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Abstract
Developing students’ competence in algorithmic thinking is emerging as an objective 
of mathematics education, but despite its inclusion in mathematics curricula around the 
world, research into students’ algorithmic thinking seems to be falling behind in this cur-
riculum reform. The aim of this study was to investigate how the mathematical modelling 
process can be used as a vehicle for eliciting students’ algorithmic thinking. To achieve this 
aim, a generative study was conducted using task-based interviews with year 12 students 
(n = 8) to examine how they used the mathematical modelling process to design an algo-
rithm that solved a minimum spanning tree problem. I observed each students’ modelling 
process and analysed how the task elicited the cognitive skills of algorithmic thinking. The 
findings showed that the students leveraged their mathematical modelling competencies 
to formulate a model of the problem using abstraction and decomposition, designed their 
algorithms by devising a fundamental operation to transform inputs into outputs during 
the working mathematically transition, and debugged their algorithms during the validating 
transition. Implications for practice are discussed.

Keywords Algorithmic thinking · Algorithm · Mathematical modelling · Minimum 
spanning tree · Computational thinking

1 Introduction

Algorithmic thinking refers to the thinking or reasoning involved in designing, testing, 
improving, or making sense of an algorithm independent of a programming language that 
might be used to execute it (Futschek, 2006; Stephens & Kadijevich, 2020). Developing 
algorithmic thinking is emerging as an objective of mathematics education because it 
equips students with skills necessary to thrive in a world defined by complex systems and 
widespread use of digital technologies (Blannin & Symons, 2019; Stephens, 2018; Wing, 
2006). Incorporating algorithmic thinking into mathematics curricula coincides with the 
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broader recognition that computational thinking, which encompasses algorithmic thinking 
among other key practices including coding, is an essential competence for all students to 
develop across the school curriculum (Wing, 2006, 2008).

Many countries, such as England, France, and Japan, have already begun incorporating 
algorithmic thinking into school curricula (Stephens, 2018). In Australia, the national 
curriculum authority answered calls to incorporate algorithmic thinking by including 
graph theory topics in the recently revised national mathematics curriculum (Australian 
Curriculum, Assessment and Reporting Authority [ACARA], 2022). For instance, year 10 
students investigate “how networks and network diagrams can be used to model authentic 
situations” and “design, test and refine solutions to spatial problems using algorithms” 
(ACARA, 2022). Graph theory is a domain of mathematics that has long been used as a 
modelling tool in mathematics and computer science (Medová et al., 2019), and problems 
in this domain provide many opportunities for students to develop algorithmic thinking 
(Rosenstein, 2018). However, the incorporation of algorithmic thinking in this way is 
occurring at a time when research into the teaching and learning of algorithmic thinking is 
not keeping pace with curriculum reform.

Mathematics education researchers have suggested using mathematical modelling 
as a vehicle for eliciting algorithmic thinking, particularly in relation to graph theory 
(Hart & Martin, 2018; Medová et al., 2019), which is plausible given that researchers 
from across disciplines describe algorithm design as a cyclical, modelling-like process 
(Futschek & Moschitz, 2010; Hart, 1998; Standl, 2017). However, there appears to be 
little empirical evidence that supports these strong recommendations. The aim of the 
present study was to address this gap by investigating how mathematical modelling 
elicits the algorithmic thinking of students as they design an algorithm to solve a 
minimum spanning tree problem. To achieve this aim, I conducted a series of task-based 
interviews with eight year 12 students in which they leveraged their competence in the 
mathematical modelling cycle to formulate a model of the problem using abstraction 
and decomposition, design an algorithm to solve the problem during the working 
mathematically transition, and debug their algorithms during their validating transition. 
The findings extend the field by providing insights into how teachers and researchers 
might recognize the algorithmic thinking of their students and design tasks that 
intentionally elicit algorithmic thinking through mathematical modelling.

2  Review of related literature

2.1  Algorithmic thinking

Researchers across the disciplines of education frame algorithmic thinking in terms of a 
subset of cognitive skills from computational thinking (Blannin & Symons, 2019; Ritter 
& Standl, 2023; Stephens, 2018; Stephens & Kadijevich, 2020). These cognitive skills 
include decomposition, abstraction, algorithm design, pattern recognition, debugging, and 
generalization. Table 1 contains elaborations for each of these cognitive skills, which are 
used throughout this study.

Although there has been considerable effort to identify the cognitive skills involved 
in algorithmic and computational thinking (Shute et al., 2017), there appears to be very 
little research across the domains of educational research into how these cognitive skills 
are learned by students, particularly in relation to graph theory. However, recent research 
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into novice mathematics students’ attempts at algorithmatising tasks1 offers some prelim-
inary insights into tasks that might elicit aspects of algorithmic thinking. Moala (2021) 
examined approaches to algorithm design used by two small groups of novice year 12 
(group A) and first-year undergraduate (group B) mathematics students in response to 
a maximum Hamiltonian path algorithmatising task. The analysis showed that students 
developed a set of rules based on features of their solution, a mechanism that Moala 
(2021) called “accounting for features of the solution” (p. 264). However, only group 
B wrote a sufficient set of features that would produce the optimal arrangement, which 
Moala (2021) attributed to two strategies used by this group: “1) finding a sub-optimal 
arrangement and then improving it; and 2) trying to improve the optimal arrangement, 
but not being able to do so” (p. 282). In a similar study, Moala et al. (2019) examined the 
debugging practices used by a group of three pre-degree students in response to another 
Hamiltonian path-type optimization task involving three unweighted vertex-edge graphs. 
They found that the students solved the first problem using an exhaustive search and 
then based their initial algorithm on the attributes of that solution. However, the stu-
dents’ initial algorithm did not produce an optimal solution for the second two graphs 
and the students responded by retaining elements of their algorithm that they deemed apt 
(local considerations) and removed or added instructions (patching) when the algorithm 
was inapt, although the students were ultimately unsuccessful at designing an algorithm 

Table 1  Definition of cognitive skills of algorithmic thinking

Cognitive skills Elaboration

Decomposition Break down a problem or system into subproblems or smaller parts (Shute et al., 2017; 
Stephens & Kadijevich, 2020)

Abstraction Determine the essential components of a problem or system, which involves:
• Collecting relevant information/data and disregarding irrelevant information/data 

(Shute et al., 2017; Wetzel et al., 2020)
• Building representations using the essential components that show how the problem 

or system works using an appropriate representation (Hart, 1998; Shute et al., 2017; 
Wing, 2006)

Algorithm design Design a set of ordered steps to produce a solution or achieve a goal (Lockwood et al., 
2016; Shute et al., 2017). Steps include algorithmic concepts such as:

• Inputs (Mingus & Grassl, 1998)
• Fundamental operation (Lehmann, 2023a, b)
• Outputs (Mingus & Grassl, 1998)
• Branching (if/then/else) (Peel et al., 2019)
• Iteration/loops (Peel et al., 2019)
• Variables/intermediate results (Mingus & Grassl, 1998; Peel et al., 2019)

Pattern recognition Analyse information or data to:
• Identify repeated sequences (Peel et al., 2019)
• Detect trends (Ang, 2021; Blannin & Symons, 2019)

Debugging Test that the algorithm solves the problem or other problems of the same type, which 
involves:

• Considering alternative approaches (Futschek & Moschitz, 2010; Ginat, 2008)
• detecting and fixing errors (Moala et al., 2019; Shute et al., 2017)

Generalization Apply algorithm or skills to solve problem beyond current context or domain (Peel 
et al., 2021; Shute et al., 2017)

1 Algorithmatising tasks invite students to create, test, and revise algorithms in response to a given problem 
(Moala, 2021).
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that would guarantee an optimal solution. These two case studies illustrate how algo-
rithmatising tasks can be used to elicit and analyse algorithm design and debugging 
approaches by novice students. However, it is unclear if these or similar approaches are 
used by students who have comparatively more experience with graph theory or for prob-
lems beyond the Hamiltonian-type problems used in these studies, for which exhaustive 
searches are typically necessary.

A study by Greefrath et al. (2022) illustrates how an Eulerian-path modelling activity 
can elicit the algorithmic thinking skill of abstraction in the context of graph theory. Two 
groups of four grade 9 students, without experience in graph theory, were invited to find 
an optimum route for a city street cleaning service. The analysis showed how the students 
collected relevant information about a local road network from a street map and built a 
representation of that road network using vertex-edge graph concepts, including weighted 
edges and considerations for graph traversal, which reflect the two key aspects of abstrac-
tion in algorithmic thinking. Although the study did not address how the students found a 
Eulerian path—because it was not their intent—the study is instructive in that it illustrates 
how a modelling activity can elicit an abstract representation of a problem for which an 
algorithmic solution could be designed. In the present study, my aim was to build on this 
modelling approach by combining it with the algorithmatising approach described above 
(Moala, 2021; Moala et al., 2019) to elicit a broader set of algorithmic thinking skills.

2.2  Mathematical modelling

The purpose of mathematical modelling is to use mathematics to understand a real-
world phenomenon and explain, make predictions about, or organize some aspect of 
that phenomenon (Niss, 2015). A mathematical modelling process refers to the phases 
used to develop a mathematical model, which include identifying a messy or ill-defined 
real-world problem, formulating an appropriate mathematical representation, finding a 
mathematical solution, interpreting the solution in the context of the original problem, 
and validating and evaluating the solution (Stillman et  al., 2007). This process is 
cyclical because it is often necessary to refine a model after evaluating the intermediate 
solution or results.

There are numerous interpretations of the mathematical modelling process, which are 
typically represented by a cyclical diagram such as the one in Fig.  1 used in this study 
(Stillman et al., 2007). Such diagrams, however, are idealized descriptions of the phases 
of the modelling process used to analyse the actual process followed by an individual 
modeller in response to a modelling problem (Niss & Blum, 2020). Figure 1 shows the 
phases of the process, which are labelled A–G, and the transitions between these phases, 
which are shown as bolded arrows labelled 1–7 and described briefly in the accompanying 
key. The double-headed arrows depict possible backwards and forwards iterations of 
the phases resulting from a modeller’s evaluative activity between phases (Geiger et  al., 
2022). The phases of the process and iterations might be accomplished in any order, but all 
permutations are omitted for simplicity.

Irrespective of the process used, teachers can use mathematical modelling as a vehicle 
to support students’ learning of mathematical ideas, ways of reasoning (Julie & Mudaly, 
2007; Reinke, 2019), or, in the present case, algorithmic thinking. A goal of mathematical 
modelling can also be for students to develop algorithms, which can be interpreted as 
formal models emerging from the modelling process that apply beyond the original 
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problem situation (Reinke, 2019). For example, researchers suggest that modelling tasks 
can be used to elicit students’ invention of algorithms for solving minimum spanning tree 
problems (Hart, 1998; Medová et al., 2019). However, there is little analysis of students’ 
responses to such tasks, which would otherwise provide insights into how students use their 
mathematical modelling competencies to design algorithms and illustrate how teachers 
might recognize students’ algorithmic thinking as they engage in the modelling process. 
The research question that guided this study was:

How does mathematical modelling elicit students’ algorithmic thinking?

3  Conceptual framework

The conceptual framework that I devised to investigate how mathematical modelling elicits 
students’ algorithmic thinking contains two parts that reflect these two cognitive activities. 
First, I used the framework formulated by Stillman et  al. (2007) outlined above (see 
Fig. 1) to interpret students’ modelling processes from a cognitive modelling perspective 
(Kaiser, 2017; Stillman, 2011). The cognitive modelling perspective foregrounds students’ 
modelling process and thinking to reconstruct individual modelling pathways. Second, 
I interpreted algorithmic thinking as a competency model, which is a set of knowledge, 
skills, and other attributes that comprise a construct, such as algorithmic thinking (Messick, 
1994; Shute et  al., 2017). Table  1 contains the set of cognitive skills that comprise this 
competency model of algorithmic thinking. The elaborations in this table describe the 
behaviours and performance that are indicative of these cognitive skills, which cannot 
be directly observed. These indicators are drawn from the existing literature and may be 
subject to revision given the generative nature of this study.

Fig. 1  Modelling process of Stillman et al. (2007)
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3.1  Minimum spanning trees

Minimum spanning trees are a class of problems for which novice students are likely to 
design algorithms independently as they attempt to model and solve the problem, indicating 
an alignment between the modelling process and algorithmic concepts (Hart, 1998; Medová 
et al., 2019). In this section, I present a brief conceptual discussion of how the modelling 
process may elicit algorithmic thinking skills in relation to the minimum spanning tree 
problems used for this study (see Appendices 1 and 2).

The cyclical mathematical modelling process is reminiscent of several attempts by 
researchers across education disciplines to describe the algorithmic thinking process. 
In Table  2, I  used the transitions from the mathematical modelling process to compare 
proposed processes of algorithmic thinking from the mathematics (Mingus & Grassl, 
1998), computer science (Futschek & Moschitz, 2010), and computational thinking 
(Standl, 2017) education literature. This latter process suggests links between the cyclical 
process of algorithmic thinking and the cognitive skills of algorithmic thinking, which I 
show in the right-hand column.

Each of the algorithmic thinking processes begins with an understanding and 
formulating phase, which elicits decomposition and abstraction, and results in an 
abstract representation of the real-world problem. The vertex-graph in Appendix 2 is 
an abstract representation of the network of electrical cables for the school fete, which 
shows how the stalls can be linked directly as well as how much cable is needed using 
the given map of the school. It is not possible to run a cable between each stall because 
of various obstacles in the layout of the school. The labelled vertices represent the stalls, 
and two vertices are connected by an edge if the stalls can be connected directly. The 
weight of each edge represents the length of cable in metres that connects the two stalls. 
The goal of the problem is to find the minimum length of cable needed to connect each 
of the stalls.

The next phase in the process is to design an algorithm that will solve the problem, 
which aligns with the working mathematically transition. The models developed 
during this phase are an algorithm for finding a minimum spanning tree and the 
minimum spanning tree itself. A minimum spanning tree is a subgraph that includes 
all the vertices and has a minimum total weight, which is calculated by summing 
the weight of each edge. The minimum spanning tree for the graph in Appendix 2 is 
shown in step (iii) of Fig. 2, which has a weight of 98 m. The tree has no circuits (a set 
of edges that joins a vertex to itself such as E—F—G—E) because each vertex only 
needs one connection. There are several algorithms for finding a minimum spanning 
tree, including Kruskal’s (1956) and Prim’s (1957) algorithms, which work by adding 
the next available edge with minimum weight. Figure 2 is an illustration of Kruskal’s 
algorithm and algorithmic concepts are shown in bold. The processes of Mingus and 
Grassl (1998) and Futschek and Moschitz (2010) indicate that the algorithm design 
phase requires ongoing monitoring of outputs to ensure the algorithm is working. This 
aligns with the interpreting mathematical output transition in mathematical modelling 
and may trigger iterations of the modelling phases.

The algorithmic thinking processes end with a validating phase, which elicits debugging 
skills. This phase involves validating an algorithm, possibly with the use of another example 
or counterexample (Moala et al., 2019).
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Fig. 2  Illustrated steps of Kruskal’s algorithm
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4  Methodology

Clinical methods are appropriate for a generative study such as this because my purpose 
was to “generate new observation categories and new elements of a theoretical model 
in the form of descriptions of mental structures or processes that can explain the data” 
(Clements, 2000, p. 557). Task-based interviews (Goldin, 2000; Maher & Sigley, 2020) 
are one clinical method that mathematics education researchers use to explore students’ 
mathematical thinking as they attempt mathematical tasks. Hence, I conducted a set of two, 
50–80-min one-on-one task-based interviews with eight year 12 student (16 interviews in 
total; mean time total = 118 min) to make systematic observations of students’ verbal and 
nonverbal behaviours as they used the modelling process to design an algorithm to solve 
the minimum spanning tree problem.

4.1  Participants and curriculum context

The eight year 12 students (mean age = 17.5 years) were enrolled at a large, high-socioeconomic 
secondary school in Queensland, Australia. They were in their second quarter of year 12 at the 
time of the study. I recruited these students because they were studying General Mathematics 

Table 3  Relevant syllabus descriptors (QCAA, 2019)

Mathematical modelling Graph theory content (pp. 39–40)

• Syllabus contains an approach to problem-solving 
and mathematical modelling based on Stillman 
et al. (2007) cycle presented in Fig. 1. The process 
presented in the syllabus contains four stages that 
encompass the transitions in Fig. 1 contained in 
the parentheses:

(1) Formulate (transitions 1 and 2)
(2) Solve (transition 3)
(3) Evaluate and verify (transitions 4, 5, and 7)
(4) Communicate (transition 6 in Fig. 1)
• Students had experience using this process 

as a vehicle for learning about bivariate and 
time-series data analysis, growth and decay in 
sequences, loans, investments and annuities, and 
shortest path and assignment problems

• Students’ mathematical modelling competence is 
assessed according to the following criteria:

(1) Formulate: documentation of assumptions and 
observations; translation of the problem by identi-
fying mathematical concepts and techniques

(2) Solve: use of procedures to reach a solution; 
application of mathematical concepts and tech-
niques relevant to the task; use of technology

(3) Evaluate and Verify: evaluation of the reasona-
bleness of the solution by considering the results, 
assumptions, and observations; documentation of 
the relevant strengths and limitations of the solu-
tion and/or model; justification of decisions made 
using mathematical reasoning

(4) Communication: use of appropriate language 
and conventions to develop a response; organiza-
tion of response

Graphs, associated terminology and the adjacency 
matrix

• Understand the meaning of the terms graph, edge, 
vertex, loop, degree of a vertex, subgraph, simple 
graph, complete graph, bipartite graph, directed 
graph (digraph), arc, weighted graph and network

• Identify practical situations that can be represented 
by a network and construct such networks, e.g., 
trails connecting camp sites in a national park, a 
social network, a transport network with one-way 
streets, a food web, the results of a round-robin 
sporting competition

• Construct an adjacency matrix from a given graph 
or diagraph

Planar graphs, paths and cycles
• Investigate and solve practical problems to deter-

mine the shortest part between two vertices in a 
weighted graph (by trial-and-error methods only)

Assigning order and the Hungarian algorithm
• Use a bipartite graph and its tabular or matrix form 

to represent an assignment/allocation problem, e.g., 
assigning four swimmers to the four places in a 
medley relay team to maximise the team’s chances 
of winning

• Determine the optimum assignment/s for small-
scale problems by inspection, or by use of the 
Hungarian algorithm ( 3 × 3 ) for larger problems
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(QCAA, 2019), which is a 2-year course designed for students who do not require knowledge 
of calculus for their future work or study. Two features of this syllabus provided a suitable 
context for investigating students’ use of mathematical modelling to design algorithms. First, 
the syllabus embeds the development of mathematical modelling competence throughout the 
course and recommends that teachers use modelling as a vehicle for learning mathematics. The 
first column of Table 3 contains a summary of the students’ previous modelling experience, 
as well as a summary of the criteria used to assess students’ modelling competence through 
a high-stakes modelling task worth 20% of their final grade. All eight students had achieved 
a grade of either 19 or 20 on this summative assessment task and hence had well-developed 
modelling competence according to the criteria in Table 3.

The second feature of the syllabus that made the context and students suitable for this study 
is the graph theory and algorithm content contained in Table 3, which the students had learned 
in the four weeks immediately preceding this study. I expected that the students’ experience in 
using vertex-edge graphs to model real-world networks and familiarity with basic algorithmic 
concepts, such as inputs, fundamental operations, loops, branching, and outputs, would 
support their algorithmic thinking in response to the minimum spanning tree problem.

4.2  Task‑based interviews

I conducted the one-on-one task-based interviews with each student individually using 
Zoom because the study coincided with locally mandated COVID-19 restrictions that 
prohibited students from attending interviews in person. The students participated in the 
Zoom interviews from their homes, and I accessed Zoom from my home office. During the 
interviews, I observed the students via the speaker view while they used the Share Screen 
function to show their working. The students used Word to document their modelling 
process, and the whiteboard functions in Zoom to show their working out.

Table 4  Interview protocol

Phase of interview Interviewer

Interview #1
Understanding • Email the modelling task sheet in Appendix 1 to the student and allow time for 

the student to read
• Answer any clarifying questions
• Say to the student: “How can you use the modelling process to design your 

algorithm?”
• Ask the student to create a Word document to document their modelling process

Formulating/working 
mathematically/
interpreting

• Ask the student to explain their thinking
• Ask the student to explain a statement or clarify their meaning
• Allow time for the student to measure the lengths on the map
• Allow time for the student to record their responses on the shared whiteboard or 

their Word document
Interview #2
Validating/revisiting/

communicating
• Email the student the revised vertex-edge graph of the same network in Appendix 

2 and allow time for the student to read
• Answer any clarifying questions
• Ask the student to explain their thinking
• Ask the student to explain a statement or clarify their meaning
• Allow time for the student to record their response on the shared whiteboard or 

their Word document (for example see lines 1–2 of Table 4 below)
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Table 4 contains the interview protocol that I used to conduct the interviews, which is 
organized according to the phases of the modelling process. In general, the students were 
asked to think aloud during the interviews and as will be shown below, were accustomed to 
this because they had completed several task-based interviews before.

I captured screenshots of the students’ work using the Save Whiteboard function in 
Zoom. The interviews were recorded using the application’s recording function. The data 
collected for the study included the following: audio and video recordings of the sessions 
generated by Zoom; the screenshots of all written responses produced by the students; 
transcriptions of the audio recordings; and students’ Word documents.

4.3  Data analysis

I used content analysis (Patton, 2002) to interpret the students’ responses. I developed a dual 
coding system to interpret the students’ responses in terms of their mathematical modelling 
process and algorithmic thinking. I coordinated the dual analysis of the audio/video 
recordings using MaxQDA, a screenshot of which is shown in Fig. 3.

The data were first analysed to reconstruct each students’ mathematical modelling 
process. I used the descriptors of the transition between the phases in the modelling 
process of Stillman et al. (2007) as codes to interpret each students’ modelling activity. 
For brevity, these codes were truncated to the following: understanding; formulating; 
working mathematically; interpreting; validating; revisiting; and communicating. 
These seven codes were used to code the video footage as well as the transcriptions. 
For example, I coded the scene shown in Fig.  3 as “validating” because Oakley 
was checking her algorithm by applying it to the revised graph. The corresponding 
excerpt from the transcription, shown in Table  5, was also coded as validating. An 
experienced mathematics educator coded the responses independently and we resolved 
any conflicting interpretations through discussion.

Fig. 3  Screenshot of MaxQDA analysis of Oakley’s validating/debugging
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After each student’s modelling processes were coded, I turned to their algorith-
mic thinking. The same video and transcription data were analysed to determine 
when and how the students used the cognitive skills of algorithmic thinking, which 
involved both deductive and inductive analyses (Saldaña, 2021). First, I coded each 
student’s modelling activity according to the six cognitive skills: decomposition; 
abstraction; algorithm design; pattern recognition; debugging; and generalization. 
For example, the same scene shown in Fig.  3 was coded as “debugging” because 
Oakley was testing her algorithm.

The inductive analysis involved creating codes that characterized how the students 
used the cognitive skill in response to the task. I came to interpret these codes as subskills 
because they explained the way the students used the broader cognitive skill, and I use this 
term in the presentation of the findings. To generate these subskills, I first wrote my inter-
pretation of the students’ actions or utterances as a memo, as shown in the final column of 
Table 5. For example, my memo for line 31:36 of Table 5 was “detects error” because this 
was the exact moment that Oakley realized that her draft algorithm could yield a circuit. I 
grouped qualitatively similar types of memos together and assigned them a code. My code 
for all instances in which a student identified an error while they were executing their draft 
algorithm was, for example, “detect error”. The same experienced mathematics educator 
reviewed my interpretations of the students’ algorithmic thinking and we again resolved 
disagreements through discussion. During these discussions, we found instances when stu-
dents’ responses could not be characterized by the indicators of algorithmic thinking in 
Table 1. For example, the students made various assumptions about how the cable would 
be laid while determining the essential components of the system but making assumptions 
was not a subskill under the initial abstraction skill in the conceptual framework. To handle 
these instances, we created new subskills, and these subskills represent developments in 
the conceptual framework for algorithmic thinking.

After the data were coded, I generated a Modelling Transition Diagram (Czocher, 
2016) for each student. Figure 4 shows Oakley’s Modelling Transition Diagram, which 
also shows how I added the algorithmic thinking skills to the diagram. The purpose 
of this was to analyse how the mathematical modelling process elicited the students’ 
algorithmic thinking.

Fig. 4  Oakley’s modelling transition diagram
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5  Findings

Each of the eight students followed a different modelling pathway to formulate a 
reasonable model of the network and designed an algorithm that found a minimum 
spanning tree, although they used algorithmic thinking in slightly different ways. 

Table 6  Alignment of transitions between modelling phases and algorithmic thinking skills

*DEC decomposition, AB abstraction, GEN generalization, AD algorithm design, PR pattern recognition, 
BUG debugging
**New subskill

Transition between mod-
elling phases

Algorithmic thinking skills

Subskills*

Understanding Decomposition
DEC1: decompose task into modelling phases**

Generalization
GEN1: apply familiar modelling process**

Formulating Abstraction
AB1: establish implicit criteria for relevance of information
AB2: identify and/or quantify variable**
AB3: make assumptions**
AB4: select an appropriate type of representation
AB5: determine how to represent essential components

Generalization
GEN2: apply vertex-edge graph skills

Working mathematically Decomposition
DEC2: use subgoals to structure algorithm

Algorithm design
AD1: determine inputs
AD2: devise fundamental operation
AD3: use loop to repeat fundamental operation
AD4: use branching to account for constraints of problem

Pattern recognition
PR1: reasoning underpinning fundamental operation
PR2: reasoning underpinning loop

Interpreting Algorithm design
AD5: determine and verify outputs**

Validating Algorithm design
AD5: determine and verify outputs**

Debugging
BUG1: detect error
BUG2: fix error

Revisiting Abstraction
GEN2: apply vertex-edge graph skills

Communicating Algorithm design
AD6: express algorithm as sequence of ordered steps
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Table  6 contains a summary of the algorithmic (sub)skills elicited throughout the 
modelling process, which are based on the Modelling Transition Diagrams. In the 
remainder of this section, I present the findings according to each of the cognitive skills 
and use the final algorithms designed by Wyatt and Paxton, reproduced in Fig.  5, as 
examples throughout.

5.1  Decomposition

The modelling task elicited students’ use of decomposition in two ways. First, instructing 
the students to use mathematical modelling appeared to elicit their use of decomposition 
 (DEC1) because they first broke down the task into the phases of the modelling process 
during the understanding transition. Figure 6 is a screenshot of Remington’s Word document 
taken at minute 10:24 of her first interview and shows how she broke the task down into 
three phases, Formulate, Solve; and Evaluate and Verify. Second, five of the students used 
decomposition to break down the method for finding a minimum spanning tree into subgoals 
 (DEC2) during the working mathematically transition. For example, Wyatt’s algorithm in 
Fig. 5 shows how she broke down the algorithm into three separate subgoals: (1) listing the 
weights; (2) finding the minimum spanning tree; (3) adding the weights of the spanning 
tree edges. Four other students also used decomposition in this way to structure their final 
algorithms.

Fig. 5  a Wyatt’s and b Paxton’s final algorithms
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5.2  Abstraction

The modelling process elicited students’ use of abstraction as they translated the real-world 
problem into a mathematical model. The students used implicit criteria to determine the 
relevant information about the fete  (AB1), consistent with the existing first subskill of 
abstraction in the algorithmic thinking framework (Table 1), and illustrated by Remington’s 
document in Fig. 6 where she listed relevant information under the heading, “Observations”. 
Remington’s document also illustrates two additional subskills for abstraction that emerged 
from the students’ use of their mathematical modelling competencies. The students 
identified the length between stalls as the relevant variable that they would quantify  (AB2), 
although this variable was clearly implied by the task statement. The students also made 
various assumptions about information not contained in the task  (AB3), such as how the 
cable would be laid and the location of the stalls.

Fig. 6  Screenshot of Remington’s Word document (“Formulate”, “Solve”, and “Evaluate and Verify” are 
the abbreviations that the students routinely used to describe the modelling process.)
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All students chose a vertex-edge graph to represent the distances between each stall 
 (AB4), although five students initially attempted to use a matrix. As these students began 
searching for the minimum spanning tree during the working mathematically transition, 
they found it difficult to identify a cycle. In response to this “red flag” (Goos, 2002, p. 
286), the students engaged their revisiting competence by cycling back to the formulate 
transition and revising their model by using a graph.

Having selected an appropriate representation, the students determined how to 
represent the essential information about the network using the graph  (AB5). For 
example, Spencer explained how she intended to represent the essential components 
as follows:

1 09:06 Spencer: Well, obviously…you’d show the names of all of the stalls and distances to each 
location [moves mouse to show distance]

2 09:14 Researcher: Okay
3 09:16 Spencer: I don’t know. If we would have direct numbers…but if we’re using it on a graph, 

you can actually see length, distance to each location from each other location
4 09:29 Researcher: Okay
5 09:34 Spencer: So, measure them. Like with a ruler. We could use the map scale, but it won’t mat-

ter because they are in the same proportions

In lines 1 and 3, Spencer described how she intended to use the names of the stalls as the 
vertices and the distances between the stalls as the edges. She then explained in line 5 how she 
intended to quantify the distances by measuring the lengths on the map with a ruler. Spencer 
did not use the map scale, although the other seven students converted their measurements 
using the scale.

Figure 7 a is a screenshot from Wyatt’s interview that shows how she used the online 
drawing tool to indicate the locations of the stalls and how she envisaged the cable would 
be laid along the ground from the source to stall B. She measured the length of these lines 
to reach a total of approximately 8 cm, which she converted to 80 m and represented as a 
straight line in her final vertex-edge graph (Fig. 7b).

5.3  Generalization

The modelling task elicited generalization in two ways. First, the students applied the 
mathematical modelling process  (GEN1), which, for these students, reflected a generalization 
of the process to accomplish a goal (design an algorithm) different from previous modelling 
tasks (see Table 3).  GEN1 was most evident during the understanding transition when the 
students planned their process, as illustrated by Remington’s headings and subheadings 
in Fig.  6. These headings reflect Remington’s adaptation of the modelling process to the 
algorithm design task in which she initially planned to write the algorithm during the “solve” 
transition. However, all students’ actual modelling pathways were iterative (see for example 
Fig. 4) as they adapted their validating/evaluating competence to algorithm design.

Second, the students applied their emerging skills at constructing vertex-edge graphs  (GEN2) 
during the formulation and revisiting transitions, as illustrated by Wyatt’s graphs in Fig.  7. 
Specifically, Wyatt applied the conventions for representing vertices and edges, and assigning 
weights to the edges. The students had previous experience interpreting graphs and modelling 
shortest path problems (see Table 3), which suggests that previous experience and some level of 
competence is a prerequisite for generalising algorithmic thinking skills across problem types.
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5.4  Algorithm design

The students expressed their final algorithms as a sequence of ordered steps  (AD6) during the 
communicating transition. There were two types of algorithm designs that emerged from this 
study, although both types are greedy algorithms because they involve making locally optimal 
choices at each iteration of selecting the next shortest edge (Maurer & Ralston, 1991; Medová 
et al., 2019). The first type focuses on the edges in the graph, as exemplified by Wyatt’s final 
algorithm in Fig. 5, whereas the second type focuses on the vertices, as exemplified by Paxton’s 
final algorithm in Fig. 5. Irrespective of the type, the modelling task elicited students’ use of 
algorithmic concepts and I will address each of these in turn.

Both algorithm designs used the weighted vertex-edge graph as input  (AD1). However, five 
students used a separate list or matrix of weights that made their use of the weights as inputs 
explicit. For example, the first step in Wyatt’s algorithm is to, “List out all weights in ascending 
order”. The use of the weights as inputs in this way are shown in Wyatt’s written response in 
Fig. 7c and Oakley’s response in Fig. 3. In addition to the weights, the students implicitly used 
the edges and vertices as inputs. For instance, Wyatt used the phrase, “Select the edge” and 
Paxton used the phrase “Choose the edge” in their second steps, which instructs the user to use 
the edges as inputs. Similarly, the students used the vertices as inputs that govern the branching 
statements and loops.

Note: H—I could replace A—I to form an equivalent solution.

Fig. 7  Wyatt’s a use of drawing tools, b vertex-edge graph, and c solution
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The second subskill used by the students to design their algorithm was to devise a 
fundamental operation  (AD2), which refers to the specific action that a user must execute 
to transform an input into an output. For example, Wyatt’s fundamental operation is 
“Select the edge with the lowest available weight” and “highlight it on the graph and cross 
it off the list”. The students devised their fundamental operation as they were working 
mathematically. For example, Wyatt explained her fundamental operation as follows:

1 40:05 Wyatt: Well, it’s reasonably consistent, because most of the options are just longer. So, it is 
obvious, you always choose the shortest possible option

2 40:16 Researcher: Talk me through how you worked that out
3 40:21 Wyatt: So, G to H is obvious because it’s the shortest possible option out of everything. So 

just sort of starting there. Then when you get to the point where D needs to con-
nect to something its 15. Basically, it’s just the same step over and over

4 40:55 Researcher: Tell me what you mean by same step?
5 41:00 Wyatt: Go through the list and it will tell you the shortest one where there are ulterior [sic] 

options

In line 1, Wyatt noticed that there is always a shortest option, and the fundamental 
operation is to choose that option. In line 3, she explained that the algorithm starts with 
the lowest weight and then continues with the next lowest weight, as indicated in the list 
of all available weights (line 5).

In contrast to Wyatt’s algorithm, Paxton relied on graph traversal and focused on 
vertices rather than a list of weights:

1 56:17 Paxton: You’ve got to visit each stall. Wait, did I visit each one? [pause to check] Yeah, I 
did

2 56:45 Researcher: Tell me how you solved it
3 56:50 Paxton: The rule is you’ve got to choose the shortest edge going onto the next vertex
4 56:54 Researcher: What do you mean by the rule?
5 56:58 Paxton: I started at M, and it has to have at least one connection. So, I chose the shortest one. 

Then you go around to each vertex and always choose the shortest one to get there

In line 1, Paxton explained that each vertex must be visited and in line 3, stated her 
fundamental operation of choosing the shortest edge leading to the next vertex. In line 5, Paxon 
explained the application of the fundamental operation by starting at one vertex (M) and then 
traversing the graph to the next vertex by choosing the edge with the lowest weight.

Subskill  AD3 refers to recognising that the fundamental operation can be repeated to work 
towards the solution. Examples of loops can be found in step 3 of both Wyatt’s and Paxton’s 
algorithms (Fig.  5), each of which contain an instruction to repeat the fundamental operation 
and the condition that the loop be terminated when all vertices are connected/visited. As for the 
fundamental operation, the need for a loop arose while the students were working mathematically.

Branching statements were used by all students to create an exception to the application of the 
fundamental operation  (AD4). The purpose of these branching statements was to ensure that the 
fundamental operation did not result in a circuit. Wyatt’s branching statement in step 2 (Fig. 5a) 
specifically includes a reference to a circuit as the condition that stops the user from applying the 
fundamental operation. In contrast, Paxton’s branching statement in step 2 (Fig. 5b) contains two 
conditions, the first of which is to not apply the fundamental operation if the vertex is already 
connected. These branching statements emerged for five students while they were solving the 
original problem and during the validating transition for the other three students.
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The modelling task elicited students’ interpreting and validating competencies, which gave 
rise to subskill  AD5, determine and verify outputs. The students’ models contained two out-
puts: the minimum length of cable and a plan for how the cable would be laid so that each stall 
would have electricity, as shown in Wyatt’s solution (Fig. 7c). The students made each of these 
outputs explicit in their final algorithms. First, step 4 in both Wyatt’s and Paxton’s algorithms 
contain an instruction to add the weights of all minimum spanning tree edges to find the mini-
mum length. Second, step 2 in both algorithms contains an instruction to highlight the selected 
edges, which cumulatively results in the formation of the minimum spanning tree.

Additionally, the students verified their outputs in two ways. First, the students evalu-
ated the reasonableness of the output by relating their minimum spanning tree back to 
the real-world, as illustrated by the following excerpt from Wyatt’s interview:

1 68:50 Wyatt: It means you have to go all the way to the pool lawn [A—G] then dangle the chord 
back to the fifth floor. You should probably just go to toasties [F] direct [from A]

2 69:33 Researcher: Okay
3 69: 40 Wyatt: It’s like for cupcakes [H] to brownies [I]. It’s got that big tree in the way. So 

probably shouldn’t have that [edge] in there because I was never going to 
go that way

Wyatt noticed that the minimum spanning tree included edges A—G—F but in line 1 
decided that this was unreasonable because of how the cable would need to “dangle” over sev-
eral floors of an adjacent building. Similarly, in line 3, Wyatt explained that she did not select 
the H—I edge because of an obstructing tree (shown in the map of the school), which other-
wise is an equivalent solution, and suggested that this edge should not be in the network. Sev-
eral students made similar adjustments to their graph because of their evaluation. The second 
way that three students verified their solution was by finding an online minimum spanning tree 
calculator, which was an established technique that students had learned to verify their models.

5.5  Pattern recognition

The two pattern recognition subskills  (PR1 and  PR2) emerged during the working math-
ematically transition and appeared to complement the algorithm design subskills,  AD2 
and  AD3, respectively.  PR1 provided the reasoning for  AD2 in that the students devised a 
fundamental operation when they recognized that the minimum spanning tree is found by 
always choosing the shortest option. Similarly,  PR2 provided the reasoning for  AD3 when 
students devised a loop. For example, Wyatt recognized that the fundamental operation can 
be repeated “over and over” in line 3 of her excerpt above, and Paxton recognized the need 
to repeat her fundamental operation when she stated that, “you go around to each vertex”.

5.6  Debugging

The validating transition elicited two debugging subskills consistent with the detecting and 
fixing errors elaboration in the algorithmic thinking framework. There were three types 
of errors that the students detected  (BUG1) and fixed  (BUG2) as they tested their draft 
algorithm on the revised network (Appendix 2): omitting a branching statement, listing 
steps in an incorrect order, and non-terminating loop.
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Oakley’s screenshot in Fig. 3 is an example of omitting a branching statement. Oakley 
detected an error after executing her fundamental operation of selecting the next lowest 
weight in the list of weights, as shown in the excerpt in Table 3. In line 8, Oakley highlighted 
the G—F edge and then realized that this formed a circuit (line 9). In response, she asserted 
that she needed to include a branching statement that creates an exception for edges that 
result in a circuit (line 12–14).

The second type of error that students detected was steps in a wrong order. For exam-
ple, Paxton draft algorithm in Fig. 8 contains a branching statement at step 4, which she 
discovered instructed the user to reject an edge if it formed a circuit after a circuit had 
been formed. In response to detecting this error, Paxton re-wrote step 2 of her algorithm 
to include the branching statement in this step, as shown in her final algorithm (Fig. 5b).

The third type of error that students detected was non-terminating loops. Step 3 in Pax-
ton’s draft algorithm (Fig. 8) contains a non-terminating loop, which she fixed by adding 
the condition, “until all vertices are visited”.

6  Discussion

The aim of this study was to investigate how mathematical modelling can be a vehicle for elicit-
ing students’ algorithmic thinking. The findings show that each students’ use of the modelling 
process activated modelling competences that were critical in eliciting their algorithmic thinking. 
The resultant algorithmic thinking subskills documented in this study extend and contrast with 
findings from the limited existing research into algorithmic thinking, which suggest that there are 
advantages in using modelling as a vehicle for eliciting students’ algorithmic thinking.

First, the need to formulate a model elicited abstraction subskills to make the problem 
tractable. Each student spent considerable time determining the relevant information from 
the given map and building an abstract representation of the network, consistent with the 
findings of Greefrath et al. (2022). However, the students in this study also explicitly iden-
tified the relevant variable  (AB2) and made assumptions  (AB3), which were adaptations of 
modelling competences critical to the students’ success in formulating abstract representa-
tion and then evaluating the spanning tree once it was found. Although the importance of 
using abstraction to make problems tractable in algorithmic thinking is well-documented, 
the findings of the present study demonstrate the specific role that mathematical model-
ling can play in eliciting these skills among students.

Second, the design of a fundamental operation that transforms inputs into outputs was 
central to each student’s final algorithm. Each student devised a way of choosing the next 
shortest available edge during the working mathematically transition of the modelling 

Fig. 8  Paxton’s draft algorithm
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process and expressed this fundamental operation in their final algorithm. This finding 
contrasts with the strategy used by group B in the study by Moala (2021) who wrote a 
sufficient set of features for their algorithm by first finding a suboptimal spanning tree and 
then improving it until no further improvements could be made. The greedy approach that 
emerged for the students in the present study probably reflects their experience with tra-
versing graphs and familiarity with an algorithm for solving shortest path problems.

In addition to devising a fundamental operation, the students in this study used branch-
ing, which previous studies have not documented. The students’ use of branching emerged 
during either the working mathematically and/or interpreting phases as the students eval-
uated the intermediate outputs returned by their fundamental operations. The modelling 
process appeared to trigger the students’ validating competence because they monitored 
the outputs to ensure that they avoided circuits, in the same way that a student might moni-
tor an evolving model to check that the solution satisfies the conditions of the problem 
(Czocher, 2018). The students also used their validating competence to evaluate the mini-
mum spanning tree by comparing it to the real world and revise their graphs accordingly.

Finally, the modelling process triggered the students’ use of decomposition and gen-
eralization in ways not documented previously in the literature. Although I instructed the 
students to use mathematical modelling to complete the task, the students independently 
responded by decomposing the task into subgoals and applying their modelling compe-
tences throughout the cycle. Similarly, their use of a vertex-edge graph in response to 
the task was likely due to their recent experiences in learning about networks. Further 
research into how students use decomposition and generalization without these prompts 
would extend our understanding of how these cognitive skills develop.

The findings of this study have three practical implications for using mathematical 
modelling as a vehicle for eliciting algorithmic thinking. First, teachers might first 
provide students with an opportunity to learn that an algorithm is a sequence of steps 
composed of fundamental algorithmic concepts such as loops and branching conditions 
because this appeared to enhance the students’ attempts at designing their own 
algorithm. Second, the subskills in existing algorithmic thinking frameworks (Table 1) 
and new subskills documented in this study (Table 6) may help teachers recognize the 
algorithmic thinking of their students. Finally, teachers might design modelling tasks 
set in authentic real-world contexts that compel students to formulate a model because 
this offers students an opportunity to develop a broader set of cognitive skills. Although 
previous researchers have used preformulated graphs to study students’ algorithm 
design and debugging approaches in research settings (Medová et  al., 2019; Moala, 
2021; Moala et al., 2019), such tasks may not develop students’ abstraction competence, 
which is at the heart of mathematical modelling, and algorithmic and computational 
thinking (Wing, 2008).

7  Limitations

The findings of this study are limited in four significant ways. First, opportunities to exam-
ine students’ cognitive barriers throughout the mathematical modelling process were limited 
because the design of an algorithm to solve a minimum spanning tree problem is relatively 
straightforward when compared with the design of algorithms to solve other graph problems 
(cf Moala, 2021; Moala et al., 2019). Further research might focus on whether the subskills 
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identified in this study apply to the successful design of algorithms for other graph problems, 
or indeed, in other domains. Second, the reproducibility of the responses to the modelling 
task used in this study by students in other cohorts will be limited because the context of the 
school fete was familiar to the students in this study. However, similar minimum spanning 
problems can be designed by adapting the task to networks familiar to students in other con-
texts. Third, the generalizability of the study is limited because the students in this study had 
well-developed mathematical modelling competence, experience in graph theory, and used 
standard graph algorithms. Although existing studies into graph algorithm design involve 
novice student participants, further research might involve more experienced participants to 
enhance research into algorithmic thinking. Finally, the competency model of algorithmic 
thinking developed for this study is based on the existing literature, which is limited. Hence, 
my reliance on provisional definitions and indicators of the cognitive skills of algorithmic 
thinking is a limitation of this study, which further research in this field should address.

Appendix 1

Each year, the school runs a fete to raise money for charity. Each house runs a stall that pre-
pares and sells a unique food item that requires cooking equipment. However, the locations 
of each stall do not have access to electricity. All stalls must therefore be connected to the 
source of electricity located next to the rear entry of the Administration Building.

Your task is to design an algorithm that calculates the minimum length of electrical 
cable needed to connect each stall to the source of electricity.
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Scale 1:1000.
Note: The source of electricity is identified for the reader by the star in this map, which 

did not appear in the map provided to the students.

Appendix 2

Suppose the location of each stall is changed for the fete next year, and these changes are 
reflected in the following vertex-edge graph. Use this revised graph to ensure that your 
algorithm will find the shortest length of cable for the new arrangement of stalls.

Data availability The data used in this study are not available to the public due to the constraints imposed by 
the Ethics Approval process at Queensland University of Technology.
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