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Abstract Ranked-set sampling from a finite population is considered in this paper. Three
sampling protocols are described, and procedures for constructing nonparametric confidence
intervals for a population quantile are developed. Algorithms for computing coverage prob-
abilities for these confidence intervals are presented, and the use of interpolated confidence
intervals is recommended as a means to approximately achieve coverage probabilities that
cannot be achieved exactly. A simulation study based on finite populations of sizes 20, 30,
40, and 50 shows that the three sampling protocols follow a strict ordering in terms of the
average lengths of the confidence intervals they produce. This study also shows that all
three ranked-set sampling protocols tend to produce confidence intervals shorter than those
produced by simple random sampling, with the difference being substantial for two of the
protocols. The interpolated confidence intervals are shown to achieve coverage probabilities
quite close to their nominal levels. Rankings done according to a highly correlated concom-
itant variable are shown to reduce the level of the confidence intervals only minimally. An
example to illustrate the construction of confidence intervals according to this methodology
is provided.

Keywords Order statistics · Interpolated confidence intervals · Median · Efficiency ·
Sampling designs

1. Introduction

In settings where the cost of identifying experimental units for inclusion in a sample and
ranking them according to the attribute of interest is small compared to the cost of actu-
ally measuring the value of the attribute of interest, a ranked-set sample (RSS) provides
improved efficiency over a simple random sample (SRS) of the same size. This improved
efficiency results from the additional information provided by units that are ranked, but not
actually measured. Ranked-set sampling was originally proposed by McIntyre (1952) for
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use in estimating average yields in agriculture. Actually measuring a yield requires that one
harvest the crops, but an expert may be able to produce a very accurate ranking of the yields
in a sample of fields based solely on a visual inspection.

Ranked-set sampling has been applied to a variety of problems in ecology and the
environmental sciences beyond the problem of estimating average yields that motivated
McIntyre. For example, Chen et al. (2004) describe cases in which RSS was applied to the
assessment of contamination at hazardous waste sites, the estimation of shrub photomass
in an Appalachian oak forest, and the assessment of volatility of gasoline samples. While a
large part of the RSS literature focuses on the problem of making inference on a population
mean, it is clear that making inference on population quantiles is also of interest in ecology
and the environmental sciences. For example, making inference on a population median may
be an attractive alternative to making inference on a population mean when the underlying
distribution is highly skewed, and making inference on extreme quantiles of a distribution is
a way to assess the prevalence of dangerously high or low values in a population. These con-
siderations motivated us to look at the problem of using RSS to produce confidence intervals
for quantiles of a population.

The populations of interest in ecological studies are often quite small. For example, a
population of interest might consist of a few sheep, a few trees, or a few insect colonies.
Despite the small size of the population, measuring the characteristic of interest for every
single unit might be too costly and time-consuming to be practical. However, it might be
possible through visual inspection to rank small collections of units according to the attribute
of interest, and this motivates one to use ranked-set sampling. We show in this paper that
if the number of measurements to be made is fixed, procedures based on RSS yield shorter
confidence intervals for quantiles of a finite population than do procedures based on simple
random sampling.

In the infinite-population setting, a single cycle of the standard RSS protocol begins with
the selection of n independent random samples of size n. Units in each of these n independent
samples are then separately ranked from smallest to largest according to the attribute of inter-
est. One selects the first order statistic from the first random sample, the second order statistic
from the second random sample, and so on, until at last the nth order statistic from the nth
sample is selected. Thus far, only ranking and selection has taken place, and no actual mea-
surements have been carried out. Now, however, a full measurement is made on the attribute
of interest for the n selected units. These measurements may be denoted X(11), . . . , X(nn),
where X(i i) is the value for the i th order statistic from the i th random sample. Because
each of the n units on which measurement was carried out came from a separate random
sample of size n, we have a collection of independent, nonidentically distributed random
variables. Each measurement X(i i) has the same marginal distribution as the corresponding
order statistic Xi :n , and the joint distribution of the n measurements is given by the product
of the marginals. That is, the measurements X(11), . . . , X(nn), which constitute one cycle of
observations, have the joint distribution

n∏

i=1

fi :n(x(i i)),

where fi :n(x) is the probability density function for the i th order statistic from a random sam-
ple of size n. To achieve a larger total sample size, one may draw a sample consisting of k
cycles. Such a sample yields nk independent observations X(i i) j , i = 1, . . . , n, j = 1, . . . , k,
where X(i i) j is the i th order statistic from the i th random sample in the j th cycle. The expres-
sion for the joint density of the nk measured observations is then
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k∏

j=1

n∏

i=1

fi :n(x(i i) j ).

When the population of interest is finite rather than infinite, there is not just a single way to
generalize the infinite-population sampling protocol we have described. Instead, a number of
finite-population protocols can be imagined, with the exact joint distribution of the resulting
sample of measurements depending on the details of the sampling process. To see why this is
so, we first review the problem of finding nonparametric confidence intervals for quantiles of
a finite population using simple random sampling. Suppose that we have a finite population
consisting of N units, with the unknown ordered values of the attribute of interest for these
units being

x1 < x2 < · · · < xN .

Suppose further that we wish to obtain a confidence interval for qp , the quantile of order p
of this population. To avoid ambiguity, we will assume throughout this paper that p and N
are chosen so that t = pN is an integer. The problem then reduces to that of obtaining a
confidence interval for the value xt = qp .

A simple random sample may be obtained from a finite population either through sampling
with replacement or through sampling without replacement. A sample taken without replace-
ment tends to be more informative, but properties of a sample taken with replacement may
be more tractable analytically because of the independence of the observations. Confidence
intervals for quantiles based on simple random sampling without replacement (SRSWOR)
from a finite population have been discussed by Sedransk and Meyer (1978), Smith and
Sedransk (1983), and others. Suppose that X1:n < · · · < Xn:n are the ordered values of a
SRSWOR of size n from the population. Then the probability P(Xr :n ≤ xt ≤ Xs:n) can be
calculated for any r < s, providing a nonparametric confidence interval for xt , the t th ordered
value from the population. The desired confidence coefficient is achieved or approximately
achieved by adjusting the choice of the ranks r and s. We have that

P(Xr :n ≤ xt ≤ Xs:n) = P(Xr :n ≤ xt ) − P(Xs:n ≤ xt−1)

=
n∑

j=r

(
t
j

) (
N−t
n− j

)

(
N
n

) −
n∑

j=s

(
t−1

j

) (
N−t+1

n− j

)

(
N
n

)

≡ pr,t − ps,t−1.

To get a confidence interval with coverage probability 1 − α, we would select r < s so that
the probability pr,t − ps,t−1 of covering xt is as close to 1 − α as possible.

When one takes a ranked-set sample from a finite population, the design of the sampling
protocol involves more than a simple choice between sampling with replacement and sam-
pling without replacement. This added complexity arises because there is both a final sample
of units that are measured and a collection of samples that are used for ranking purposes only.
If we require that the entire set of units used for ranking purposes be drawn without replace-
ment, then we surely produce the most informative sample. If we sample without replacement
only within and not across the samples that we use for ranking purposes, however, then our
final sample of measured values consists of independent random variables and is thus easier
to work with analytically. One can also imagine compromise protocols in which we do not
require that the entire set of units used for ranking purposes be drawn without replacement,
but we do insist that the final sample of units that are measured have no repeated units. In
this paper, we consider three sampling protocols that feature varying degrees of insistence
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upon sampling without replacement. For each sampling protocol, we order the sample of
K = nk measured values as X(1:K ) ≤ X(2:K ) ≤ · · · ≤ X(K :K ) and produce nonparametric
confidence intervals of the form [X(r :K ), X(s:K )] for quantiles.

For our confidence interval procedure, as for many nonparametric confidence interval pro-
cedures, the set of confidence levels that can be achieved exactly is a discrete set. One can often
achieve a reasonable approximation to other confidence levels, however, by interpolating
between two intervals whose exact confidence levels bracket the level of interest. A pro-
cedure for constructing interpolated confidence intervals for the population median in the
simple random sampling setting was proposed by Hettmansperger and Sheather (1986). The
Hettmansperger-Sheather procedure was later generalized to arbitrary quantiles by Nyblom
(1992). For illustration, suppose that we seek a 100×(1−α)% confidence interval for the pop-
ulation quantile qp . Let [X(r :K ), X(s:K )] and [X(r+1:K ), X(s−1:K )] be 100 × (1 − αr,s)% and
100 × (1 −αr+1,s−1)% confidence intervals for qp , where 1 −αr,s > 1 −α > 1 −αr+1,s−1.
Suppose further that the order statistics X(r :K ) and X(s:K ) have been chosen to give an
approximately symmetric confidence interval in the sense that

P(X(r :K ) > qp) ≤ α/2 ≤ P(X(r+1:K ) > qp)

and

P(X(s:K ) < qp) ≤ α/2 ≤ P(X(s−1:K ) < qp).

Then, for ε1, ε2 ∈ (0, 1), the interval

[L , U ] = [(1 − ε1)X(r :K ) + ε1 X(r+1:K ), (1 − ε2)X(s:K ) + ε2 X(s−1:K )],
has a coverage probability between 1−αr,s and 1−αr+1,s−1 whose exact value depends on the
underlying distribution. Choices for ε1 and ε2 which approximately give coverage probability
1 − α in the setting of ranked-set sampling from an infinite population are given by Ozturk
and Deshpande (2005). Adjusting their formulas slightly to account for the discreteness of a
finite population, we propose using the approximations

ε1 ≈
[

1 + r(1 − p)(πr+1 − α/2)

(K − r)p(α/2 − πr )

]−1

(1)

and

ε2 ≈
[

1 + (K − (s − 1))p(α/2 − πs−1)

(s − 1)(1 − p)(πs − α/2)

]−1

, (2)

where πr = P(X(r :K ) > qp), πr+1 = P(X(r+1:K ) > qp), πs = P(X(s:K ) < qp), and
πs+1 = P(X(s+1:K ) < qp).

In either the finite-population setting or the infinite-population setting, it may be difficult
to rank units according to the attribute of interest. In such situations, one may choose to rank
the units according to a readily-available concomitant variable. If the relationship between
the attribute of interest and the chosen concomitant variable is strong enough, and if the set
size n is not too large, the good properties of ranked-set sampling procedures that assume
perfect rankings may be largely maintained. In our simulation study, we find that the levels of
our confidence intervals and their interpolated counterparts do not decline excessively when
rankings are done according to a concomitant variable whose correlation with the attribute
of interest is of the order of 0.9.

In Section 2, we describe three protocols for drawing a ranked-set sample from a finite
population, and we describe methods for constructing confidence intervals for quantiles using
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these protocols. In Section 3, we give a numerical algorithm for computing the coverage prob-
abilities of the confidence intervals produced by the various sampling protocols. In Section 4,
we conduct a simulation study to compare the average lengths of confidence intervals for the
median produced by the various sampling protocols. In Section 5, finally, we conclude with
a summary and discussion.

2. Sampling protocols

In this section, we describe three protocols for drawing a ranked-set sample from a finite
population. We will refer to these protocols as Level 0, Level 1, and Level 2 sampling, where
higher levels correspond to greater insistence on sampling without replacement.

2.1. Level 0 sampling

In the Level 0 sampling protocol, we sample without replacement only within the samples
used for ranking purposes only. We thus allow the same unit to appear in more than one of the
samples used just for ranking purposes. As a result, a single unit may also appear more than
once in the final sample of values to be measured. One advantage of this protocol, however,
is that the final sample consists of independent observations. Specifically, each observation
X(i i) j has a marginal distribution determined by the cumulative distribution function

P(X(i i) j ≤ xt ) =
∑n

r=i

( t
r

) (
N−t
n−r

)

(
N
n

) = pi,t , (3)

and the joint distribution is the product of the marginals. In algorithmic form, the sampling
protocol is as follows.

Step I: Draw a SRSWOR of size n from the population.
Step II: Rank the sampled units and select the i th order statistic for measurement.
Step III: Return all n units back to the population.
Step IV: Repeat steps I to III for i = 1, . . . , n.
Step V: Repeat steps I to IV for j = 1, . . . , k.

2.2. Level 1 sampling

In the Level 1 sampling protocol, we sample without replacement within the samples used for
ranking purposes only, and we allow the same unit to appear in more than one of the samples
used just for ranking purposes. Unlike in Level 0 sampling, however, we do not allow the
same unit to appear more than once in the final sample of values to be measured. This exclu-
sion of repeat units is accomplished by returning to the population only those units that were
not selected for measurement. Because of this restriction on having units appear in the final
sample multiple times, the units in the final sample are negatively dependent, with the exact
structure of that dependence depending on the sequence in which the final sample was drawn.
Two natural orderings for drawing a Level 1 sample are given below in algorithmic form.

2.2.1. Ascending order

Step I: Draw a SRSWOR of size n from the population.
Step II: Rank the sampled units and select the i th order statistic for measurement.
Step III: Return the n − 1 units not selected back to the population.
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Step IV: Repeat steps I to III for i = 1, . . . , n.
Step V: Repeat steps I to IV for j = 1, . . . , k.

2.2.2. Descending order

Step I: Draw a SRSWOR of size n from the population.
Step II: Rank the sampled units and select the (n+1− i)th order statistic for measurement.
Step III: Return the n − 1 units not selected back to the population.
Step IV: Repeat steps I to III for i = 1, . . . , n.
Step V: Repeat steps I to IV for j = 1, . . . , k.

2.3. Level 2 sampling

In the Level 2 sampling protocol, we sample without replacement both within and across the
samples used for rankings purposes only. As a result, there are no repeated units in the final
sample of values to be measured, and the units in that final sample are more strongly nega-
tively dependent than under Level 1 sampling. This stronger negative dependence between
the units in the final sample means that a Level 2 sample is more informative than either a
Level 0 sample or a Level 1 sample. However, because of the strict insistence on sampling
without replacement both within and across the samples used for ranking purposes only, a
Level 2 sample can only be drawn for sampling fractions nk/N less than or equal to 1/n.
Restrictions on the size of the sampling fraction are much looser (Level 1) or nonexistent
(Level 0) for the other two sampling protocols. The properties of Level 2 sampling for esti-
mation of means were studied by Patil et al. (1995). The Level 2 sampling protocol is given
in algorithmic form below.

Step I: Draw a SRSWOR of size n from the population.
Step II: Rank the sampled units and select the i th order statistic for measurement.
Step III: Do not return any of the n units back to the population.
Step IV: Repeat steps I to III for i = 1, . . . , n.
Step V: Repeat steps I to IV for j = 1, . . . , k.

Given a sample of size K = nk drawn using one of the sampling protocols described
above, we order the measured values as X(1:K ) ≤ X(2:K ) ≤ · · · ≤ X(K :K ). We then consider
confidence intervals of the type [X(r :K ), X(s:K )], for r < s. The coverage probability of such
an interval as an interval for xt is given by

P(X(r :K ) ≤ xt ≤ X(s:K )) = P(X(r :K ) ≤ xt ) − P(X(s:K ) ≤ xt−1)

≡ qr,t − qs,t−1

since we automatically have that X(r :K ) ≤ X(s:K ). The values qr,t , which depend on the
particular sampling protocol used, can be computed using the algorithms given in Section
3. For the case of Level 0 sampling, in which the measured values are independent, a fairly
compact analytic expression is also available. We have for Level 0 sampling that

qr,t = P(X(r :K ) ≤ xt ) =
K∑

j=r

P(exactly j of X(11)1, . . . , X(nn)k are less than or equal to xt )

=
K∑

j=r

∑

(u1,...,un)∈S j

n∏

l=1

(
k

ul

)
pul

l,t (1 − pl,t )
k−ul ,
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where

S j = {(u1, . . . , un) : u1 + · · · + un = j, 0 ≤ ui ≤ k; i = 1, . . . , n}
and pi,t is as given in (3).

To highlight the differences between these sampling protocols, we consider the simple
case in which N = 4, n = 2, and k = 1. That is, we consider the case in which a single cycle
of size 2 is drawn from the finite population whose ordered values are x1 < x2 < x3 < x4.
The possible ranked-set samples and their probabilities under the various sampling protocols
we have described are then as given in Table 1.

As can be seen in Table 1, the three sampling protocols may produce quite different sam-
pling distributions for small populations. It may be verified that under Level 0 and Level 2
sampling, the sample means are unbiased estimators of the true mean, while under Level 1
sampling, the sample mean, regardless of whether sampling is done in ascending or descend-
ing order, is in general biased. The effect of the strong insistence on sampling without
replacement in the Level 2 protocol can be seen in the fact that only 4 distinct ranked-set
samples are possible under Level 2 sampling. Samples such as x1, x2 and x3, x4, which are
unrepresentative of the population in the sense that they consist entirely of low population
values or high population values, have no probability of being chosen under Level 2 sam-
pling. The Level 1 protocol also renders certain unrepresentative samples impossible, but it
does this to a lesser extent than does Level 2 sampling. The number of possible samples is
greatest under Level 0 sampling.

3. An algorithm for computing confidence coefficients

The determination of the confidence coefficients for our confidence intervals can be
computationally intensive even for Level 0 sampling, the simplest case. With the negative
correlations between the sample observations that occur in Level 1 and Level 2 sampling,
the amount of computation needed increases. This negative correlation is a consequence, as
described in Section 2, of insisting upon sampling without replacement at one or more levels.
In this section, we describe an approach that can be used to compute confidence coefficients
for confidence intervals produced by any of the RSS sampling protocols described in Section
2. While our focus in this paper is on balanced RSS, these algorithms can also be applied
to samples obtained either from unbalanced RSS or from any scheme that yields a sample
consisting of order statistics. Applying the algorithms in these more general cases simply
involves using appropriate values for r and n at each step. The FORTRAN subroutines we
provide implement the algorithms in full generality.

Table 1 Probabilities of the
possible samples under various
sampling protocols

Sample Level 0 Level 1 Level 2

Ascending Descending

x1, x2 1/12 0 1/9 0
x1, x3 1/6 1/6 2/9 1/6
x1, x4 1/4 1/3 1/3 1/3
x2, x2 1/18 0 0 0
x2, x3 5/36 1/6 1/6 1/3
x2, x4 1/6 2/9 1/6 1/6
x3, x3 1/18 0 0 0
x3, x4 1/12 1/9 0 0
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Our approach to computing confidence coefficients consists of computing the values

qr,t = P(at least r elements of the sample do not exceed xt )

by computing the constituent probabilities

Es,t = P(exactly s elements of the sample do not exceed xt ), s = 0, . . . , K ,

and summing them in the obvious way. We compute the Es,t in a sequential fashion, thinking
of drawing our final sample of units to be measured one unit at a time. Some of the build-
ing blocks needed in the computational process are p�

j :n,t :N , the probability that exactly j
elements of a sample of size n taken without replacement from a population of size N are
less than or equal to the t th smallest value in the population, and p j :n,t :N = ∑n

r= j p�
r :n,t :N ,

the probability that at least j elements of a sample of size n taken without replacement from
a population of size N are less than or equal to the t th smallest value in the population. Note
that p j :n,t :N is the same as the p j,t introduced in Section 2. We are simply modifying the
notation slightly so that both the population and sample sizes are explicitly denoted. Note
also that we can compute p�

j :n,t :N via the equality

p�
j :n,t :N =

(
t
j

) (
N−t
n− j

)

(
N
n

) .

We discuss the computation of Es,t separately below for each sampling protocol.

3.1. Level 0 sampling

We define El
i,t to be the probability that exactly i units less than or equal to xt have been

obtained among the first l units selected for measurement. Then clearly E0
0,t = 1. Assume

that for some fixed l ≥ 0, El
i,t is known for each i , and suppose that the next unit to be added

to the final sample will be an r th order statistic from a sample of size n. With probability
pr :n,t :N , that next unit will be less than or equal to xt , and with probability 1 − pr :n,t :N , that
next unit will be greater than xt . Thus, we can compute each value El+1

i,t via the recursive
equation

El+1
i,t = pr :n,t :N El

i−1,t + (1 − pr :n,t :N )El
i,t .

When the entire sample of size K = nk has been accounted for in this way, we simply set
Es,t = E K

s,t . We can then compute the value qr,t for any selected r .
As an example, consider the case, already discussed at the end of Section 2, in which

N = 4, n = 2, and k = 1. We compute the values E0,2, E1,2, and E2,2 for the situation in
which t = 2. Our starting value is E0

0,2 = 1, and the first unit to be added to the sample may
be taken to be a first order statistic. Thus, we have that

E1
0,2 = (1 − p1:2,2:4)E0

0,2 = (1 − 5/6)1 = 1/6, and

E1
1,2 = p1:2,2:4 E0

0,2 = (5/6)1 = 5/6.

The next unit to be added is then a second order statistic, giving

E2
0,2 = (1 − p2:2,2:4)E1

0,2 = (1 − 1/6)(1/6) = 5/36,

E2
1,2 = p2:2,2:4 E1

0,2 + (1 − p2:2,2:4)E1
1,2 = (1/6)(1/6) + (1 − 1/6)(5/6) = 26/36, and

E2
2,2 = p2:2,2:4 E1

1,2 = (1/6)(5/6) = 5/36.
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Thus, the values for E0,2, E1,2, and E2,2 are 5/36, 13/18, and 5/36, respectively. These
values may be confirmed by consulting Table 1 in Section 2.

3.2. Level 1 sampling

Let El
i,t be defined as for Level 0 sampling. The difference between the sampling procedure

under this sampling protocol and under the Level 0 sampling protocol is that units already
added to the final sample are not returned to the population. If i elements less than or equal to
xt have been added to the final sample among the first l elements sampled, then the remaining
population contains t − i elements less than or equal to xt and N − l total elements. Thus,
assuming that an r th order statistic from a sample of size n is the next unit to be added to the
final sample, we can compute each value El+1

i,t via the recursive equation

El+1
i,t = pr :n,t−i+1:N−l El

i−1,t + (1 − pr :n,t−i :N−l)El
i,t .

The procedure is otherwise identical to the procedure for the Level 0 sampling protocol.
As an example, we again consider the case in which N = 4, n = 2, k = 1, and t = 2.

The starting value is E0
0,2 = 1. Adding the first unit, a first order statistic, gives that

E1
0,2 = (1 − p1:2,2:4)E0

0,2 = (1 − 5/6)1 = 1/6, and

E1
1,2 = p1:2,2:4 E0

0,2 = (5/6)1 = 5/6.

Adding the second unit, a second order statistic, then gives that

E2
0,2 = (1 − p2:2,2:3)E1

0,2 = (1 − 1/3)(1/6) = 1/9, and

E2
1,2 = p2:2,2:3 E1

0,2 + (1 − p2:2,1:3)E1
1,2 = (1/3)(1/6) + (1 − 0)(5/6) = 8/9.

Thus, the values for E0,2, E1,2, and E2,2 are 1/9, 8/9, and 0, respectively. These values may
be confirmed by consulting Table 1 in Section 2.

3.3. Level 2 sampling

To compute the values Es,t for this procedure, we must keep track at each stage not only of
the number of units less than or equal to xt that have been added to the final sample among
the first l elements sampled, but also of the number of units less than or equal to xt left
in the rest of the population. This extra level of record-keeping is necessary since these two
quantities are no longer in a one-to-one correspondence. To this end, we define Fl

i, j,t to be
the probability that exactly i units with measured values less than or equal to xt have been
sampled among the first l items sampled and that j total items less than or equal to xt have
been used up in the process of sampling the first l items. Then clearly F0

0,0,t = 1. Assume

that for some fixed l ≥ 0, the Fl
i, j,t are known for all i and j , and suppose that the next unit

to be sampled is an r th order statistic from a sample of size n. Since the entire remaining
population at this point consists of N − nl elements, we can compute the value of Fl+1

i, j,t via
the recursive equation

Fl+1
i, j,t =

r−1∑

k=0

p�
k:n,t− j+k:N−nl Fl

i, j−k,t +
n∑

k=r

p�
k:n,t− j+k,N−nl Fl

i−1, j−k,t .

Once we have obtained the entire sample of K = nk elements, we can compute the Es,t by
setting

Es,t =
∑

j

F K
s, j,t . (4)
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As an example, we again consider the case in which N = 4, n = 2, k = 1, and t = 2. As
before, we compute the values E0,2, E1,2, and E2,2. Our starting value is F0

0,0,2 = 1. Adding
the first unit, a first order statistic, gives that

F1
0,0,2 = p�

0:2,2:4 F0
0,0,2 = (1/6)1 = 1/6,

F1
1,1,2 = p�

1:2,2:4 F0
0,0,2 = (2/3)1 = 2/3, and

F1
1,2,2 = p�

2:2,2:4 F0
0,0,2 = (1/6)1 = 1/6.

Adding the second unit, a second order statistic, then gives that

F2
1,2,2 = p�

2:2,2:2 F1
0,0,2 + p�

0:2,0:2 F1
1,2,2 + p�

1:2,1:2 F1
1,1,2 = 1/6 + 2/3 + 1/6 = 1.

Summing appropriate F values as given in (4), we find that the values for E0,2, E1,2, and
E2,2 are 0, 1 and 0, respectively. These values may be confirmed by consulting Table 1 in
Section 2.

Using the algorithms given in this section, coverage probabilities may be determined
for any confidence interval [X(r :K ), X(s:K )] arising under any of the three sampling pro-
tocols. Also, FORTRAN subroutines for implementing these algorithms are available at
"www19.homepage.villanova.edu/jesse.frey/software/cifinder.txt".Asanadditionalresource,
however, we provide Tables 2 and 3, computed using these algorithms, which identify, for
population sizes 20, 30, 40, and 50 and selected sampling designs, the order statistics and
interpolation coefficients appropriate for producing approximately symmetric 95% confi-
dence intervals for the median of a finite population.

Table 2 Order statistics and interpolation coefficients for constructing approximately symmetric 95% confi-
dence intervals for the population median

Population size (n, k) Sampling r(ε1) s(ε2) Upper coverage Lower coverage
protocol probability probability

20 (3,2) Level 0 1 ( 0.851) 5 ( 0.051) 0.977 0.767
Level 1 1 ( 0.978) 5 ( 0.309) 0.995 0.855
Level 2 2 ( 0.152) 5 ( 0.360) 0.992 0.664
SRSWOR 1 ( 0.683) 6 ( 0.898) 0.992 0.892

20 (2,3) Level 0 1 ( 0.687) 6 ( 0.906) 0.992 0.895
Level 1 1 ( 0.877) 5 ( 0.150) 0.985 0.802
Level 2 1 ( 0.985) 5 ( 0.199) 0.990 0.821
SRSWOR 1 ( 0.683) 6 ( 0.898) 0.992 0.892

20 (2,4) Level 0 2 ( 0.261) 7 ( 0.673) 0.977 0.848
Level 1 2 ( 0.685) 6 ( 0.132) 0.983 0.800
Level 2 2 ( 0.958) 6 ( 0.228) 0.993 0.842
SRSWOR 2 ( 0.431) 7 ( 0.814) 0.987 0.875

30 (3,2) Level 0 1 ( 0.835) 6 ( 0.968) 0.996 0.924
Level 1 1 ( 0.916) 5 ( 0.130) 0.985 0.787
Level 2 2 ( 0.031) 5 ( 0.160) 0.969 0.562
SRSWOR 1 ( 0.583) 6 ( 0.746) 0.987 0.857

30 (2,3) Level 0 1 ( 0.677) 6 ( 0.831) 0.990 0.883
Level 1 1 ( 0.803) 6 ( 0.975) 0.996 0.920
Level 2 1 ( 0.867) 6 ( 0.998) 0.997 0.932
SRSWOR 1 ( 0.583) 6 ( 0.746) 0.987 0.857

30 (2,4) Level 0 2 ( 0.245) 7 ( 0.529) 0.974 0.831
Level 1 2 ( 0.526) 7 ( 0.853) 0.990 0.890
Level 2 2 ( 0.664) 7 ( 0.926) 0.995 0.912
SRSWOR 2 ( 0.212) 7 ( 0.494) 0.973 0.821
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Table 3 Order statistics and interpolation coefficients for constructing approximately symmetric 95%
confidence intervals for the population median

Population (n, k) Sampling r(ε1) S(ε1) Upper coverage Lower coverage
size protocol probability probability

40 (3,2) Level 0 1 ( 0.827) 6 ( 0.930) 0.996 0.918
Level 1 1 ( 0.887) 5 ( 0.045) 0.978 0.752
Level 2 1 ( 0.969) 5 ( 0.068) 0.981 0.759
SRSWOR 1 ( 0.531) 6 ( 0.662) 0.983 0.838

40 (2,3) Level 0 1 ( 0.673) 6 ( 0.791) 0.990 0.877
Level 1 1 ( 0.767) 6 ( 0.903) 0.994 0.905
Level 2 1 ( 0.813) 6 ( 0.918) 0.996 0.914
SRSWOR 1 ( 0.531) 6 ( 0.662) 0.983 0.838

40 (2,4) Level 0 2 ( 0.237) 7 ( 0.454) 0.972 0.822
Level 1 2 ( 0.450) 7 ( 0.698) 0.986 0.867
Level 2 2 ( 0.548) 7 ( 0.743) 0.990 0.883
SRSWOR 2 ( 0.094) 7 ( 0.325) 0.963 0.794

50 (3,2) Level 0 1 ( 0.822) 6 ( 0.906) 0.996 0.914
Level 1 1 ( 0.870) 6 ( 0.994) 0.997 0.932
Level 2 1 ( 0.933) 5 ( 0.012) 0.975 0.736
SRSWOR 1 ( 0.498) 6 ( 0.609) 0.980 0.827

50 (2,3) Level 0 1 ( 0.670) 6 ( 0.766) 0.989 0.873
Level 1 1 ( 0.745) 6 ( 0.857) 0.993 0.896
Level 2 1 ( 0.782) 6 ( 0.869) 0.994 0.903
SRSWOR 1 ( 0.498) 6 ( 0.609) 0.980 0.827

50 (2,4) Level 0 2 ( 0.232) 7 ( 0.408) 0.971 0.816
Level 1 2 ( 0.404) 7 ( 0.606) 0.982 0.852
Level 2 2 ( 0.482) 7 ( 0.639) 0.986 0.864
SRSWOR 2 ( 0.018) 7 ( 0.216) 0.957 0.777

The lack of symmetry evident in Tables 2 and 3 may seem somewhat counterintuitive,
given that we seek a confidence interval for the median. For Level 0 and Level 2 sampling,
this lack of symmetry arises solely because we are defining the median of an even-numbered
finite population as the population value x0.5N . For Level 1 sampling, however, asymmetry
arises both from the fact that the median as we define it is not symmetrically located and from
the asymmetry in the sampling protocol itself. The tabled values correspond to the ascending
version of Level 1 sampling as described in Section 2, and they would be different if the
order of the sampling were changed.

As an example of how to use the tables, consider the first row of Table 2. It tells us that
for a finite population of size 20, set size n = 3, and number of cycles k = 2, the inter-
val [X(r :K ), X(s:K )] = [X(1:6), X(5:6)] has exact coverage probability 0.977 under Level 0
sampling, while the shorter interval [X(2:6), X(4:6)] has exact coverage probability 0.767.
Using formulas (1) and (2) from Section 1, we find that ε1 = 0.851 and ε2 = 0.051 are the
interpolation coefficients appropriate for obtaining an approximate 95% confidence interval
for the median, x10. Thus, the interpolated confidence interval

[0.149X(1:6) + 0.851X(2:6), 0.949X(5:6) + 0.051X(4:6)]
is an approximate 95% confidence interval for the median proposed in this paper.

In practice, one may not have an exact value for the size N of the finite population from
which one is sampling. However, if an upper bound N � for the population size is available,
then one may treat N � as the population size and be effectively assured that the confidence
interval obtained in this way will be conservative. The validity of this conclusion for certain
concrete cases may be verified both by consulting Tables 2 and 3 and by consulting Table 4.
Table 4 shows that if one fixes the design as (n, k) = (2, 5), then the interpolated order
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Table 4 Order statistics and interpolation coefficients for contructing approximately symmetric 95%
confidence intervals for the population median when the sampling design is (n, k) = (2, 5)

Population Sampling r(ε1) s(ε2) Upper coverage Lower coverage
size protocol probability probability

40 Level 0 2 ( 0.946) 8 ( 0.164) 0.977 0.876
80 2 ( 0.939) 8 ( 0.012) 0.971 0.857
160 2 ( 0.936) 9 ( 0.970) 0.992 0.942
240 2 ( 0.935) 9 ( 0.958) 0.992 0.940
320 2 ( 0.935) 9 ( 0.952) 0.992 0.940
400 2 ( 0.934) 9 ( 0.948) 0.992 0.939
∞ 2 ( 0.933) 9 ( 0.933) 0.992 0.938
40 Level 1 3 ( 0.218) 8 ( 0.534) 0.977 0.838
80 3 ( 0.042) 8 ( 0.208) 0.960 0.787
160 2 ( 0.977) 8 ( 0.037) 0.973 0.860
240 2 ( 0.962) 9 ( 0.990) 0.993 0.946
320 2 ( 0.955) 9 ( 0.976) 0.993 0.944
400 2 ( 0.950) 9 ( 0.968) 0.993 0.943
∞ 2 ( 0.933) 9 ( 0.933) 0.992 0.938
40 Level 2 3 ( 0.364) 8 ( 0.615) 0.984 0.862
80 3 ( 0.115) 8 ( 0.245) 0.964 0.798
160 2 ( 0.994) 8 ( 0.056) 0.974 0.862
240 2 ( 0.974) 9 ( 0.995) 0.994 0.947
320 2 ( 0.964) 9 ( 0.980) 0.993 0.945
400 2 ( 0.957) 9 ( 0.971) 0.993 0.944
∞ 2 ( 0.933) 9 ( 0.933) 0.992 0.938

statistics appropriate for obtaining a 95% confidence interval for the median get farther apart
as the population size increases. Table 4 also shows that as the population size increases,
the coverage probabilities for Level 0 sampling converge most rapidly to the corresponding
values in the infinite-population case, while the coverage probabilities for Level 2 sampling
converge most slowly to the values in the infinite-population case.

A heuristic explanation of the general rule that overestimating the population size will
lead to conservative confidence intervals can be obtained by considering what it is that
makes these finite-population confidence intervals good. Put simply, the two factors making
these finite-population confidence intervals better than the corresponding infinite-population
confidence intervals are the discreteness of the population and the gradual exhaustion of
the population when we sample without replacement. If the population size increases while
the design is kept fixed, the influence of each of these factors is reduced, meaning that one
obtains a conservative confidence interval when one overestimates the population size N . In
the extreme situation in which nothing is known of the population size, one may safely use
the infinite population confidence intervals developed by Ozturk and Deshpande (2005) and
be assured of a conservative result.

4. A simulation study

In order to compare the performance of the three sampling protocols both among themselves
and also to simple random sampling without replacement, a simulation study was performed.
Finite populations with sizes 20, 30, 40, and 50 were produced by separately drawing sim-
ple random samples without replacement from a larger dataset listed in Chen et al. (2004).
These small finite populations were then fixed and used throughout the simulation study. The
dataset listed in Chen et al. (2004), which consists of measurements of height and diameter
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Fig. 1 Plots of height (in feet) versus diameter at chest height (in cm) for the four finite populations of
long-leafed pines

at chest height for 396 long-leafed pines, is part of a more comprehensive dataset originally
developed by Platt et al. (1988). The attribute of interest was taken to be tree height, which
was measured in feet.

We considered two different methods for carrying out the ranking needed in the sam-
pling process. Specifically, we considered the case in which ranking was done according to
the concomitant variable diameter at chest height and the case in which ranking was done
according to height itself. The relationship between height and diameter at chest height for
the four finite populations is shown in Fig. 1. The correlations between height and diameter
at chest height were 0.957 for the population of size 20, 0.935 for the population of size 30,
0.905 for the population of size 40, and 0.900 for the population of size 50.

The simulation study was carried out using a factorial design, with the sampling design
(n, k) taking on the values (3, 2), (2, 3), and (2, 4), the population size taking on the values
20, 30, 40, and 50, and the ranking being done either according to the concomitant variable
diameter at chest height or according to height itself. The sampling protocols considered were
Level 0 sampling, Level 1 sampling (ascending), Level 2 sampling, and simple random sam-
pling without replacement. For each combination of the factors, a 95% confidence interval
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Table 5 Simulated average lengths for nominal 95% confidence intervals for the population median

Population size (n, k) Ranking variable Sampling protocol

Level 0 Level 1 Level 2 SRSWOR

20 (3,2) Diameter 54.2 46.2 39.8 60.1
(2,3) Diameter 61.6 50.5 46.7 60.1
(2,4) Diameter 50.4 33.0 27.9 42.3

20 (3,2) Height 54.4 46.4 39.9 60.1
(2,3) Height 61.5 50.6 46.8 60.1
(2,4) Height 50.5 33.1 28.0 42.3

30 (3,2) Diameter 75.7 68.3 62.8 92.4
(2,3) Diameter 86.6 75.4 71.4 92.5
(2,4) Diameter 72.7 54.4 48.4 72.5

30 (3,2) Height 75.9 68.4 62.8 92.6
(2,3) Height 86.8 75.6 71.5 92.6
(2,4) Height 72.7 54.5 48.4 72.5

40 (3,2) Diameter 54.4 49.4 46.9 68.8
(2,3) Diameter 62.1 55.9 54.1 68.8
(2,4) Diameter 52.3 43.9 41.1 55.1

40 (3,2) Height 54.4 49.4 46.8 68.8
(2,3) Height 62.2 56.0 54.1 68.8
(2,4) Height 52.4 44.0 41.5 55.1

50 (3,2) Diameter 72.1 66.4 63.6 92.4
(2,3) Diameter 81.8 75.8 74.1 92.3
(2,4) Diameter 69.8 60.7 58.0 77.0

50 (3,2) Height 72.3 66.5 63.4 92.4
(2,3) Height 82.1 76.1 74.2 92.4
(2,4) Height 69.9 60.7 58.0 77.1

for the population median was constructed. Since the confidence level 0.95 could not be
achieved exactly under any of the factor combinations, approximate 95% confidence inter-
vals were constructed using the interpolation scheme described in Section 1. In the course
of the study, 1000000 ranked-set samples were simulated for each combination of factors.
The true coverage probability for the intervals was estimated using the proportion of the
1000000 intervals which contained the true median, and the average length of the confidence
intervals was estimated using the mean length of the 1000000 intervals simulated for each
combination of factors.

The results of the study indicate that for all combinations of factors considered, intervals
produced by the Level 1 and Level 2 sampling protocols are substantially shorter than inter-
vals produced by simple random sampling without replacement. The intervals produced by
the Level 0 sampling protocol also tend to be shorter than the intervals produced by simple
random sampling without replacement, but they are slightly longer for certain designs when
the population size is only 20 or 30. These effects are clearly evident in Table 5. The Level 1
and Level 2 RSS sampling protocols yield intervals of comparable average length, but the
average length is always smaller under Level 2 sampling. In fact, for each combination of
factors considered, Level 2 sampling produced the shortest intervals among the three RSS
protocols, and Level 0 sampling produced the longest. The difference in average lengths
among the three protocols is, as might have been anticipated, larger for population size 20
than for population size 50. As expected, the average lengths of the confidence intervals
decrease, for the fixed confidence level 95%, when the set size n is fixed at 2 and the number
of cycles k increases from 3 to 4.
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Table 6 Simulated coverage probabilities of nominal 95% confidence intervals for the population median

Population size (n, k) Ranking variable Sampling protocol

Level 0 Level 1 Level 2 SRSWOR

20 (3,2) Diameter 0.930 0.949 0.949 0.947
(2,3) Diameter 0.949 0.934 0.945 0.947
(2,4) Diameter 0.935 0.931 0.934 0.940

20 (3,2) Height 0.933 0.952 0.957 0.947
(2,3) Height 0.952 0.935 0.945 0.947
(2,4) Height 0.935 0.933 0.936 0.940

30 (3,2) Diameter 0.936 0.916 0.913 0.940
(2,3) Diameter 0.948 0.943 0.932 0.941
(2,4) Diameter 0.940 0.944 0.946 0.943

30 (3,2) Height 0.951 0.939 0.938 0.940
(2,3) Height 0.952 0.951 0.943 0.940
(2,4) Height 0.945 0.950 0.955 0.942

40 (3,2) Diameter 0.936 0.927 0.941 0.938
(2,3) Diameter 0.938 0.936 0.935 0.938
(2,4) Diameter 0.946 0.941 0.943 0.945

40 (3,2) Height 0.938 0.929 0.942 0.938
(2,3) Height 0.940 0.938 0.937 0.938
(2,4) Height 0.948 0.943 0.945 0.945

50 (3,2) Diameter 0.954 0.944 0.922 0.945
(2,3) Diameter 0.951 0.955 0.957 0.945
(2,4) Diameter 0.937 0.946 0.949 0.930

50 (3,2) Height 0.966 0.961 0.943 0.945
(2,3) Height 0.957 0.961 0.963 0.945
(2,4) Height 0.945 0.953 0.958 0.930

The interpolated confidence intervals have coverage probabilities quite close to their
nominal levels when rankings are done according to height, as can be seen in Table 6.
The interpolated confidence intervals also essentially maintain their level when rankings are
done according to the concomitant variable diameter at chest height. We suspect, however,
that the confidence levels would not hold as well either when rankings are done according to
less highly correlated concomitant variables or when larger set sizes n are used.

5. Conclusions

We described three protocols for drawing a ranked-set sample from a finite population, and
we proposed nonparametric confidence intervals for quantiles based on these sampling pro-
tocols. Though the sampling protocols lead to highly divergent sampling distributions when
population sizes are small, the differences decrease with increasing population size. However,
in our simulations study involving finite populations of sizes 20, 30, 40, and 50, we found
noticeable differences among the three protocols in the average length of 95% confidence
intervals for a population median. All three RSS protocols were found in the simulation study
to be superior to simple random sampling without replacement, but the difference was great-
est for Level 1 and Level 2 sampling. The performance of the protocols suggests that Level 2
sampling is to be preferred for small finite population sizes such as those we considered.
Once larger populations are considered, however, convenience might also be an important
consideration in deciding which protocol to use in a given situation.

We proposed that the same sort of interpolated confidence intervals that have been used
for SRS and RSS in the infinite-population setting could be used for finite-sample RSS, and
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our simulation results showed close agreement between the desired confidence levels and the
levels actually achieved using interpolated confidence intervals. We examined the impact of
imperfect rankings on our confidence interval procedure by considering rankings according
to a concomitant variable. Our simulation study suggests that for concomitant variables, such
as diameter at chest height in the simulation study, that are highly correlated with the attri-
bute of interest, the true confidence levels are only marginally lower than the nominal levels
for small set sizes. However, for larger set sizes and for less highly correlated concomitant
variables, we recommend proceeding with caution.
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