatial autocorrelation greatly contributes to variations in the accuracy
of boundary delineation by the lattice-wombling algorithm at different aggregation
scales. Spatial autocorrelation affects the delineation of the true boundary by creating
“inner-patches”, that is, small clusters inside each patch. These inner-patches (or sub-
patches) create “inner-boundaries” that are detected by the lattice-wombling as BLs.
Local spatial heterogeneity (measured heterogeneity) thus impacts on the algorithm’s
performance in accurately delineating boundaries.
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Variance plays a determining role on the accuracy of boundary delineation as well.
The true boundary is found less often as the variance of the simulated landscapes
increases. For boundary delineation, having a high level of variance in a landscape
implies that some cells will have values that are not representative of the ecological
dynamic creating the true boundary (Bradshaw and Fortin 2000). Increasing the differ-
ence between patches’ average leads to an increase in the accuracy of the delineation
of the true boundary by the lattice-wombling. Given the fact that the lattice-wombling
is in essence computing differences among adjacent cells, this result was expected. A
high difference between the patches’ average creates a sharp rupture in the landscape
that is easily detectable by the lattice-wombling; in such cases, adjacent cells located
on each side of the boundary will present higher rates of change than if they are part of
two patches sharing similar values. Hence, the ratio of variance to difference between
patches’ average affects a local edge detector’s precision in finding the true boundary
by varying the sharpness of the spatial gradient between two patches in the measured
landscape. Therefore, when delineating boundaries, one has to consider, if not control
for, both the combined effect of patches’ average and variance and the presence of
spatial autocorrelation in the data. The accuracy of a boundary delineation using a
local edge detector will decrease with the presence of spatial autocorrelation in the
data as well as with an increase in the ratio of variance to difference between the
patches’ average.

Following aggregation, some inner-patches and noise are smoothed out after
being averaged with their surrounding at aggregation level 2. Although the algorithm’s
accuracy is generally enhanced after aggregating the data, the third level of aggrega-
tion does not provide a better delineation of the true boundary for all conditions. It
is possible that significant differences between cells (i.e., rates of change indicating
the true boundary as opposed to those created by inner-patches) are also smoothed
out during the aggregation procedure since they are not high enough in comparison
to those created by a high variance (Fortin 1999; Palmer and Dixon 1990). Indeed,
data aggregation by averaging their values tends to decrease the amount of variance
that makes the scalable-wombling detect BLs where no real boundaries exist. When
the variance was relatively low, there has been an increase in the accuracy of the
detection of the true boundary following the aggregation of the data as the scale of the
analysis was gradually shifted towards the overall tendency of the ecological process
(i.e., the underlying process at the origin of the two patches) and account less for the
local variability. However, when the variance is high, aggregating the data leads to a
diminution of accuracy that is caused by the fact that the variability of the data is too
high for the edge detection algorithm to capture well the underlying process at the
origin of the true boundary.

The combination of variance and difference between patches’ average leads to two
tendencies with respect to scaling: aggregating the data decreases the accuracy of the
boundary delineation in cases where a high variance is combined with a low differ-
ence between the two patches’ average (high ratio of variance to patches’ difference),
whereas the performance of the algorithm is increased when a low variance is coupled
with a high difference in mean values (low ratio of variance to patches’ difference).
It suggests that aggregating smoothes out small differences between the cells located
at or near the boundary by averaging together cells that are part of different patches.
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This leads to a smoothing out of true location of the boundary. Such smoothing of the
true boundary can create spatial changes in the cells’ values that do not represent the
underlying ecological dynamic but rather that are resulting from the noise in the data.
Thus, aggregating improves the accuracy of the boundary detection when the ratio of
variance to difference between patches’ average is low, but not is cases where it is
high, and it does not show to make much difference within the spectrum of spatial
autocorrelation conditions.

Even though these results suggest that the aggregation procedure leads to a reduction
in the accuracy of the delineation of the true boundary under certain conditions, one
has to keep in mind that these results were obtained from simulated landscapes, of
which the extent was kept constant (i.e., the landscape always represented the same
surface). Indeed, the scale at which a landscape is analysed is defined by both its grain
and its extent (Turner et al. 2001; Csillag et al. 2000), where the grain refers to the
size of the spatial units (i.e., resolution) and the extent is the surface area covered by
a landscape. This study shows the limit of aggregating a data set by modifying only
the grain (resolution) of the landscape. Thus, when the ratio of variance to patches’
difference is high, it is sometimes necessary to expend the extent of a landscape in
order to allow the overall spatial trend to be more explicit. By modifying the extent,
it can be expected to find more homogeneity and therefore, to increase the accuracy
of an edge detection algorithm.

One has nonetheless, as proven by these results, to remain cautious about the level
of spatial autocorrelation found inside patches, regardless of the extent, as it affects
greatly the accuracy of the edge detection. The accuracy of boundary delineation fol-
lows statistical properties based on the level of the ratio of variance to difference
between patches’ average but the presence of spatial autocorrelation confounds this
relation: a small ratio coupled with a low level of spatial autocorrelation creates con-
ditions where the true boundary can be found with reasonable accuracy whereas, at
the opposite, an accurate delineation is more uncertain when both the ratio and the
level of spatial autocorrelation are high. Even though each condition does not affect
the accuracy of the boundary detection the same way, these results illustrate that the
importance of these conditions have to be known or controlled for when delineat-
ing boundaries using local edge detection algorithms. Unfortunately, it is obviously
impossible to determine such properties of the patches to be detected before con-
ducting the analysis (or only by expecting the presence of spatial autocorrelation in
the data based on the nature of the ecological process) and one has therefore to rely
on exploratory analyses prior to the boundary detection procedure. Indices derived
from the G∗

i statistic (Gmax and MDG) have been used on real data as examples of
exploratory tools for getting information on local variations in the spatial structure of
a landscape prior to a boundary analysis.

The multiscale representation obtained from mapping the occurrence of BLs at each
location for all analysed aggregation levels enables to understand how spatial structures
behave through scales. It seems that such a representation reproduces information
obtained from boundary detection at individual aggregation levels except when there is
a difference in the patches’ level of spatial autocorrelation. It minimizes the uncertainty
arising from the asymmetrical effect of aggregating the data that varies depending on
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the spatial structure of the landscape, which can be a useful precaution when spatial
autocorrelation is suspected in the ecological process under investigation.

From the real data from the boreal forest one can see a resolution-variant pattern
(Fig. 6), even an embedded structure, suggesting that a field representation using a
single resolution might not be the most appropriate geographical model from which
boundaries can be delineated. Indeed, because of the non-stationary state of the eco-
logical dynamic from which originates the landscape, areas of transition (zones of
local heterogeneity) are not at the same locations across scales and so, this ecological
dynamic might be better represented using a scale-variant geographical model.

Identification of BLs across scales (Table 3) allows the observation of the behaviour
of the spatial structure across scales. Having a proportion of BLs to the whole landscape
that is stable around 10% indicates a certain stability in that the total areas defined as
transition zones remains the same, even if these ecotones are not always delineated at
the same locations depending on the scale of analysis. A variation in this proportion
of BLs would indicate changes in the importance of transition areas in relation to the
entire study area, possibly originating from shifts in the detected ecological signal
across scales. It is worth mentioning that this proportion is not an artefact of the 10%-
threshold used to define boundaries. In effect, this arbitrary threshold implies that BLs
are defined following the value of the 10th decile of the ranked distribution of the rates
of change. However, at this rank the actual value of the rate of change can be shared
by many locations (cells) and therefore the cut-off between BLs and non-BLs is also
re-adjusted to include all other locations sharing the same value of rate of change than
the one found at the 10%-threshold. Therefore, the actual number of BLs can represent
a different proportion of locations than 10%.

As for the simulated data, aggregating the data from the Abitibi study region only
by modifying the resolution might not be enough for reaching other spatial structures.
It is presumed that by modifying the extent of the area as well, it would have been
possible to aggregate using coarser resolutions and probably observe abrupt changes
in the proportion of transition areas across scales corresponding to shifts from one
functional scale to another (Cao and Lam 1997). Cao and Lam (1997) describe the
functional scale as the range of observational scales (spatial resolutions or grain sizes)
in which the spatial structure remains relatively stable for there are no major changes
in the ecological signal captured. Changes in functional scale occur when the most
explicit ecological process changes, for example, from individual trees to a forest, that
is from one ecological manifestation to another (Cao and Lam 1997). In the case of
the Abitibi data, we could expect from such a shift the emergence of two distinct,
and relatively homogeneous, forest domains (patches) in comparison to the somewhat
heterogeneous landscape at original resolution (Fig. 3).

The northern region of the Abitibi data appears very smooth with a high level of
spatial autocorrelation (i.e., a very homogeneous patch). A transition is also visible
between this patch and the other one, in the south of the study area, which shows more
local heterogeneity. MGD indicates local ranges of homogeneity, that is the vicinity
within which the highest level of homogeneity is found and can therefore be comple-
mentary for detecting shifts in the functional scale. One can see that it allows the visual
delimitation of the northern patch, delineating its boundary at the north of the transition
towards the southern patch. The latter, however, does not appear as clearly but it can be
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presumed that it would have appeared more homogeneous if MGD had been computed
using larger neighbourhoods (window sizes). Nonetheless, one can appreciate the
usefulness of MGD for distinguishing patches with different spatial structures. Indeed,
even without computing MGD over larger neighbourhoods, which often necessitate
landscapes of a greater extent, it is possible to identify different patches, provided that
their spatial structures’ characteristics are used as attributes to define them. As shown
by these results, Gmax can help identifying the presence of spatial non-stationarity and
its variation throughout the landscape while MGD could provide useful insights for
defining the resolution at which each area is better represented for boundary detection
(Philibert 2002).

5 Conclusion

Within the scope of our simulations, we demonstrated that boundary detection using
a local edge detector is greatly affected by the spatial conditions of the data, namely
variance, abruptness of the spatial gradient between two patches and patches’ level
of spatial autocorrelation. Inner-patches and ratio of variance to patches’ affect the
accuracy of the delineated boundaries using local edge detectors, depending on their
magnitude and mutual influence. One has therefore to be cautious when analysing
spatial patterns of boundaries of non-stationary processes using such local edge detec-
tors. Ideally, spatial and statistical conditions would be controlled for in order to allow
for a “truer” representation of the ecological dynamic but unfortunately, “translating”
raster information (i.e., continuous fields) into vector objects is a complex task as it
necessarily implies uncertainty and loss of information.

It has also been shown that data aggregation is not a panacea for bringing out more
clearly the ecological process creating the patches. Depending on the landscapes’
conditions, aggregation can mask meaningful ecological variability in the vicinity
of the boundary. However, the question of scale remains crucial as the resolution of
a geographical model influences the accuracy of boundaries delineation, either by
inducing local variability when the resolution is too fine, or by masking information
that is meaningful for the analysis. Ideally, one would be able to study a given area
using various extents, for example by sampling larger landscapes than needed. In
practice, however, data collection is often limited by technical and financial resources,
constraints under which the largest possible amount of information is usually gathered.

The multiscale representation obtained from the occurrences of BLs helps to visu-
alise the presence of local variability of spatial structures for conditions under which
the use of a local edge detector implies greater uncertainty (i.e., in the presence of
spatial autocorrelation and variance). However, the pattern of the spatial frequencies
suggests a multiscale spatial structure that is hardly detectable in whole without any
uncertainty if a raster model is used. Developments in geographical models and an-
alytical methods that allow a resolution-variant representation of landscapes would
benefit from boundary detection in complex spatial structures.

Before going through a boundary detection process, one might have to adjust the
aggregation level of the data (observational scale). Indicators derived from local mea-
sures of spatial association, such as Gmax and MGD, become complementary tools
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for analysing spatial structures affecting the accuracy of the patch/boundary delin-
eation. This study has shown that they cannot only identify the local ranges of spatial
autocorrelation, and from there the functional scales, but also directly contribute to the
delineation of spatial objects as exploratory tools for informing on the local variability
of the spatial structure.
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