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Abstract We propose a Bayesian dynamic factor process convolution model for multivar-
iate spatial temporal processes and illustrate the utility of this approach in modeling large
air quality monitoring data. Key advantages of this modeling framework are a descriptive
parametrization of the cross-covariance structure of the space-time processes and dimension
reduction features that allow full Bayesian inference procedures to remain computation-
ally tractable for large data sets. These features result from modeling space-time data as
realizations of linear combinations of underlying space-time fields. The underlying latent
components are constructed by convolving temporally-evolving processes defined on a grid
covering the spatial domain and include both trend and cyclical components. We argue that
mixtures of such components can realistically describe a variety of space-time environmental
processes and are especially applicable to air pollution processes that have complex space–
time dependencies. In addition to the computational benefits that arise from the dimension
reduction features of the model, the process convolution structure permits misaligned and
missing data without the need for imputation when fitting the model. This advantage is espe-
cially useful when constructing models for data collected at monitoring stations that have
misaligned sampling schedules and that are frequently out of service for long stretches of
time. We illustrate the modeling approach using a multivariate pollution dataset taken from
the EPA’s CASTNet database.
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1 Introduction

Large multivariate space-time datasets are often collected to study or monitor environmental
phenomena. For example, in the air quality field, monitoring networks are used to collect
time-series data of atmospheric concentrations of multiple pollutants across a spatial region.
These data are used for a variety of purposes such as determining compliance with air quality
regulations, studying the acute and long-term effects of air pollution exposure, and evaluat-
ing environmental justice concerns. In some situations, the monitoring data may be spatially
interpolated to estimate the pollutant levels at locations or time points where the atmospheric
concentrations are not measured. In other situations, network data may be collected primarily
for assessing global or regional trends in pollutant levels over time. The latter situation is
typically the goal of analyses of data taken from networks with a broad spatial coverage but
limited spatial resolution. These networks are built to provide representative information on
pollutant levels over large spatial regions, as opposed to being designed with a fine enough
resolution to permit accurate spatial interpolation. In addition, such networks usually col-
lect readings at regular intervals of a length appropriate for assessing long-term trends (i.e.,
weekly or quarterly), but are insufficient for accurate temporal interpolation.

In analyzing the type of network data described above, there are a number of complexities
inherent in the data that prevent the use of standard exploratory statistical and graphical analy-
ses as well as the use of formal statistical models. For example, an initial exploratory graphical
approach might produce time-series plots of the concentrations of the multiple pollutants at
a monitoring site in the network. However, based on this type of graphical summary, it may
be difficult to ascertain the complex multivariate/space/time relationships in network data.
This type of graphical representation of network data is limited by the fact that these data are
often misaligned (not collected at the same spatial locations over time or collected at different
temporal resolutions). In addition, individual monitors often malfunction or otherwise cease
to take readings for long stretches of time resulting in large amounts of missing data. These
two issues also impair the use of standard model-based statistical analyses, which are further
limited by the computational demands that result from the large quantity of data available
for analysis. In terms of assessing spatial variation in long-term trends in pollutant levels,
the non-uniformity of the spatial locations of the monitoring sites may inhibit the ability
of traditional space-time models to provide a spatially representative summary of temporal
trends. Motivated by the need to address these issues, we present a model-based technique
for analyzing large multivariate spatial temporal datasets that is amenable to the concerns
of misaligned and missing data collected on a non-uniform monitoring network. Our pro-
posed modeling approach incorporates a latent variable structure of reduced dimension with
respect to the original data. This feature eases the computational demands of model-fitting,
while simultaneously addressing concerns about the ability of data collected on a spatially
non-uniform network to provide representative summaries of spatial and temporal trends.

Our latent variable model for multivariate space-time data is based on the discrete process
convolution approach to modeling spatial data (Higdon 1998). This framework underlies the
dynamic process convolution model for space-time data (Calder et al. 2002; Higdon 2002).
We review these classes of models in Sect. 2 and highlight the features that motivate our
multivariate extension, which is designed to provide efficient summaries of the relation-
ship between multiple types of space-time data in terms of global or regional trends. Our
multivariate extension, which we we term a dynamic factor process convolution model, is
introduced in Sect. 3 and is compared to other standard approaches used to model multivar-
iate space-time data. To illustrate the utility of the proposed model, we present a simulation
study designed to highlight its strengths in Sect. 4. In addition, Sect. 5 discusses an analysis
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of a subset of data taken from the EPA’s Clean Air Status and Trend Network (CASTNet).
Here, our goal is to efficiently report general temporal trends in atmospheric concentrations
of five pollutants over a period of 11 years across the eastern United States resulting from
reductions in pollutant emissions required by the 1990 Clean Air Act Amendment.

2 Background

2.1 Gaussian process models for spatial data

Gaussian processes (GPs) are commonly used to model point-referenced spatial data. If a
spatial process ψ defined over a domain D (typically a subset of R2) is a GP, then the dis-
tribution of all finite subsets {ψ(s)} for all s = (s1, s2, . . . , sN ) ⊂ D is multivariate normal.
Consequently, a necessary condition is that the covariance matrix � associated with the
process at any finite set of locations in D must be non-negative definite. When fitting GP
models to data, this restriction makes the choice of the covariance function of the process
cumbersome. Usually, covariance functions for GP models of spatial data are chosen from a
set of standard parametric families that ensure that the non-negative definite restriction holds
(see Stein 1999, for examples of such families of covariance functions). While the use of
these standard parametric families allows the covariance structure of a GP to be specified
directly, often the covariance functions available from these families may not be appropriate
for modeling spatial data with non-standard, i.e., non-stationary or anisotropic, covariance
structures.

Process convolutions (PCs) are an alternative, constructive approach for specifying GPs
that allow more flexibility in modeling the covariance structure than the direct specification
(Thi ebaux and Pedder 1987; Barry and Ver Hoef 1996). The constructive, as opposed to
direct, nature of the covariance function modeling has led to the increased popularity of PC
models for spatial modeling in recent years (see the examples in Higdon 2002). In the PC
approach, rather than defining the covariance function of the process directly, a GP is created
by convolving a continuous white noise process x defined over D with a smoothing kernel κ
so that

ψ(s) =
∫

D
κs(ω)x(ω)dω, for s ∈ D, (1)

where κs(ω) denotes the value at location ω of the smoothing kernel centered at site s. When
κ is taken to be stationary (i.e., κs(u) = κ(s − u) for all s, u ∈ D), then the resulting
covariance function for ψ is given by

c(�s) = Cov(ψ(s1), ψ(s2)) =
∫

D
κ(ω − s1)κ(ω − s2)dω =

∫
D
κ(ω −�s)κ(ω)dω, (2)

where �s is the vector connecting locations s1 and s2. Further, it can be shown that if κ is
isotropic (i.e., κ(�s) = κ(| �s |)) and either κ is both integrable and square integrable or
c(�s) is integrable and positive definite, then there is a one-to-one relationship between the
covariance function c(·) and the smoothing kernel κ implied by the convolution theorem for
Fourier transforms (see Kern 2000, for a proof).

The moving average construction of ψ guarantees that the implied covariance function
of the GP is positive definite. As a result, this constructive specification leads to increased
modeling flexibility as illustrated by Barry and Ver Hoef (1996), Ver Hoef and Barry (1998),
and Kern (2000). However, a disadvantage of the constructive approach is the computational
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burden of performing the required numerical integration when fitting the a GP with a covari-
ance structure specified using the PC representation to spatial data. However, Ver Hoef et al.
(2004) showed that the Fast Fourier Transform (FFT) can be used to simplify implementation
of the PC model.

In the remaining sections, we do not emphasize the ability of PCs to allow flexibility in
modeling spatial covariance functions. Instead, we focus on their utility in capturing tem-
poral features of space-time processes. In our simulation study and application, we rely on
simple circular Gaussian kernels whose parameters are assumed constant across space. This
assumption is reflected in the notation used in the following sections. While our models could
easily incorporate different types of kernels, we have chosen to focus our efforts primarily
in the temporal domain rather than on exploring kernel choice.

2.2 The discrete process convolution model

Higdon (1998) proposed a model for spatial data based on a discretized version of
Eq. 1, as opposed to using the discretization for numerical integration purposes. In this
approach, a discrete white noise process is defined at a finite set of locations on a coarse grid
{ω1, ω2, . . . , ωM } that covers D, but that does not fill D. This discrete white noise process
is smoothed by the kernel κ to create a continuous spatial process, which we refer to as a
discrete PC. For any s ∈ D, this process ψ̃ can be written so that

ψ̃(s) =
M∑

i=1

κ(ωi − s)x(ωi ), (3)

where x(ωi )
i.i.d.∼ N (0, λx ) and M is the number of locations where the underlying process

is defined. Then for any set of locations s = (s1, s2, . . . , sN ) in D,

ψ̃(s) = Kx, (4)

where x = [x(ω1), x(ω2), . . . , x(ωM )]′ and K is a matrix with rows K(n) = [κ(ω1 − sn),

κ(ω2 − sn), . . . , κ(ωM − sn)].
Typically, point-referenced spatial data are modeled as the sum of non-spatial mean term,

an underlying spatial process (typically a GP), and a measurement error process that is taken
to be spatially independent. For simplicity, we assume that the mean is equal to zero across all
spatial locations, although this assumption will be relaxed later. When the underlying spatial
process component is defined using a discrete PC, for data observed at N spatial locations,
the resulting model can be written as

y(sn) = ψ̃(sn)+ ε(sn) (5)

=
M∑

i=1

κ(ωi − sn)x(ωi )+ ε(sn),

where y(sn) is the observed value at location sn . As above, we assume that the x(ωi )s are
independent and have a N (0, λx ) distribution. The measurement error terms are assumed to
be normally distributed with mean 0 and variance λε independently across the spatial loca-
tions. For a more detailed discussion of implementing spatial models based on discrete PCs,
including issues such as determining the appropriate resolution of the coarse grid and the
form of the kernel, see Kern (2000) and Higdon (2002). An advantage of using the discrete
PC specification of an underlying spatial process over using a standard GP is that the number
of spatial locations where the underlying process is defined does not depend on the number of
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locations where data are observed. This leads to computational advantages in model-fitting
in that the dimension of the spatial component of the model is reduced from N to M . Discrete
PC models have been successfully applied to data arising in a variety of fields of application
(see, for example, Higdon 1998; Higdon et al. 1998; Higdon 2002; Lee et al. 2005).

2.3 Dynamic process convolution models

The discrete PC approach to modeling spatial data can be extended to the space-time arena
in two ways. One approach, used by Higdon (1998), is to convolve a three-dimensional
smoothing kernel with a three-dimensional discrete underlying process x(ωi,t ) defined at M
two-dimensional spatial locations at T time points. In this approach, the x(ωi,t )s are assumed
to be normally distributed with mean 0 and variance λx and to be independent across space
and time. A disadvantage of this natural extension to the spatial discrete PC model is that
inference procedures are computationally challenging for large values of T . To get around
this problem, simplifying assumptions can be made about the form of the smoothing kernel.
For example, κ can be chosen to have a separable form, i.e.,

κ(�s,�t) = κs(�s)κt (�t).

However, this restriction greatly reduces the flexibility of the space-time covariance structure
in that the covariance function of the resulting space-time process is also separable (Higdon
1998).

Alternatively, a temporal component can be incorporated into the discrete PC model by
allowing the latent x process defined on a three-dimensional lattice to be temporally depen-
dent. A space-time process that is continuous in space, but discrete in time, can be constructed
by convolving the x process with a two-dimensional smoothing kernel at each time point. We
use the term dynamic process convolution model (DPC) to describe this type of space-time
model and argue that this temporal extension of the spatial discrete PC modeling approach is
often sufficient in practice since space-time data are typically observed at fixed time steps and
rarely is temporal interpolation the goal of a statistical analysis of such data. If the covariance
of the x process in a DPC is not space-time separable, then it is clear that the covariance struc-
ture of the continuous spatial process created by convolving the latent x process at each time
point is also not separable. In most situations where a non-separable space-time covariance
structure is required, modeling the space-time dependence structure of a temporal process
on a two-dimensional lattice is much more straightforward than specifying an appropriate
three-dimensional kernel to convolve an independent, three-dimensional x process or than
specifying the space-time covariance function directly.

Another motivation for the use of DPC models is that they can be specified as a multivari-
ate state-space model, which can capture a variety of types of temporal dependence structures
and can allow Kalman filtering-type algorithms to facilitate model-fitting when T is large
(Kalman 1960). In introducing the state-space version of a dynamic process convolution
model, we assume the space-time process is observed at N spatial locations at each time
point, however, this is by no means a necessary assumption. In this approach, the observation
at location sn at time t is modeled as

y(sn, t) = K(n)xt + εn,t , (6)

such that the underlying process evolves as

xt = G(Dt−1)+ νt , (7)
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where xt is the vector of the M values of the latent space-time process at time t and K(n) is
the nth row of the matrix K. The function G(·) controls the evolution of the x process and,
in general, is taken to be a function of Dt , the set of values of the x process at all time points
up to and including time t , i.e., Dt = {x(ω1,τ ), x(ω2,τ ), . . . , x(ωM,τ ) : τ ≤ t}. However,
in the models considered in Sect. 3, the evolution of the underlying process will depend on
the values on either the previous time step or the two previous time steps. In other words, the
evolution specification will either be first- or second-order Markov. The distribution of the
measurement error term εs,t is assumed to be N (0, λε), and the distribution of the process or
evolution error term νt is taken to be N (0, �νt ), where �νt is an M × M covariance matrix.
Finally, to complete the state-space model specification, the distribution of x0 is assumed to
be N (m0,C0). Figure 1 illustrates the conditional independence structure of the DPC model.
The spatial process at time t is constructed by convolving the underlying process on a lattice.
Moving from time t to time t + 1, the underlying process evolves according to the evolution
equation (Eq. 7). Then the new underlying process at time t + 1 is smoothed to create
the continuous spatial process at time t + 1. Therefore, conditional on the values of the
underlying x process, the smooth spatial fields are independent over time.

The state-space dynamic PC model defined by Eq. 6 and 7 falls into the general class
of space-time models known as reduced-dimension space-time Kalman filters as defined by
Cressie and Wikle (2002). The reduced-dimension feature of this class of models refers to
the reduction in the spatial dimension of the latent space-time component of the model. In
our case, the dimension is reduced from N to M . An advantage of the DPC model over other
reduced-dimension space-time Kalman filters, such as those based on empirical orthogonal
functions (e.g.,Wikle et al. 2001), is that the temporal dependence in the process is modeled
locally in space. This property of DPC models makes them useful in exploring differences in
temporal trends over space. Other approaches may mask these trends depending on the degree
of dimension reduction. Besides the computational advantages that result from the reduction
in the dimension of the underlying process and the use of the Kalman filtering-type algo-
rithms, these models also have the benefit that they permit descriptive features to be included
in the evolution of the underlying x process. For example, the temporal evolution can be
based on physical assumptions about the temporal evolution of the process as advocated by
Wikle et al. (1998). An example of a physically-based evolution structure in a state-space
DPC model can be found in Xu et al. (2005) where a partial differential equation motivates
the form of the evolution of the latent process. Another descriptive approach to modeling the
temporal evolution of the xs is to allow the evolution function G(·) to depend on unknown
parameters. By using a parametric evolution function, estimates of the evolution parameters
can efficiently summarize the space-time dependence structure of the observed process. This
idea was used by Calder et al. (2002) in a Bayesian state-space DPC model with an evolution
form composed of parameters that describe the directional space-time dependence of ozone
over the eastern United States.

Bayesian versions of state-space DPC models can readily incorporate dynamic linear mod-
eling (DLM) tools used in time-series analysis (West and Harrison 1997) into models for
spatio-temporal data. DLM-based space-time models have been used to analyze processes
where the spatial covariance structure is specified directly. For example, Huerta et al. (2004)
used DLM tools, including autoregressive regression coefficients and variance discounting
methods for specifying error variances, in a model for relating temperature readings and
ozone levels across Mexico City. The multivariate state-space DPC model proposed in the
next section for exploring the cross-covariance structure of multiple space-time processes is
based on the DLM approach to constructing time-series models as sums of latent polynomial
trend and cyclical components described in West (1995).
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Fig. 1 Conditional independence structure of the DPC model. The plot in the top left represents the smooth
spatial field Kxt at time t which is constructed by convolving a discrete process on a lattice (bottom left)
with a smoothing kernel (center left). Going from time t to t + 1 the underlying process evolves over time
according to Eq. 7 as depicted in the bottom plots. The new discrete process at time t + 1 is then convolved
to create the smooth spatial field at time t + 1 from which the data are modeled (based on Eq. 6). Thus, the
smooth spatial fields at any set of time points are independent conditional on the underlying x process

3 Dynamic factor process convolution models

3.1 General framework

When analyzing multivariate space-time data collected to monitor environmental phenom-
ena, often the goal is to provide insight into the dependence between the multiple types of
data and reveal global trends in the space-time processes that generated the data. The goal
in this situation differs from the motivation underlying most spatial models where accurate
spatial prediction or interpolation is typically the main priority. Multivariate spatial models
that are known to have good predictive abilities, such as linear models of coregionalization
(Wackernagel 1998; Gelfand et al. 2004) and shift-factor models (Christensen and Amemiya
2001, 2002), have difficulty accommodating misaligned or large amounts of missing space-
time data and can be computationally prohibitive for large datasets. In addition, these models
are often not able to reveal or summarize important global features of multivariate space-time
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processes through inference on unknown model parameters. For example, when the goal of
a statistical analysis is to assess the overall effect of legislation limiting pollutant emissions
on atmospheric concentrations of primary and secondary pollutant compounds, alternative
models are needed.

The multivariate models developed in this section are based on the Bayesian state-space
DPC framework. In constructing these models, we assume that they will be used to assess
global or regional (as opposed to local) trends in multiple space-time processes and to provide
an explanation for the observed cross-type dependences. Since accurate spatial prediction is
not a priority, we can take the number of locations where the latent space-time processes are
defined to be M where M � N . The resolution of the grid where the underlying process
is defined and the width of smoothing kernels can be chosen as a compromise between the
spatial resolution needed to assess spatial variation in temporal trends and the computational
limitations associated with the implementation of the model-fitting algorithms.

In light of our modeling goals, we define J = J1 + J2 independent underlying processes
on the M grid locations. The first J1 underlying processes are assumed to evolve as spatially
independent random walks. This implies that for j = 1, 2, . . . , J1,

x( j)
t = x( j)

t−1 + ν
( j)
t , (8)

where ν
( j)
t ∼ N (0, I M ⊗ λ

( j)
ν ). The next J2 underlying processes are taken to be spatially

independent cyclic second-order autoregressions. For j = J1 + 1, J1 + 2, . . . , J ,

x( j)
t = (I M ⊗ β( j))x( j)

t−1 − x( j)
t−2 + ν

( j)
t , (9)

where ν
( j)
t ∼ N (0, I M ⊗ λ

( j)
ν ). Due to the second-order dependence of the cyclic compo-

nents in Eq. 9, x( j)
−1 in addition to x( j)

0 (the values of the cyclical underlying processes at
times 0 and −1) must be given a prior distribution; as with the prior assumption on the latent
process at t = 0, we assume that all of the x−1s are a priori N (µ−1,C−1). Therefore,
the first J1 underlying components are first-order polynomials which can describe a variety
of acyclic, smooth temporal trends. The next J2 components have a cyclic structure with a
period determined by β( j). As discussed in West (1995), for β( j) = β, the cyclic component
has a period of 2π/ cos−1(β/2) and the β( j)s can be treated as unknown parameters. How-
ever, in most environmental applications, yearly or seasonal cycles are most prevalent, so we
can often assume these parameters to be known.

Underlying space-time processes with evolution specifications given by Eqs. 8 and 9 can
be embedded in a multivariate state-space framework. If we define yt to be an N × I matrix
corresponding to the I types of data observed at N locations (where again the assumption
that each of the I data types are observed at each spatial location at each time point can easily
be relaxed) and the M × J matrix xt = [x(1)t , x(2)t , · · · , x(J )t ], we can extend the model
given by Eq. 6 as

yt = Kxt F′ + εt , (10)

where V ec(εt ) ∼ N (0, I N ⊗ diag(λε)) such that λε = (λ
(1)
ε , λ

(2)
ε , . . . , λ

(I )
ε ) and where the

operator V ec(·) creates a vector by stacking the columns of its argument. The parameter F
is an I × J matrix that links the J types of underlying processes to the I data types. This
model for multivariate space-time data can be written in the form of a multivariate state-space
model by converting the matrices in Eq. 10 to vectors so that

V ec( yt ) = (K ⊗ F)V ec(xt )+ V ec(εt ). (11)
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Converting the matrices in Eqs. 8 and 9 to vectors, as well as combining the evolution
equations for the two types of underlying processes, allows Eqs. 8 and 9 to be written as

V ec(xt ) = (I M ⊗ G)V ec([xt−1, xt−2])+ V ec(νt ). (12)

In this joint specification of the evolution of both types of underlying components, the
distribution of the evolution error term V ec(νt ) is N (0, I M ⊗ diag(λν)) where λν =
(λ
(1)
ν , λ

(2)
ν , . . . , λ

(J )
ν ). The matrix G is defined based on the evolution structure of the J

underlying processes given by Eqs. 8 and 9. Combining these two evolution models im-
plies that G = [G(1), G(2)] where G(1) is a J × J diagonal matrix with diagonal elements
(1, 1, . . . , 1, β(J1+1), β(J1+2), . . . , β(J )) and G(2) is also a J × J diagonal matrix with the
first J1 diagonal elements equal to zero and the last J2 equal to −1.

In order for the model defined by Eqs. 11 and 12 to be identifiable, constraints must be
placed on the matrix F. While a number of possible constraints are available, we choose to
use a set of restrictions based on those used by Aguilar and West (2000) in their dynamic
factor models for multiple time-series. In our dynamic factor PC model, the matrix F in Eq.
11 will be of the form F = [F(1), F(2)] where

F(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
f (1)2,1 1 0 . . . 0
...

...

f (1)J1,1
. . . f (1)J1,J1

...
...

f (1)I,1 . . . f (1)I,J1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and F(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
f (2)2,1 1 0 . . . 0
...

...

f (2)J2,1
. . . f (2)J2,J2

...
...

f (2)I,1 . . . f (2)I,J2
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The elements of F(1) and F(2) denoted by f are free parameters in the model, and the other
components of F are restricted to be either one or zero. Based on the results in Aguilar
(1998), this restriction on F insures that the likelihood for the data implied by Eq. 11 is
invariant under invertible linear transformations of the underlying factor processes and that
F is of full rank. An artifact of assuming this form for F is that an interpretation of the
latent space-time processes is implied since the first data type is associated with only first
trend and the first cyclical component of the model, the second data type is modeled as a
linear combination of the first trend and the first cyclical component plus the second trend
and second cyclical component, etc. As a result of this artifact, the order of the data types
influences the underlying factors, and therefore, the data types should be ordered in such
a way that the first J data types explain as much of the variation in the I total data types
as possible. Arranging the I data types can be done by performing principal components
decompositions on subsets of the original data or can be chosen based on scientific under-
standing of the relationship between the I space-time processes. Since our modeling goals
are primarily exploratory in nature, fitting various models using different orderings of the
data types may reveal additional information about the dependence structure of the processes.
This strategy of fitting several models is often feasible even with large datasets because of
the dimension reduction features of the model resulting from the fact that M � N and that
J is usually chosen to be less than I . Similar to the issue of ordering the data types, the
choice of the appropriate number of factors J can be based on initial exploratory analyses
or on scientific understanding, and we believe that fitting models with different numbers of
factors can be illuminating. Alternatively, the appropriate number of factors can be chosen
using an information criterion approach or by allowing J (1) and J (2) to be unknown model
parameters (see Lopes and West 2004, for a discussion of various approaches for determining
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the number of factors in Bayesian factor analysis). However, since predictive ability is not of
highest priority and due to the exceptional computational challenges associated with fitting
the number of factors that would likely be prohibitive in our situation, we argue that formally
determining the best value for J is not a necessity.

A mean component can be added to the observation equation (Eq. 11) to allow covar-
iate information to be incorporated into the model or to allow the data of type i , where
i > max(J1, J2), to be modeled as linear combinations of the latent processes plus an overall
mean level specific to type i , which may be appropriate in certain applications. In the latter
situation, the data types i where i ≤ max(J1, J2) do not need to have a unique mean param-
eter since the underlying processes fit their mean. If the mean component for the other data
types are modeled, Eq. 11 can be altered so that

V ec( yt ) = (K ⊗ F)V ec(xt )+ V ec(I N ⊗ µ)+ V ec(εt ) (13)

where µ = (0, 0, . . . , 0, µmax(J1,J2)+1, µmax(J1,J2)+2, . . . , µI )
′.

Finally, as we mentioned before, the restriction of a constant smoothing kernel matrix K
is not necessary. In fact, the ability to allow K to vary with time is an important feature of
the DPC framework. If K depends on time, missing and misaligned data can be handled in a
straightforward manner, without a need for imputation. The underlying process at time t can
be related to only the data that are actually observed at time t . For example, if there is one
location where an observation was not taken at a particular time point, we can simply adjust
the K matrix by deleting the corresponding row. In the same way, the coefficient (K ⊗ F)
relating the underlying processes to the observed values in Eq. 11 can be temporally varying.
This extension would allow the model to handle situations when some types of data at a par-
ticular location are observed, but others are not. Additionally, by adjusting this coefficient,
we can allow the form of the smoothing kernel to depend on time or data type. When spatial
prediction is a priority, such careful modeling of this term can be especially fruitful. However,
since we are predominantly interested in capturing global trends in space-time processes in
our situation, we only adjust the (K ⊗ F) matrix to accommodate missing observations.

3.2 Posterior structure and simulation-based model fitting

The Bayesian DPC model requires the specification of priors on the unknown parameters.
We assume diffuse, conjugate priors for the static model parameters. This assumption cor-
responds to independent normal distributions for the free parameters in the F matrix, which
we denote F f ree, and the free parameters of µ, which we denote µ f ree. The components
of the observation and error variances, λε and λν , respectively, are given inverse gamma
prior distributions. For the dynamic parameters, the xt s, prior distributions only need to be
specified for the initial states, since the prior distributions on the other states are implied by
the evolution structure given in Eq. 12. We assume vague but proper independent normal
priors for the components of x( j)

0 for j = 1, 2, . . . , J and for the components of x( j)
−1 for

j = J1 + 1, J1 + 2, . . . , J . Thus, the joint prior distribution of all unknown parameters can
be written as

p(F f ree,µ f ree,λε,λν, x0, x−1) = p(F f ree)p(µ f ree)

(
I∏

i=1

p(λ(i)ε )

)
(14)

⎛
⎝ J∏

j=1

p(λ( j)
ε )p(x( j)

0 )

⎞
⎠

⎛
⎝ J∏

j=J1+1

p(x( j)
−1)

⎞
⎠ ,
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where x0
.= {x( j)

0 : j = 1, 2, . . . , J } and x−1
.= {x( j)

−1 : j = J1 + 1, J1 + 2, . . . , J }.
The joint posterior distribution of parameters in the DPC is equal to

p(F f ree,µ f ree,λ∗
ε ,λ

∗
ν, x∗

0, x∗−1, x∗| y∗)

where x∗ .= {xt : t = 1, 2, . . . , T } and y∗ .= { yt : t = 1, 2, . . . , T }. We use a simulation-
based approach to analyzing this posterior distribution. In particular, we employ a Gibbs
sampling algorithm (Gelfand and Smith 1990) to iteratively sample from the full conditional
distributions of the model parameters, and we base our inferences on the marginal posterior
distribution represented by the simulated values of the parameters. When implementing our
Gibbs sampler, block sampling is employed to facilitate mixing of our Markov chain. For
each of the static parameters, we sample from the joint full conditional distribution of all
components of the parameters. The dynamic parameters (i.e., x−1, x0, and x∗) can also be
sampled jointly. While this step involves sampling from a high-dimensional (M × K × T )
multivariate normal distribution, the covariance matrix of this distribution is quite sparse
and numerical techniques such as the conjugate gradient algorithm for matrix inversion and
sparse matrix routines can greatly facilitate the computational effort required to sample from
this distribution. We also note that this step of our model fitting strategy is where the benefits
of dimension reduction come into play. If our model had an underlying structure based on tra-
ditional multivariate space-time models that do not have dimension reduction features, then
the corresponding dimension of the x components would be N × I × T . Thus, the dimension
reduction features of our model have the potential to reduce the order of the model-fitting
algorithm by several orders of magnitude compared to competing approaches.

Despite the computational advantages afforded by dimension reduction techniques, sam-
pling from the joint conditional distribution of the xs may not always be possible. This
situation arises primarily when T is large, i.e., when T is on the order of several hundreds
or thousands. When using the dynamic factor PC models to analyze multivariate space-time
process with large T , sampling from the full conditional distribution of x can be performed
using the Forward Filtering Backward Smoothing (FFBS) algorithm (Carter and Kohn 1994;
Frühwirth-Schnatter 1994). The FFBS algorithm makes use of the Kalman filtering recur-
sions to facilitate sampling from the joint distribution of the dynamic, or state, parameters in a
Bayesian state-space models. The original version of the FFBS algorithm was developed for
state-space models with a first-order evolution structure, i.e., the prior distribution of the state
parameter at time t depends only on the state parameters at time t −1. However, the algorithm
can be extended to include higher-order lags in the evolution equation as illustrated by West
(1995). Finally, we note that multivariate FFBS algorithms are amenable to situations where
the dimension of the data changes with t , so they are applicable when using the dynamic
factor PC approach to analyze multivariate space-time data with missing observations.

4 Simulation study

In the process of developing and testing our Gibbs sampling algorithm, several simulation
studies were performed in which data were simulated based on assumed ‘true’ values of
the model parameters, and the posterior distribution of the model parameters resulting from
fitting the model to the simulated data was compared to the ‘true’ parameter values. These
simulations were used to assess the ability of our model to find global temporal trends in
multivariate space-time processes. In addition, they helped assess convergence rates of our
Gibbs sampling algorithm, sensitivity to prior assumptions, and consequences of model mis-
specification (e.g., incorrect number of factors or ordering of the data types). With regard
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to this last concern, our model appears to be fairly robust to the ordering of the data types
so long as types that account for most of the variation in the original data are near the top
of the ordering, but not necessarily in the order in which they were simulated. If the number
of factors is taken to be less than the number of factors used to generate the data, in most
situations our model is still able to pick out some of the factors. In addition, we found that
the fitted factor processes could be used to diagnose model misspecification. If fitted trend
components showed some cyclic behavior or the cyclic components showed a trend, then
the model benefited from being refit with more factors. Similarly, if the number of factors
were chosen to be greater than the ‘true’ number of factors, some of the fitted factor pro-
cesses either appeared to be the same as other factors or they appeared to be noise. Thus,
given the exploratory nature of the dynamic factor PC framework, we feel that it can be used
to successfully gain insight into the dependence structure of large multivariate space-time
processes.

In Fig. 2, we present the results from one of our simulation analyses. The plot in the top
left corner shows the locations of the simulated data points along with the locations of the
underlying process (represented as ‘+’s) and one standard deviation ellipses of the smoothing
kernels. The data at each location were taken to be spatially varying linear combinations of
three time-series (one linear trend, one trend that linearly decreased for the first 30 time
steps and linearly increased for the remaining 30 time steps, and a sinusoidal curve with
a period of 10). The time-series at the data locations represented as squares in the top left
plot are shown in the top right plot. While the data types show some dependence across the
different locations and types, it is not readily apparent how these different series are related.
The bottom plot shows the posterior distributions of the three latent factor processes. The
solid lines correspond to the mean (across the 9 locations of the underlying process) of the
posterior means of each factor process at each time point. The dashed lines correspond to
the 25th and 75th percentiles of the posterior means of the factors across the 9 underlying
locations. Reordering the data types did not dramatically affect these plots, except for the
reordering of the first two trend factors. As expected, the fitted values of the free parameters
in F were sensitive to the orderings of the original data types. However, given both the fit-
ted factor processes and the fitted F matrix, similar conclusions could be drawn about the
dependencies between the different types of space-time data.

5 Air quality assessment example

In this section, we use the dynamic factor PC model to analyze atmospheric concentrations of
five pollutants: sulfur dioxide (SO2), nitric acid (HNO3), particulate sulfate (SO2−

4 ), partic-
ulate nitrate (NO−

3 ), and particulate ammonium (NH+
4 ). These concentration measurements

were taken from a subset of data collected by the Environmental Protection Agency’s (EPA)
Clean Air Status and Trends Network (CASTNet, http://www.epa.gov/castnet/). This net-
work was established to monitor the effectiveness of emissions reductions required by the
1990 Clean Air Act, and according to Lavery et al. (2002) one of the primary roles of the
network was to detect and quantify trends in pollutants.

We focus our analysis on the levels of the five pollutants collected at 55 sites across the
eastern United States shown in Fig. 3. We model the log of the measured concentrations
collected on a weekly basis from January 1990 through December 2000 (572 time points).
An example of the data collected at a single location is shown in Fig. 4. These observations
were taken from a monitor located on the border of Indiana and Ohio (denoted by a triangle
in the map shown in Fig. 3). Each of the pollutant series exhibits a yearly cycle and some of
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Fig. 2 Plots related to the simulation study described in Sect. 4. Top left: Locations of the observed data are
represented by points and squares. The locations of the underlying x processes are denoted by ‘+’s, and one
standard deviation ellipses of the kernels centered on each of the underlying process locations are plotted. Top
right: Time-series plots that depict the simulated data at the locations denoted by squares in the top left plot.
Each graph shows one data type at these four locations. Bottom: As described in detail in the text, these plots
summarize the posterior distributions of the three underlying factor processes

the pollutants show fairly minor decreasing trends. This monitor site differs from many of the
other sites in CASTNet in that it has few missing observations. Other monitors have much
less temporal coverage due to the fact that they were added to the network sometime after
1990 or taken out of the network sometime before 2000. In addition, monitor malfunctions
caused data not to be collected for periods of time at several sites. Examples of sulfur dioxide
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Fig. 3 Locations of the 55 CASTNet monitor locations. The log concentrations of the five pollutants at the
monitoring site represented as a triangle (lat = 39.5, lon = −84.7)) are shown in Fig. 4. The log concentra-
tions of sulfur dioxide registered at the locations represented as a diamond (lat = 41.7, lon = −88.0) and as
a square (lat = 38.9, lon = −89.6) are shown in Fig. 5

concentration levels collected at two sites with less temporal coverage are shown in Fig. 5.
The location of the site corresponding to the top graph is depicted as a diamond in Fig. 3 and
a neighboring site corresponding to the bottom graph is represented by a square. In terms of
the top graph, assessing temporal trends is impeded by the large amounts of missing data.
Our hope is that by borrowing strength from neighboring sites that we will be able to use the
information in the CASTNet data to gain a better understanding of pollutant trends.

In using the dynamic factor PC model to analyze the CASTNet data, we focus our attention
on models with up to three trend components and one cyclic component, based on scientific
knowledge about the relationship between the five pollutants. Atmospheric concentrations of
the pollutants are primarily driven by SO2, NOX , and NH3 emissions and weather variables
as depicted in Figure 6. Based on this understanding, we arranged the series so that: type 1
– SO2, type 2 – HNO3, type 3 – NH+

4 , type 4 – SO2−
4 , and type 5 – NO−

3 .
Prior distributions were assumed to be of the forms discussed in Sect. 3.2. The vague

normal priors were taken to be N (0, 106), and the inverse gamma priors were assumed to be
I G(10−3, 10−3), where the inverse gamma distribution is parameterized so that a random
variable that is distributed as I G(a, b) has mean b/(a − 1). As a consequence of the large
amounts of missing data, we chose to fix the components of the evolution error variances, the
λ
( j)
ν s, to 0.01. We determined that our results were not very sensitive to this assumption based

on comparisons with the results given with these parameters set to 0.1 and 0.001. Despite
the dimension reduction resulting from modeling the underlying process at 34 locations as
opposed to the 55 locations where the data were observed, we fit the modeling using the
FFBS algorithm discussed in Sect. 3.2 to sample from the full conditional distributions of
the xs rather than sampling from their joint distribution directly. Finally, after examining
empirical covariograms of the data, the smoothing kernels were chosen to be circular normal
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Fig. 4 Weekly pollutant concentration levels from a site on the border of Indiana and Ohio (lat = 39.5,
lon = −84.7) from January 1990 to December 2000
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Fig. 5 Top: Weekly pollution concentration levels from a site in northeastern Illinois (lat = 41.7, lon =
−88.0) from January 1990 to December 2000. Bottom: Weekly pollutant concentration levels from a site in
central Illinois (lat = 38.9, lon = −89.6) from January 1990 to December 2000
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Fig. 6 Relationship between the atmospheric concentrations of the five pollutants in our analysis of the
CASTNet data and pollutant emissions
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Fig. 7 Average (taken over the M spatial locations) of posterior means (solid lines) and 25th and 75th
percentiles (dashed lines) of the latent x processes

kernels with a standard deviation of 3
√

2 ≈ 4.25 degrees (see Kern 2000 for details on the
relationship between covariance functions and kernels).

After examining models with up to three trend components and one cyclical component,
we found that one trend and one cyclic component were sufficient for explaining most of the
variation in pollutant data, i.e., adding additional trend factors appeared to be fitting noise
as opposed to signal in the data. As in the simulation study, Fig. 7 summarizes the posterior
distributions of the two factors by presenting the posterior means and 25th and 75th per-
centiles (averaged across the 34 locations of the underlying process) for the two underlying
factors. The posterior means of the free parameters in the F matrix and the components of
the observation error variance are

F̂
(1) =

⎡
⎢⎢⎢⎢⎣

1
0.311 (0.300, 0.324)
0.149 (0.135, 0.163)
0.663 (0.642, 0.680)

−0.107 (−0.136,−0.080)

⎤
⎥⎥⎥⎥⎦ F̂

(2) =

⎡
⎢⎢⎢⎢⎣

1
−0.642 (−0.674,−0.610)
−0.854 (−0.887,−0.821)
−1.352 (−1.392,−1.314)

1.747 (1.681, 1.815)

⎤
⎥⎥⎥⎥⎦
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and

λ̂ε = (0.290(0.285, 0.296), 0.397(0.387, 0.407), 0.338(0.328, 0.349), 0.183(0.177, 0.190),

1.61(1.566, 1.66)).

These results indicate that over the 11-year period, sulfur dioxide levels have decreased
as captured by the first factor. In each of the plots of the CASTNet data we include a vertical
line representing the beginning of 1995, which is the time when emission reduction mandates
went into effect. It is evident that these mandates had an effect on the atmospheric concen-
trations of the pollutants as the time interval corresponding to the most dramatic decline in
the trend factor is centered at 1995. As we would expect, SO2 and SO2−

4 are most heavily
related to the underlying trend factor. HNO3 and NH+

4 show a weaker decline, and NO−
3

levels remained fairly constant over this time period (since the 95 percent credible interval
for f (1)5,1 nearly covers 0). In terms of the cyclic nature of the pollutants, each type of pollutant
showed either a positive or negative relationship with the cyclic factor as a result of their
opposite yearly cycles.

6 Discussion

In our analysis of the multivariate space-time data taken from the CASTNet, we have dem-
onstrated the ability of the dynamic process convolution framework to extract global trends
in spatially dependent data. Since our analysis was driven by a desire to summarize the data
and to provide understanding of the relationships between the multiple pollutants, we have
chosen to present our results by highlighting the latent factor processes and their levels of
uncertainty. We readily admit that our model is not geared toward spatial interpolation or
capturing interesting spatial features of the data such as non-stationarity or anisotropy. While
the DPC framework could in fact allow more precise spatial modeling, this would come with
the expense of increased computational effort and most likely other approaches to space-
time modeling would be more appropriate. Therefore, since CASTNet is designed to inform
about general trends in atmospheric concentrations of pollutants resulting for widespread
emissions reductions, we believe that the dynamic process convolution modeling framework
is appropriate.

Besides the ease of handling missing and misaligned data, another benefit of the modeling
framework that stems from the underlying process being defined on a regular grid is that the
sampling scheme of the data has less of an impact on inferences than would be the case were
the underlying spatial process modeled at the observation locations. The number of moni-
toring sites near the locations of the underlying factor processes will affect the uncertainty
associated with the factor processes. As a result, by summarizing our factors on a regular
spatial grid, we can explore the variation in information about the pollutant levels over space.

Finally, we point out that a priority of future work should be devising numerical and
graphical summaries for reporting the output a dynamic factor PC analyses. Summarizing
only the average of a few summary statistics of the posterior distributions of the underlying
factors does not do justice to the information available from such an analysis. By developing
animated or interactive visualization tools, the output could be better explored for features
such as space-time variation in factor processes and their associated levels of uncertainty.
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