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Abstract We discuss upper level set (ULS) scan as a type of spatially constrained
clustering in relation to two ways of imposing the spatial constraint, retrospec-
tively versus progressively. We show that ULS scan produces the same results both
ways; whereas two popular clustering techniques, single-linkage and K-means, can
yield different results when spatial constraints are imposed retrospectively versus
progressively. The ULS scan approach examines spatially connected components of
a tessellation as a threshold is moved from the highest level (value) in the data to the
lowest level. When the variable of interest on the tessellation is a rate of incidence,
then a significance test is available based on binomial or Poisson null models and
Monte Carlo techniques. This is a common context for detecting hotspots of diseases
in epidemiological work. We also discuss an approach for extending the univariate
methodology to accommodate multivariate contexts.
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1 Introduction

A common task of geospatial monitoring is to delineate zones that exhibit elevated
risks over geographical regions. The problem is to identify concentrations of events in
time, space or both. This need is found in many fields of application, such as epidemi-
ology, landscape ecology, environmental analysis, image processing, economics, and
public policy. This is essentially the problem of clustering with the added stipulation
or constraint that the components of a cluster must be spatially connected in the sense
of adjacency. We discuss two methods of imposing this spatial constraint on clusters.
The first method (I) does retrospective screening on the results of a clustering algo-
rithm to identify connected components. The second method (II) applies the spatial
constraint as the clustering algorithm progresses. The first method has the advantage
of separable programming for the spatial screening without requiring modification of
existing software for clustering, and of using the same spatial screening software with
different clustering algorithms. However, the two methods often yield different results
in practice. We demonstrate this inconsistency for two popular clustering techniques,
single-linkage and K-means, then consider the upper level set (ULS) scan (Patil and
Taillie 2004) as a special clustering approach that produces the same results using both
methods.

2 Background

2.1 Clustering with constraints

Constrained clustering is defined by Legendre (1987) as a part of the family of
clustering methods whose purpose is to delimit homogeneous regions on a univariate
or multivariate surface, by forming blocks of pieces that are also adjacent in space
or in time (Legendre 1987). The most common applications are spatial, temporal
or both spatial and temporal constrained clustering. A variety of studies have been
done regarding the methods and applications of clustering with constraints. Legendre
(1987) has reviewed the development of constrained clustering among different disci-
plines, including economics, soil science, ecology, and so on. He has compared several
clustering methods, from single to complete linkage, and concluded that the clusters
derived using different linkage clustering methods are quite similar to one another
when the constraint is applied (Legendre 1987). The difference of constrained cluster-
ing and unconstrained clustering is also explained by Legendre (1998). A number of
programs have been written, such as the program of Legendre (1987), Lebart (1978),
and De Soete (1987).

This paper focuses on spatially constrained clustering. Specifically, the clustering
is spatially constrained if the cells comprising a cluster are adjacent to each other in
addition to having similarity with regard to the measured variables.
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2.2 Spatially constrained clustering

Spatially constrained clustering is useful in applications in many fields, such as land-
scape ecology, geospatial environmental statistics, image processing, geospatial
economics, public policy in geospace, geography of disease, and almost every field
of study where spatial continuity is relevant. In ecology, for example, if one wishes
to discover clusters of species richness, a constraint of spatial adjacency needs to be
added, since the contagion of biological growth cannot be ignored. In health studies, if
one is interested in finding clusters of a certain disease (i.e. lung cancer), it is desirable
to take into consideration geographical adjacency, since the disease may be caused by
an environmental pollutant, which is often spatially autocorrelated. It is essential in
finding out the pattern of how the disease spreads out.
In general, spatially constrained clustering is accomplished using two methods (Urban
2004):

I. Spatial constraint is applied after conventional clustering based on similarity.
II. Spatial constraint is applied as clustering progresses.

In constraining method I the analysis is conducted in two stages, as described and
illustrated by Legendre et al. (2002). At the first stage, the dataset is classified into
different groups using regular clustering techniques; then spatial adjacency is exam-
ined at the second stage, where those adjacent members that are in the same group are
combined into patches. On the other hand, constraining method II applies the spatial
constraint progressively, asking the question whether or not two cells are adjacent for
each of the iterations of the clustering algorithm.

Comparing the two methods, the result of constraining method I is more read-
ily interpretable with regard to the variables, but it tends to give small patches and
splinters. Constraining method II yields tighter clusters, but it is more problematic
to interpret (Urban 2004). So, if one is more concerned about the similarity of cells,
constraining method I is usually implemented. If one is more concerned about the
connectivity of cells, then constraining method II is usually applied. The two methods
often do not yield the same result. As far as programming is concerned, constraining
method I has programs ready to use and it is more computationally efficient because
it does not have to deal with the spatial constraint until the last step. Legendre,
Vaudor, and Casgrain (2005) provide a number of programs in R that are useful
for contiguity-constrained clustering. Programs are available for hierarchical agglom-
erative linkage clustering with spatial contiguity constraint and for K-means non-
hierarchical constrained clustering. Usually, the two methods do not yield the same
result.

An example serves to show how the two constraining methods can give different
clusters for the same set of observations. The relationships of five observational units
(A, B, C, D, E) are specified in Table 1, with dissimilarity as distance in Table 1a and
spatial connectivity in Table 1b. All five observational units are spatially connected
except for B and D.

Suppose that we use clustering by single-linkage, whereby the similarity of two clus-
ter groupings is measured by the shortest distance between a member of one group
and a member of the other group. Let the progress of clustering be agglomerative,
whereby each data case is a singleton cluster at the outset. The algorithm proceeds as
follows:
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Table 1 Dissimilarity as distance and spatial connectivity for five illustrative data cases (A–D).
A value of 1 in the connectivity matrix indicates spatial adjacency

A B C D E

(a) Distance matrix
A 0
B 19 0
C 13 17 0
D 16 15 19 0
E 21 20 12 18 0
(b) Connectivity matrix
A 0
B 1 0
C 1 1 0
D 1 0 1 0
E 1 1 1 1 0

1. Start with N clusters with distance matrix D.
2. Search for nearest clusters x and y with the smallest distance dxy.
3. Merge clusters x and y to form (xy) by

� deleting rows and columns of x and y
� adding cluster (xy)
� compute new distance d(xy)z = min(dxz, dyz)

4. Repeat steps 2–3, N − 1 times.

Applying constraining method I, the algorithm proceeds as follows:
Start with 5 clusters A, B, C, D and E. From the distance matrix we find that the points
E and C are the closest and we merge them together. With E and C merged together
the new distance matrix is as follows:

Distance matrix
(EC) A B D

(EC) 0
A 13 0
B 17 19 0
D 18 16 15 0

Repeating these steps we find that we are able to form clusters (ACE) and (BD).
The next step would merge them together to form the cluster (ABCDE). If we stop
here and apply the spatial constraints to obtain the final clusters, we see from the con-
nectivity matrix that objects A, C, and E form one cluster since they are connected.
Objects B and D are not connected, so they remain separate. Hence, the final clusters
using method I are (ACE), (B), and (D).

Now suppose we use constraining method II. During each step of clustering we
inspect the connectivity matrix to determine whether the objects identified by the
clustering algorithm should be joined. Method II also obtains the cluster (ACE) as a
consequence of spatial connectivity. Consider the distance matrix at some intermedi-
ate stage of clustering.
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Distance matrix

(ACE) B D
(ACE) 0
B 17 0
D 16 15 0

The next step would be to merge B and D together, but since B and D are not
spatially connected, we cannot merge them. Since now (ACE) and D are the spatially
connected objects that have the least distance, they are merged. Hence, the clusters
obtained using method II are (ACDE) and (B). This example shows that methods I
and II can give different clusters.

In a K-means algorithm also, the two methods yield different results in most cases.
Constraining method I will take the K clusters obtained by K-means clustering and
apply the constraints to them. This may take one or more clusters that have discon-
nected objects and further subdivide them into even smaller connected subgroups.
Hence, the numbers of groups produced by method I may be larger than K whereas
method II produces K clusters as long as there are at least K data cases that differ in
their observational values. For example, suppose we want to divide 4 objects A, B, C
and D into K = 2 clusters such that objects within the first cluster are closer to each
other than they are to the objects in the second cluster (2-means clustering). Suppose
that objects A and B are not connected. Using the Euclidean distance, the 2-means
clustering (method-2) obtains two clusters. Suppose the 2-means clustering method
produces the clusters (AB) and (CD). Applying the connectivity constraint to these
two clusters will produce A, B, and (CD) as the objects A and B are not connected.
Hence constraining methods I and II may produce different numbers of clusters.

3 ULS scan

Upper level set (ULS) scan as discussed in Patil and Taillie (2004) can be considered
as a special approach of spatially constrained clustering. ULS scan deals with a region
R of two-dimensional space that is tessellated or subdivided into cellular areas (which
will be denoted by ai). A non-negative value Gi is available as response (level) data
for each cell, comprising a step surface. The ULS scan identifies spatially connected
clusters of cells that have an elevated response relative to a progressively declining
threshold level that scans from the maximum level to the minimum level. For a given
level g of the scanning threshold, such a spatially connected cluster of elevated cells
will be referred to as a zone denoted by Zj and the set of all Z is denoted by �. Again
for a specified level g of the scanning threshold, the set of all cells with response level
equal to or exceeding g is the upper level set (ULS)

Ug = {ai : Gi ≥ g}.
Upper level sets for two particular threshold levels g and g′ of a hypothetical surface
are illustrated schematically in Fig. 1. The ULS for level g consists of zones Z1, Z2
and Z3 since these are the portions of the surface that equal or exceed the g threshold
level. Likewise, the ULS for level g′ consists of zones Z4, Z5 and Z6 since these are
the portions of the surface that equal or exceed the g′ threshold level.

Figure 1 also illustrates the three ways in which zones can change as the threshold
level shifts. Zones Z1 and Z2 expand and merge to create zone Z4. Zone Z3 under-
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Fig. 1 Schematic response
“surface” showing upper level
sets (ULS) for two levels g and
g′ of scanning threshold. The
ULS for threshold level g
consists of zones Z1, Z2 and Z3
as the portions of the surface
with level at or exceeding the
threshold. The ULS for
threshold level g′ consists of
zones Z4, Z5 and Z6 as the
portions of the surface with
level at or exceeding that
threshold
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Fig. 2 Schematic of zonal ULS tree for example “surface” of Fig. 1. Small filled circles are nodes
representing spatially connective zones at the respective scan level, with scan level g matching that in
Fig. 1. Arcs (lines) linking nodes indicate formative relations among the zones at different scan levels,
with a higher node linked to a lower node being spatially contained in the zone of the lower node.
The dotted line represents the schematic “surface”

goes simple expansion to become zone Z5. Zone Z6 is newly emergent. It may aid
visualization to think of the downward scanning threshold as a declining water level
and the upper level sets as being emergent islands of land surface. Modarres and
Patil (2006) provide an algorithmic explanation of ULS scan statistic along with more
implementation details.

The collective action of the scanning threshold can be captured in a zonal ULS
tree as shown schematically in Fig. 2. The nodes of this ULS tree represented by small
filled circles in Fig. 2 are the spatially connective zones, positioned vertically according
to level of scanning threshold. Zones have discrete vertical positions since there can
be no more levels of occurrence than there are cells in the tessellation, and only those
levels that actually occur in the data are relevant to the scan. The arcs (lines) linking
the nodes indicate the formative relations among the zones at different scan levels,
with a higher node linked to a lower node being spatially contained within the zone
of the lower node.

The set of zonal nodes transected horizontally at a particular scan level is comprised
of spatially connective (constrained) clusters defined by that level of the scan. There
are three possibilities of formative relations between successive scan levels:
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(1) Two or more connected components coalesce into one as a crotch of the ULS
tree. This occurs when one or more cells for the lower scan level form a bridge
between zones of the higher scan level.

(2) An existing connected component (zone) for the higher scan level grows in size
for the lower scan level placing nodes along a branch of the ULS tree.

(3) A new connected component (zone) is formed at the lower scan level that did
not exist at the higher scan level, thus being the terminal of a new branch on the
ULS tree.

The zonal ULS tree constitutes a formal mathematical graph with members of ΩULS
as nodes, and two nodes Z, Z′ ∈ �ULS being joined by an edge if:

(i) Z is a proper subset of Z′, written Z⊂
�=

Z′.

(ii) There is no node W ∈ �ULS such that Z⊂
�=

W⊂
�=

Z′.

For parallelism with usual conventions of clustering, we can define a distance matrix
between cells for a specific threshold level. The similarity feature of interest is whether
or not two cells are both in the upper level set or both in the lower level complement
set. If two cells are both in the upper level set or both in the lower level set, then their
distance is zero. Alternatively, if one cell is in the upper level set and the other in the
lower level set, then their distance is one. Therefore, a distance matrix for a particular
position in the scan cycle is a zero-one binary matrix. It should also be evident that
lower levels of a tessellated step surface can be explored in equivalent manner.

4 Constraining method I and method II for ULS

We explore retrospective versus progressive constraints comparatively for ULS scan
in terms of an example. The example uses the tessellated mapping of a two-dimen-
sional geo-space shown in Fig. 3, with the numbers inside the polygons being just
identifiers for the polygonal cells. A companion cellular ULS tree for the example is
shown in Fig. 4. To focus attention further on the cellular ULS tree, we pursue the
example without giving explicit values for the surface data.
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Fig. 3 Mapping of tessellated cells for example with cell identification numbers shown inside cell
polygons
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Fig. 4 Cellular (as opposed to
zonal) ULS tree for example
mapping in Fig. 3, with
numbers in nodes being
identifiers of cells that join into
upper level set connectivity
relations according to link
arrows. Thus, each branch or
stem of the tree represents a
vertically developing zone in
this way of structuring the tree.
Height positions in tree reflect
relative levels (step down) of
surface values
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For constraining method I the connectivity will not be checked until the last step.
In the first phase we only develop the upper level sets without organizing them into
zones. The connectivity matrix is applied at the end to obtain the zones, which also
structures the linkages of the cellular ULS tree across the levels. Figure 5 shows the
level information on the left, and the ultimate cellular ULS tree on the right. Note
that the presentation of Fig. 5 only shows the level at which a cell first enters the upper
set. The cell then remains in the upper set for lower scanning levels of the threshold.

For constraining method II the connectivity of cells is examined at each step (scan-
ning level of the threshold) as shown in Fig. 6. The numbers in brackets of Fig. 6 are
cell identifiers for members of connected components (zones). For example, both cells
8 and 0 enter the upper set at scanning level 3, but they cannot be merged together as

• Level 1: 3
• Level 2: 18
• Level 3: 8 0
• Level 4: 7 4 17
• Level 5: 19 16 14
• Level 6: 12 5 15
• Level 7: 9 11
• Level 8: 1
• Level 9: 10
• Level 10: 6
• Level 11: 13
• Level 12: 2
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Fig. 5 Application of constraining method I to the example of Figs. 3 and 4, whereby the spatial
constraint is imposed at the end. The scanning level at which cells enter the upper set is shown on the
left, remaining in the upper set for lower scans. The cellular ULS tree resulting from retrospective
spatial constraint is shown on the right
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Fig. 6 Application of constraining method II to example of Figs. 3 and 4, whereby the spatial con-
straint is imposed progressively. The numbers in brackets are identifiers of cells comprising connected
components (zones) at the respective levels

a connected component since they are not spatially adjacent. Thus, a new zone grows
from cell 8 into the next lower scan level.

The two constraining methods give the same result for the example, and this holds
in general for the ULS scan approach. It does not matter for ULS scan at what stage
the spatial constraint is applied, either at the end or progressively, the result is the
same.

5 ULS scan statistic

To this point in the consideration there has been no restriction on the type of data G
for the surface level, and also no mention of test of significance for the zones of the
upper level set. Following Kulldorff and Nagarwalla (1995), however, it is possible to
consider significance of a spatial scan statistic when working with level data consisting
of incidence rates. Such spatial scan statistics are based on null models of binomial
or Poisson random processes with Monte Carlo generation of distributions for testing
significance under the null hypothesis of random occurrence for upper level zones.

To motivate a null model, assume that data are in the form of a count Y i (non-neg-
ative integer) on each cell. In addition, a “size” value Ai is associated with each cell.
The cell sizes Ai are regarded as known and fixed, while cell counts Y i are assumed
to be independent random variables. The level variable is then the rate Gi = Y i/Ai.

Two distributional settings are commonly studied:

• Binomial: Ai = N i is a positive integer and Y i ∼ Binomial(N i, Pi) where pi is an
unknown parameter attached to each cell with 0 < pi < 1.

• Poisson: Ai is a positive real number and Y i ∼ Poisson(λi, Ai) where λi > 0 is an
unknown parameter attached to each cell.

Each distributional model has a simple epidemiological interpretation. For the bino-
mial, N i people reside in cell ai and each can contract a certain disease independently
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with probability pi. The cell count Y i is the number of afflicted people in the cell. For
the Poisson, Ai is the size (perhaps area or some adjusted population size) of the cell
ai, and Y i is a realization of a Poisson process of intensity λi across the cell. In each
scenario, it is assumed that spatial variability can be accounted for by cell-to-cell var-
iation in the model parameters. The spatial scan statistic seeks to identify “hotspots”
of cells that have elevated response compared with the rest of the region. Elevated
response means large values for the rates as opposed to raw counts Y i. Cell counts
are thus adjusted for cell sizes before comparing cell responses. The scan statistic also
accommodates other adjustments, such as for age or for gender. A candidate zone to be
tested should not be excessively large—for, otherwise, the zone instead of its exterior
would constitute background. This latter restriction is generally achieved by limit-
ing the search for hotspots to zones that do not comprise more than, say, 50% of the
region. The number of zones is small enough for practical maximum likelihood search.

The ULS method has been applied to detect clusters of West Nile Virus in the
state of Ohio. West Nile Virus is transmitted by mosquitoes and birds. The 3D map
of disease rate is shown in Fig. 7. Five shades are distributed in quintiles. The top two
clusters are detected using the ULS scan. Each cluster consists of counties that are
geographically connected. This result is expected since the clusters are restricted to
be composed of only spatially adjacent counties. The candidates that are statistically
significant are claimed as real hotspots.

Fig. 7 Ohio case study of ULS scan statistic for West Nile virus. A 3D representation of incidence
rates is shown on the left and two significant hotspots on the right

Fig. 8 Elevated zone of robbery in southern states extending into Missouri and Illinois
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6 ULS scan on multivariate data by spatial coincidence

So far we have seen how ULS works on univariate data. But what happens when
the data under consideration are multivariate. In such a scenario ULS is operated as
many times as the response dimensions of the data, with every individual run of ULS
operating only on one response variate. A multivariate result for upper level zone(s)
is then obtained as the spatial intersection of the clusters for individual variates. For
example if we have data with every cell in the tessellation having two response vari-
ables, then we run ULS twice. The first run will take into account the first response
variable for every cell and find the spatially connected clusters. The second run will
take into account the second response variable and find the spatially connected clus-
ters. Finally the clusters are those that are the intersection of the clusters obtained by
the two runs of ULS. As in the univariate case, constraining method I and method II
will provide the same result.

As a working example consider crime data for US states. Every state has two
observations, the count of robbery in that state and the count of murders committed
in that state. The aim is to cluster those states that have a high incidence of both

Fig. 9 Elevated zone of murder in south and Missouri, Illinois, Indiana and Michigan

Fig. 10 Jointly elevated zone of robbery and murder, intersecting zones of Figs. 8 and 9
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robbery and murder. We run ULS twice, once taking into account the response vari-
able for robbery and again taking into account the response variable for murder. For
simplicity we show only one elevated cluster in each case. A first run of ULS takes
into account the response variable for robbery (Fig. 8), with an elevated zone across
southern states and extending up into part of the Midwest. A second run of ULS takes
the response variable for murder into account (Fig. 9), with a similar elevated zone
but also extending on up into Indiana and Michigan. Then the spatially connected
zone having high incidence of both robbery and murder consists of the states that are
identified as an intersection of the two runs of ULS (Fig. 10).

7 Conclusion

We are interested in identifying clusters of events in time, space or both. In many
cases, usual clustering analysis is not sufficient and one must account for the spatial
structure of the data. For example, it is necessary to bring in spatial constraints in
the presence of spatial autocorrelation in the process generating the response, so that
geographical continuity is taken into consideration. With the constraint of adjacency,
clusters are formed only if the area at risk is locally homogeneous.

We discuss two methods of obtaining spatially constrained clusters. Constraining
method I applies the constraint after the clustering algorithm obtains the clusters
while method II applies the constraint as the clustering algorithm progresses. The two
methods often yield different results under conventional clustering algorithms. We
show that two popular clustering techniques, single-linkage and K-means, can yield
different spatially constrained clusters under these methods.

We proceed to present an Upper Level Scan (ULS) method of clustering and
demonstrate that it is a special case of constrained clustering. We explain how the
ULS scan approach defines similarity as exceedance at each scan level and that the
similarity matrix is binary. We also explain that connectivity is defined in terms of an
adjacency matrix. The underlying tree structures of the ULS scan provide a levelwise
graphical representation of the clusters akin to dendrograms. We show through several
examples how the tree structure of ULS scan is formed under spatially constrained
clustering and that ULS scan statistic yields the same spatial clusters under these two
methods. We illustrate application of ULS scan statistics for incidence data. To use
with multiresponse data, we discuss an approach where univariate ULS scan statistic
is applied on the univariate responses and define the multivariate clusters as those
in the intersection of univariate clusters. This and other methods of extending the
univariate ULS to multivariate data are currently under investigation.
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