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Abstract
Inspired by the entering of computer algebra systems (CAS) in the Danish upper secondary
school mathematics program, this article addresses, from a theoretical stance, what may
happen when traditional procedures are outsourced to CAS. Looking at the commands Bsolve^
and Bdesolve,^ it is asked what happens when such CAS procedures are objectified in the
students’ minds, and what the nature might be of the resulting Bobjects.^ The theoretical
analyses draw on a selection of classical mathematics education frameworks on conceptual-
ization and are related to the research literature on technology in mathematics education. The
article suggests the following characteristics as elements of negative effects: loss of distinctive
features of concept formation, a consequential reclassification of mathematical objects, insta-
bility of CAS solutions as objects, and prevailing a posteriori reasoning on students’ behalf
when relying solely on CAS in their mathematical work.
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1 Introduction

With the introduction of computer algebra systems (CAS) in the everyday teaching and
learning of mathematics, much of the usual paper-and-pencil mathematics that our
students previously had to do is now outsourced to CAS and other digital tools
(Buchberger, 2002; Grønbæk, 2017; Shaffer & Kaput, 1998; Trouche, 2005a). The reader
may be familiar with the Bsolve^ and Bdesolve^ procedures of CAS, which in a flash take
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care of all the otherwise cumbersome, intermediate calculations and reductions that
previously had to be done Bby hand.^ Of course, if a student is familiar with the
traditional techniques behind these CAS procedures, then everything in the garden is
lovely. But what if the student is not? It is a well-known fact that the calculations and
procedures performed by mathematics students can heavily influence their concept
development (e.g., Tall, 1994; Zandieh, 2000). Therefore, a change in typical procedures
deserves to be studied from a conceptual perspective.

In Denmark, CAS entered heavily in the upper secondary school mathematics pro-
gram with a reform of 2005 (see, e.g., Jankvist, Misfeldt, & Marcussen, 2016)—and not
only in teaching, but also in written assessments. One unintended consequence of the
high reliance on Bsolve^ and Bdesolve^ in Danish upper secondary school appears to be
that these CAS procedures themselves become Bpieces of mathematics^ for the students,
e.g., Bjust as we are able to differentiate and integrate, we can also solve and desolve.^
Danish upper secondary mathematics teachers explain that the word Bsolve^ has become
an integrated part of the students’ mathematical vocabulary.1 In Danish, Bto solve^ is Bat
løse^ and BI solve^ is Bjeg løser,^ but since CAS entered the mathematics program,
students now say Bjeg solver,^ i.e., adopting the English word Bsolve^ and adding an Br^
when conjugating the verb. For Danish upper secondary school students, Bjeg solver^
means something like BI solve the problem by applying the solve command.^ Further-
more, the ways in which Danish upper secondary students apply the Bsolve^ command
have changed. According to the teachers, it is not uncommon to observe students using it
even when at the blackboard: upon reaching a point in their algebraic reductions where
they know CAS can do the rest, some students simply bracket the expression and write
Bsolve^ in front of the first bracket, convinced that they are now done with the problem.

Considering the way CAS procedures may give rise to specific—and perhaps
problematic—cognitive constructs in students’ minds is in a sense a peculiar task to
undertake. But the current Danish situation suggests the relevance of doing exactly so,
since CAS are used to an extreme extent and the didactical consequences remain largely
undealt with: students are required to use CAS in their mathematical work, but only
small transformations of the curriculum and negotiation of renewed pedagogies have
been done. These issues have been described in four (empirical) articles on learning
difficulties and CAS use (Jankvist & Misfeldt, 2015); CAS’ role on classroom interaction
(Jankvist et al., 2016); textbooks’ use of CAS (Misfeldt & Jankvist, 2018); and instru-
mental mediation and students’ identities (Iversen, Misfeldt, & Jankvist, 2018). This
specific Danish situation obviously calls for further empirical investigation. However, it
also calls for a clearer theoretical understanding, not least in relation to
conceptualization—and that is the intention of this article.

We start out by describing the existing state of the art regarding the use of technology in
mathematics education (mainly the instrumental approach and the anthropological approach).
Then we present our research questions and the approach we have taken in addressing these.
This approach partly builds on looking back and reusing selected theoretical constructs
previously used to discuss mathematical conceptions and underlying procedures. Following
this, we describe and analyze two examples of CAS procedures (Bsolve^ and Bdesolve^).

1 Personal communication with Bmaths counsellors^ in Danish upper secondary school (Jankvist & Niss, 2015).
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Finally, we discuss conceptual consequences of relying increasingly on CAS procedures in the
teaching and learning of mathematics.

2 Previous research on technology and conceptualization

We are not the first to consider CAS’ effects on mathematical learning and concept
formation. Already with the introduction of advanced calculators, this was discussed.
One of the original hopes of introducing CAS in mathematics education was that it was
deemed able to connect the mathematical representations to concepts better than other
digital technologies (Tall, 1994), and has a potential positive influence on concept
formation (Dreyfus, 1994). Often studies were building specifically on constructivist
theories of learning, e.g., the work of Dubinsky (1991), who focused on how students
could use digital technologies and programming languages to support mathematical
concept formation. Such visionary approaches to the use of CAS for developing math-
ematical conceptualization have in the new millennium been replaced by a more realistic
attitude, since Bno one would claim that the expectations expressed at the time of the first
study have been fulfilled^ (Artigue, 2010, p. 464). In addition, the focus seems to have
shifted towards descriptive approaches of the actual influences of technology on teacher
and classroom practices (Hoyles & Lagrange, 2010). A paradigmatic contribution to this
development comes from the two theories known as the instrumental approach to
mathematics education, focusing on cognition and artifacts, and the Anthropological
Theory of the Didactics (ATD), focusing on the institutional nature of mathematical
knowledge as well as on the interaction between practical and theoretical knowledge in
the learning of mathematics.

The instrumental approach takes its departure in the challenges that digital technologies
pose to the existing practices of mathematics education, since Bthe appearance of more and
more complex tools in mathematics classes is not a response to an institutional need^
(Trouche, 2005a, p. 9). The approach was developed in France in the late 1990s as an
answer to Ba contrast between the idealistic discourse of the experts [...] and what was
revealed by observations^ that were present when looking at students’ use of CAS
(Artigue, 2010, p. 466). To better understand this gap, researchers deliberately left the
constructivist discourse behind and looked for new ways to conceptualize students’ CAS-
related work. Even more, they saw the use of constructivism as an unhealthy attempt Bto
caution [...] the technical-conceptual cut^ and thus Bfelt the need to take some distance^
from the constructivist approaches (Artigue, 2002, p. 247). The instrumental approach
marks a shift in focus away from only capitalizing the didactical potentials of CAS
towards also describing how teachers and students adopt these technologies into their
existing practices, in a process of instrumental genesis:

[A]n artifact is a material or abstract object, aiming to sustain human activity in
performing a type of task [...]; it is given to a subject; an instrument is what the subject
builds from the artifact. This building [...], the so called instrumental genesis, is a
complex process, linked to characteristics of the artifact (its potentialities and con-
straints) and to the subject’s activity, her/his knowledge and former work methods.
(Trouche, 2005b, p. 144)
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The instrumental genesis may be described as consisting of three dualities (Drijvers,
Godino, Font, & Trouche, 2013). The first is the duality between artifact and instrument
(Verillon & Rabardel, 1995); the subject develops the artifact into a personal instrument
by using it. The second is the duality between instrumentalization, i.e., that the subject
shapes and modifies the artifact; and instrumentation, i.e., that the artifact shapes and
influences the subject. The third is the duality between scheme and technique. When
students are using CAS to do mathematics, they are developing instrumented action
schemes (Drijvers et al., 2013).

The concept of technique stems from ATD, which was developed by Chevallard to
characterize mathematical knowledge and its institutional framing (Bosch & Gascón,
2014). In particular, ATD focuses on what characterizes mathematical knowledge in the
school system and other places in society in order to further understand the didactical
transposition of mathematical knowledge into the classroom. Central to the theory is the
interplay between theoretical and practical aspects of knowledge, where the latter consist
of specific explicit solution strategies, and the former on how these strategies fit into a
larger mathematical landscape of concepts and practices. The concept of technique
mediates between these epistemic and pragmatic aspects of mathematical knowledge
and has been used in the development of the concept of instrumented technique within
the instrumental approach, as described by Artigue:

First, the anthropological approach helped us overcome the problem posed by the
conceptual/technical dichotomy by making clear that mathematical techniques have
both an epistemic value and a pragmatic value. As a consequence, we were obliged to
seriously consider the change in the balance between these two values induced by the
use of CAS, which was especially insightful. (Artigue, 2010, p. 467)

A positive focus is not unusual in the technology literature, even though the importance
of the influence of CAS on the formation of mathematical concepts is acknowledged
(e.g., Weigand, 2014). Still, when reviewing the literature on the use of CAS for
mathematics teaching and learning, one realizes that it has undergone a change in
focus from describing potentials in terms of concept formations towards a focus on
understanding the developing work practices of students. This development marks a
move from vision to reality, in the sense that the central book edited by Guin, Ruthven,
and Trouche (2005) takes its outset in symbolic calculators, not as a gift to the formation
of mathematical concepts, but as a challenge to the practices of teaching and learning
mathematics:

[P]aper-and-pencil techniques tend to become obsolete because of the ease of using CAS
commands. This obsolescence is a problem because traditional techniques can no longer
play their role in conceptualization and ‘push button’ techniques cannot take over this
role directly. (Lagrange, 2005, p. 118)

Yet, what happens if Bpush button^ techniques actually do take over the role of
conceptualization from traditional techniques? This appears to be the case for many
Danish upper secondary students, where Bsolve^ and Bdesolve^ are the associated
techniques per se with the concepts of equation and differential equation, respectively
(Jankvist & Misfeldt, 2015). In the following section, we address this problem by
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revisiting some of the theories of mathematical conceptualization that predate the current
discussion of technologies in mathematics education.

3 Questions, approach, and theoretical constructs applied

Digging into the rich literature on mathematical conceptualization, the overall purpose of the
present article is to address the following two questions from a theoretical standpoint:

1. What happens when CAS procedures are objectified in the minds of our students?
2. What is the nature of the resulting Bobjects^ that the CAS procedures may give rise to?

Our notion of objectification and objects is grounded in a psychological (Piagetian) understanding of
abstract objects as results of empirical and reflective abstractions on performed actions. Dubinsky
(1991) expresses this: BReflective abstraction interiorizes and coordinates these actions to form new
actions and, ultimately new objects^ (p. 98). Hence, when we talk about the process of objectifi-
cation and the resulting objects, we refer to the result of reflective abstraction (in a Piagetian
understanding) and reification processes, as also described by Sfard (1991). An assumption of Sfard
is that once a procedure is reified into an object, this object becomes itself the input to a higher-order
mathematical concept. Still, what if the underlying procedure is not truly reified and students still
attempt toworkwith the associated higher-order objects?Observing students’work in algebra, Sfard
realized this shortcoming of her original model and introduced the notion of pseudostructural
conceptions (e.g., Sfard & Linchevski, 1994). According to Zandieh (2000), a pseudostructural
conception usually has the form of a gestalt, i.e., an object with no internal structure, a wholewithout
parts—referred to as a pseudo-object. But what of CAS procedures that take over a bundle of
underlying mathematical processes with one push of a button? Jankvist and Misfeldt (2015) argue
that reification of a given mathematical concept will be challenged, if its underlying processes are
only rarely performed due to extensive outsourcing to CAS, and that this will lead to a variation of
Sfard’s vicious circle—i.e., that reification of a lower level mathematical object can only happen
when this object serves as input for an interiorization of a higher level object—referred to as a vicious
spiral, where Bmore and more abstract concepts are built from processes acting on lower level
objects that have not been reified^ (p. 18). Yet, what if a CAS procedure does not lead to a
mathematical object—or even a pseudo-object—in our usual understanding of such? We cannot
know this a priori. Sfard’s (1991) original model of concept formation (interiorization, condensation,
and reification) does not seem able to predict this, mainly due to its hierarchical nature. Hence, for
the sake of our theoretical investigation, we augment the notion of pseudo-objects to Dubinsky and
colleagues’ APOS framework (e.g., Asiala et al., 1996), in order to use the insights from Sfard and
Dubinsky when trying to shed light on the consequences of increasingly adopting instrumented
techniques when trying to develop abstract mathematical concepts with the students. This is a
feasible strategy because APOS recognizes the existence of different levels of internalization
involving impoverished or partial mathematical concepts in a student’s mind. We also use Vinner
and colleagues’ notion of concept definition and concept image (e.g., Tall &Vinner, 1981), not least
due to its articulation of cognitive conflicts. It should be noted that these theoretical constructs do not
take the institutional level into account in the same way that ATD does. Still, we are very aware that
the analysis we are conducting, despite its theoretical nature, is framed by the institutional setting of
Danish upper secondary school. Here the combination of heavy implementation of CAS tools and a
slightly conservative mathematical curriculum focusing on high-level procedures (e.g., solutions to
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equations and differential equations) constitute a specific institutional setting (Jankvist et al., 2016)
that will influence the outcome of the analysis.

4 A theoretical analysis of two CAS procedures

We begin by introducing a recurring example based on which we continuously present and
apply the selected theoretical constructs mentioned above. We choose a well-described
problem2 from Bodin (1993), i.e., solve the linear equation:

7x−3 ¼ 13xþ 15: ð1Þ
From a procedural point of view, what we are interested in is to first collect the terms involving
x on one side of the equal sign and those not on the other side, e.g.:

7x−3þ 3−13x ¼ 13xþ 15þ 3−13x: ð2Þ

7x−13x ¼ 15þ 3: ð3Þ

Secondly, performing arithmetic operations on both sides of the equal sign, we obtain:

−6x ¼ 18; ð4Þ

x ¼ 18=−6; ð5Þ

x ¼ −3: ð6Þ
Several studies have shown that students may be able to perform operations resulting in the
expression x = − 3, without actually possessing any relational understanding of why these
operations are allowed or lead to a correct result (e.g., Kieran, 2007; Rhine, Harrington, &
Starr, 2018). Bodin (1993) finds that students, upon arriving at x = − 3, are not able to answer
the question of whether or not x = 10 could also be a solution to the original equation. From a
conceptual point of view, these students have not understood that −3 is a solution—and the
only solution. Despite potentially possessing sufficient procedural abilities, they lack concep-
tual understanding of the concept of equation. In a CAS environment, the same scenario is
possible as well, but here the number of procedural steps is reduced to only one, namely:

*ð Þ solve 7x−3 ¼ 13xþ 15; xð Þ:

2 With reference to Schoenfeld, BThe word problem is used here in this relative sense, as a task that is difficult for
the individual who is trying to solve it.^ (1985, p. 74). We do not distinguish sharply between problem, exercise,
and task. Rather we focus on the relation between student’s CAS-based work and their mathematical
conceptualization.
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That is to say, CAS reduces the procedural knowledge needed to the ability of writing up the
above expression and then Bpushing a button,^ thus obtaining the result, x = − 3.

According to Dubinsky and colleagues B…understanding a mathematical concept begins
with manipulating previously constructed mental or physical objects to form actions; actions
are then interiorized to form processes which are then encapsulated to form objects. Objects
can be de-encapsulated back to the processes from which they were formed. Finally, processes
and objects can be organized in schemas^ (Asiala et al., 1996, p. 9). This quote refers to the
key mental structures constituting the APOS framework: Action, Process, Object, and Schema.
Solving the linear Eq. (1), the Actions could consist of trying out whether specific numbers
satisfy the equation, or in playing with specific algebraic manipulations. When the student is
beginning to perform the necessary algebraic transformations in order to isolate x and find its
value, the actions are taking the first step towards being internalized to a Process of solving
equations. This internalization happens when the student repeatedly performs actions on a
mathematical entity and reflects on these; e.g., this means that the student will know the
procedures involved in solving the equation to an extent where there is less need for step by
step instructions in the process. For instance, a student might be able to go from (1) to (4)
without realizing the intermediate steps of the algebraic transformation, and even without
being able to reverse those steps. The act of internalizing an action is known as a Process.
However, actions can also be applied to processes; this happens when the student interprets the
process as a whole, i.e., as an entity to which transformations can be applied. When a student is
able to do so, (s)he has encapsulated the process into a mathematical Object. In the case of
solving Eq. (1), the student must encapsulate the process of solving an equation of this type
into a mathematical object. A coherent set of actions, processes, and mathematical objects,
e.g., in relation to the concept of linear equation, may be collected into the structure of a
Schema, which are the forms in which concepts exist in the mind of a student. A built-in tenet
of Dubinsky’s theoretical construction is the possibility to shift from an object back to a
process, as required in many mathematical situations. This is done by Bde-encapsulating the
object, that is, to go back to the process which was encapsulated in order to construct the object
in the first place^ (Dubinsky, Dautermann, Leron, & Zazkis, 1994, p. 271).

The application of the Bsolve^ command to our linear Eq. (1) may be regarded as an action
on a mathematical entity. However, a feature of this action is that it leads to the solution of the
equation in a single step. This of course frees the student of the need to perform the
intermediate steps of the solution process. Yet, at the same time, it reduces considerably the
number of actions to be applied (Fig. 1). Using the APOS framework, the Action is simply
applying the solve command. When a student is comfortable with the command, it can be
interiorized as a Process and later encapsulated when the student refers to the solution as an
independent Object. The broader Schema will be concerned with the structure of the relation
between equations, the commands applied, and the output that the CAS tool delivers (solu-
tions, error messages, etc.).

One may argue that a student could repeatedly apply the Bsolve^ command to different
linear equations until the command might become internalized and conceptualized as a
Bprocess^ in itself. Still, within the CAS environment, the space of actions is reduced. Of
course, there are a number of actions that potentially could be performed, e.g., Bsimplify.^
However, as we also know from the Danish situation, students soon realize that the space of
actions which leads to good—or acceptable to the teacher—solutions is rather limited. In a
traditional setting, one characteristic of the interiorization process is that a student is able to
reverse all steps performed during, say, an algebraic transformation. Clearly, this is not the
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situation when using CAS’ Bsolve^ command. In that sense, CAS solutions of equations are
built on irreversible actions. Hence, at least two characteristic features of the APOS framework
are not present when relying on the CAS procedure Bsolve^: that encapsulated processes are
reversible; and that the students do several actions on the object(s). Also, the intensive use of
the Bsolve^ command in the solving of equations may indeed represent a stumbling block with
respect to conceptualization, particularly in the students’ transition from actions to processes.
In her study of elementary school students’ learning of fractions, Arnon (1998) identified
levels within the progression from the action stage to the process stage among which the
interiorization of improper actions (i.e., actions that are incomplete or incorrect) is considered.
Thus, the transition from action to process requires an interiorization mechanism, but this
mechanism is a developmental continuum with levels in between that may include the
interiorization of an incorrect action or the interiorization of a partially incorrect action.

The execution of CAS procedures, such as the Bsolve^ command, may be considered as an
implementation of Bincomplete^ or Bimproper^ actions, in the sense that their operational
underpinnings remain hidden from the student (Buchberger, 2002). However, such actions,
although incomplete, may be internalized by the student; in fact, the students’ verbal mani-
festations of Bjeg solver^ and their use of the command Bsolve^ at the blackboard can be
considered as evidence of such an interiorization mechanism having taken place. Nevertheless,
as Arnon, Nesher, and Nirenburg (2001) warn us, the interiorization of incomplete or improper
actions leads to a pre-concept level of conceptualization—in this case a pre-concept of solution
of an equation—that is manifested by an impoverished knowledge of the concept. So, while
Sfard and colleagues acknowledge the possibility of not fully interiorizing a process that gives
rise to an abstract object, i.e., a pseudo-object, the APOS researchers’ suggestion is different,
because the transition happens between action and process and is conceptualized as a
developmental continuum. Or in other words: Sfard and colleagues’ pseudo-object may be
considered as the potential outcome of going from the mental structure of Process to that of
Object in the APOS framework, while Arnon and colleagues’ consider the potential outcome
of going from Action to Process, i.e., what might be referred to as a Bpseudo-process.^

Fig. 1 Screenshot of the solution of the linear Eq. (1) in a CAS tool (Wolfram Alpha)
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Another consequence related to conceptualization of having only one action, i.e., pushing
the Bsolve^ button, may be illuminated through Vinner and colleagues’ Bdistinction between
the mathematical concepts as formally defined and the cognitive processes by which they are
conceived^ (Tall & Vinner, 1981, p. 151). This they achieve by considering concept image,
which is Bthe total cognitive structure that is associated with the concept, including all the
mental pictures and associated properties and processes,^ and concept definition, which is Ba
form of words^ used to specify or define a concept (p. 152). Part of a concept image may be in
conflict with other parts of the image or with the concept definition, which constitutes a
potential conflict factor. Only if potential conflict factors are evoked simultaneously will they
result in a cognitive conflict. Students who have a concept image of linear equations as
something having one and only one solution may find themselves in a cognitive conflict,
when encountering equations with either no solutions or all real numbers as solutions. To some
extent, such cognitive conflicts may still be potentially possible when applying the CAS
procedure of Bsolve.^ For instance, when CAS provides the answers Bfalse^ and Btrue^ to
equations with no or all real numbers as solutions. Still, by outsourcing the solution procedure
to CAS, students may miss many other potential cognitive conflicts concerning the lower level
mathematical objects of the equation, e.g., the concepts of equality, variable, and number.

In Danish upper secondary school, differential equations are one of the more advanced
topics that students will encounter. While the Bsolve^ command may be said to encompass
only Bfairly simple^ actions, mathematically speaking, CAS procedures may potentially
Bencapsulate^ a variety of arbitrarily complex mathematical techniques. The Bdesolve^ com-
mand that solves differential equations illuminates this. As an illustrative topic, let us take first-
order differential equations. Depending on the equation, the solution procedure of course
varies quite a bit. Even if we have a differential equation on the apparently simple
(antiderivative) form y’ = f(t), a student may need to choose from an arsenal of procedures to
solve this, e.g., applying various rules of differentiation, known antiderivatives, methods of
substitution, and partial integration. If, however, we have a linear first-order differential
equation, i.e., of the form y’ + f(t) ∙ y = g(t), then, upon recognizing this form, the student will
need to know that such a differential equation has an exact solution, and how to arrive at this.
Something similar will happen for separable first-order differential equations, i.e., of the form
y’ ∙ g(y) = f(t), where the solution procedure relies heavily on integration techniques.

In relation to CAS and conceptualization, solving an arbitrary first-order differential
equation is once again reduced to a single action, Bdesolve.^ As for Bsolve,^ the encapsulated
processes of Bdesolve^ are also not reversible from an APOS point of view. Here too, the
students do not perform actions on objects in our usual understanding of such. Furthermore,
for Bdesolve,^ the amount of potentially encapsulated processes is much larger than for
Bsolve,^ which reduces a much larger space of potential actions for the students. This limits
the students’ possibilities to create new sound concept images related to differential equations
and their solutions. For example, Rasmussen (2001, p. 64) found that Bthe notion that a
solution is a function is likely a new idea for many students since much of their past experience
with ‘solving’ resulted in a number (or numbers).^ Hence, the limited space of potentially
many more actions causes students to miss a much larger number of potential cognitive
conflicts. In relation to numerical solutions to differential equations, Rasmussen (2001) further
states that students’ Bmental picture may not be specific to Euler’s method but rather be
indicative of students’ concept image about approximations in general^ (p. 76). Also, CAS
may impose superficial similarities between different procedures which essentially operate on
very diverse mathematical objects. Most evident is the apparent similarity between Bsolve^
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and Bdesolve^ procedures. This blurriness occasionally leads students to regard Bdesolve^ as a
special case of Bsolve^ (Jankvist & Misfeldt, 2015). Rasmussen’s (2001) observation that the
Bswitch from conceptualizing solutions as numbers to conceptualizing solutions as functions is
nontrivial for students^ (p. 67) further indicates that the superficial similarities between
Bsolve^ and Bdesolve^ most likely do not improve the situation.

5 Discussion of arising phenomena

The fact that in particular the Bdesolve^ command, but also the Bsolve^ command, cover such
a vast domain of mathematical concepts and techniques, seems to lead to the emergence of
new classifications of objects—classifications which are very different from those we usually
operate with within the discipline of mathematics. In the case of Bdesolve,^ students need no
longer pay much attention to whether the first-order differential equations are of the separable,
the linear, or of the simple antiderivative type. Nor do they need to pay attention to whether the
differential equations are homogeneous or inhomogeneous, if they are of first order or second
order, if they form a system of differential equations, or even if they are to be solved
analytically or numerically. CAS encapsulate all these types into being handled by one and
the same command, Bdesolve.^ The same is the case for Bsolve^; not much attention on the
student’s behalf is necessary in relation to whether we are dealing with linear equations,
quadratic equations, third- or fourth-degree equations, a system of three equations with two
unknowns, etc. To say it more bluntly, it is simply a different way of Bchunking up^ the
mathematical objects; a reclassification based on the CAS output. From the perspective of a
student, who is not familiar with the usual mathematical classifications of equations and
differential equations as well as the associated techniques for solving these, there may only
be two kinds of CAS outputs: solutions and non-solutions. A few examples of outputs in the
case of Bdesolve^ could be B?,^ Billegal input,^ Bundefined,^ Bsyntax error,^ etc., or even full
sentences such as BSupplied equations are not differential equations of the given functions,^ if
for instance entering desolve(y’ = 2y, x, t) instead of desolve(y’ = 2y, x, y), where the latter
would reveal the actual mathematical solution. Whether or not a student perceives such output
as a solution or a non-solution is of course individual; one student might regard the full
sentence above as an acceptable solution and the output Bundefined^ as a non-solution,
whereas it would be different for another student. Although such solutions and non-
solutions may be considered as gestalts, i.e., wholes without internal parts and structures, they
are not necessarily mathematical pseudo-objects in the usual sense. The usual classification of
the objects, according to their mathematical qualities, is in competition with a classification
based on the relevance of the CAS output in relation to value as solutions to be provided for
the teacher. It is not a matter of whether an equation/differential equation has a solution or not;
the answer Bfalse,^ i.e., no solutions, is in itself a solution. Rather it is a matter of if CAS can or
cannot Bsolve^ an equation or Bdesolve^ a differential equation. Surely, some engaged students
may wonder why we sometimes get solutions and sometimes not, and then potentially dig into
the mathematical theories behind this. But based on experiences from the Danish upper
secondary school mathematics program, students are often quite content with presenting a
Bnon-solution^ as a solution to a question, if this is what CAS display.3

3 Personal communications with Bmaths counsellors.^
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In a sense, the usual classifications of mathematical objects cease to exist when CAS
is used, and this CAS cessation has potential cognitive consequences. As debated above,
cognitive theories within the field indicate that actions related to mathematical entities
lead to the objectification of such actions, thus forming concepts in people’s minds.
Hence, when students’ mathematical activity develops in a setting where their actions on
abstract concepts are predominantly CAS procedures, students are likely to interiorize
those procedures, thus generating some kind of CAS objects. Since the constitution of
CAS objects is based on few and generic actions, their input to concept formation is
coarse. Students will lose access to algorithmic specificities that are critical to the
constitution of mathematical objects; a process that we believe will result in the impair-
ment of students’ concept images. Of course, there will be a basis of actions and
outcomes of these actions on which a classification of mathematical objects could be
constructed, but this classification would be rudimentary and impoverished.

A special feature of these CAS objects of solutions is that they are unstable. CAS
introduce an instability of solutions in the sense that the same mathematical situation can
be interpreted and solved differently due to features that are contingent from a mathe-
matical perspective, at least in the eyes of the students. Due to the ongoing improve-
ments of the user interfaces of CAS, these tools are increasingly taking part in supporting
mathematical interpretations (including mathematical problem solving and modeling).
This situation potentially changes the CAS objects of solutions. Different CAS tools
might make different choices when interpreting the same input. Furthermore, two inputs
with the same mathematical meaning but with different wording might be processed
differently.

That CAS tools are interpreting and mathematizing input is a fact, which not least is due to
the rapid development in language technologies. Dreyøe, Schewitsch, and Hansen (2017)
describe how certain tasks from the Danish national grade 9 examination can be typed more or
less directly intoWolfram Alpha. For example, a task where students are to find out how much
water is used in an 8-min and 30-s long shower with 14 liters of water used per minute. By
entering B14 L per min 8min and 30 sec^ into Wolfram Alpha, the tool gives you the answer
B119 L^. There is no longer the need for students to perform the mathematization, i.e., write
up: 14 L/ min ∙ 8.5 min. Moreover, nor do they have to perform the de-mathematization of
providing the unit L to the answer 119. Of course the actual solution algorithm that a system
applies might also differ and thus lead to different solutions, in particular in the case of
numerical solutions (for simplicity, say, e.g., the number of iterations CAS carry out of Euler’s
method or Runge-Kutta’s method).

In the students’ investigative processes, the instability poses a problem. It leads to
what might be termed Bthe mathematician’s regress^4 in the sense that it is not possible
for students to describe the origin of unexpected or instable results experienced in a CAS
environment. Most important, they are not able to see what part of the instability comes
from an unclear formulation of the problem, from a mathematical phenomenon (e.g., two
solutions to a quadratic equation), or from specific (e.g., numerical) methods hardwired
into the software. A student who relies on CAS to solve a linear equation and receives a
strange output—e.g., solving an equation with no solutions and getting the output Bfalse^
(cf. earlier)—cannot know, if (s)he is looking at a mathematical phenomenon, if (s)he is
using CAS in an incorrect manner, or if the CAS tool is relying on an insecure numerical

4 Inspired by the phenomenon of the experimenter’s regress (Collins & Pinch, 1993, p. 97).
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method. The cognitive consequences of such a less stable concept of solution may be
several. However, introducing a regress, where it ceases to be (even in principle) within
the reach of students to clarify such situations, runs a risk of students losing a clear
concept of the Bsolution^ to a mathematical problem—an issue which is known to be
important. Niss (2010), for instance, refers to the ability to conduct mathematical work
on solutions that have not yet been obtained as the result of a pending mathematization.
He refers to this as implemented anticipation and suggests that a stable concept of
solution is necessary in order for mathematical work to be successful. Hence, a weak
concept of mathematical solution can have negative consequences on students’ ability to
conduct mathematical problem solving work, because students can anticipate neither the
solutions nor the processes leading to them.

Instead, students may increasingly attempt to find solutions by trial-and-error experiments.
However, such reasoning process is fundamentally different from the a priori reasoning
process usually identified with mathematical thinking and working. Of course, experimental
mathematics has existed as an accepted mathematical practice for many years. However, the
interesting consequence in the present case is not the augmentation of mathematical reasoning
with a posteriori elements, but rather the transformation of mathematical reasoning away from
being mainly a priori. CAS procedures not only free the student from the algorithmic burden
that may be associated with the resolution of mathematical problem, they also minimize the
need to exert an a priori analytic reasoning about the structure of a problem or the nature of a
mathematical situation before deciding on specific algorithmic procedures. Students need only
know the syntax that allows them to enter, say, a differential equation into the CAS tool,
choose appropriate variables as part of that syntax, and then push the Bdesolve^ button.
Clearly, in this new scenario, the need for an a priori reasoning fades away. This means that
many mathematical tasks can be solved with one or two instrumented techniques—and the
students may already be well aware of this, i.e., that there is no real need to try to understand
the underlying mathematics.

Even in less restricted situations, where several instrumented techniques are available
to the student, an a priori reasoning may remain an element that, from the point of view
of the student, makes no or little sense. If a number of methods are available, and if they,
with almost no cognitive effort, can lead to different outputs, then the easiest approach to
solve a mathematical problem would be to look for the most trustworthy output from the
CAS. The reasoning that students apply in order to perform this task will often be far
from mathematical. This type of behavior is similar to the working random method (e.g.,
Guin & Trouche, 1998). However, more often than not, the choice between different
CAS procedures and outputs will not be exactly random, but rather based on superficial
recognition of what type of output seems credible and relevant as a solution to the
problem. This process, from mathematical reasoning to superficial recognition, charac-
terizes one of the major problems with heavy introduction of CAS tools in the teaching
and learning of mathematics.

6 Conclusion: the dawn of Binstrumatics^

In the Danish context, it is often articulated that CAS have changed the school subject of
mathematics into something else (e.g., Grønbæk, 2017). With this article, we have
identified four phenomena that may provide some illumination of what this Bsomething
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else^ might involve. Firstly, the development of mathematical concepts is affected
because the actions and processes involved in doing mathematics are changed. We
suggest that the resulting concepts are coarser, because one command can handle a
number of mathematical phenomena. Secondly, the involved processes are not reversible
and transparent, and this means that the concepts are weaker. Thirdly, we have argued
that the use of CAS challenge students’ conception of mathematical solution. Fourthly,
the a priori reasoning process that characterizes the mathematical way of working will be
in competition with more superficial trial and error strategies. CAS make trial and error
ways of working much more efficient for students, which cause the students to lose the
ability to acknowledge the necessary nature of mathematical solutions. This provides a
narrowing down of potential answers to our two initial research questions, since it tells
us what does not happen when CAS procedures take over. The two phenomena of
reclassification of mathematical objects and the prevailing of a posteriori reasoning to
some extent make up our answers to the first research question, i.e., what might happen
when CAS procedures are objectified in the minds of our students. As for the second
research question, i.e., what is the nature of the resulting objects that CAS procedures
give rise to, we have pointed to the fact that in the case of resulting objects (CAS
objects), these will be a different kind of cognitive (non-mathematical) objects in the
sense that they are coarser and by nature possess an embedded instability.

From the perspective of any experienced Danish upper secondary school mathematics
teacher, who usually holds a master’s degree in mathematics proper, it is understandable
if (s)he thinks that Bit’s the end of mathematics as we know it^5 once CAS enter the
classroom. Some might even go so far as to state that what is taking place is no longer
mathematics.6 But if not mathematics, what then? Perhaps what we are witnessing the
beginning of in our present day CAS heavy environments is a kind of Binstrumatics.^
That is to say, a subject where CAS are used for solving mathematical problems—but not
for learning mathematics—and where the mathematical work is undoable for the students
without a CAS tool. In such a subject, mathematical problems and situations would be
classified more in relation to the CAS technique for addressing them and less by internal
mathematical relationships. In that sense, mathematics would cease to be a genuine
subject to be studied.

Summing up, we find ourselves in a situation today where the classical theories of the
psychological formation of mathematical concepts and objects all suggest that CAS can have
significant and non-intended influences on students’ concept formation. The literature on
technology, and especially the instrumental approach and ATD, in many ways have the
necessary machinery to study the developmental results of using CAS in this manner and to
this extent. However, in order to do so, we might need to focus more specifically on the
unintended consequences of heavy CAS use. We suggest that it will be beneficial to Bnetwork^
the instrumental approach and ATD with the same psychological and constructivist theories
that these approaches initially turned away from partly due to a disappointment about the
hopes of positive effects on students’ learning with technology. Perhaps therefore, this has so
far not been done in a way where the focus is on long-term negative cognitive consequences of
the use of CAS. For the two CAS procedures Bsolve^ and Bdesolve,^ this article offers an
attempt at doing just that.

5 Inspired by R.E.M.’s song BIt’s the end of the world as we know it (and I feel fine)^ (1987).
6 For example, Buchberger’s (2002) so-called Bpurists.^
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